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Abstract

While geologists suggest that New Caledonian main island (Grande Terre) was submerged until ca 37 Ma, biologists are
struck by the presence of supposedly Gondwanan groups on the island. Among these groups are the Oreosycea fig trees
(Ficus, Moraceae) and their Dolichoris pollinators (Hymenoptera, Agaonidae). These partners are distributed in the
Paleotropics and Australasia, suggesting that their presence on New Caledonia could result from Gondwanan vicariance. To
test this hypothesis, we obtained mitochondrial and nuclear markers (5.3 kb) from 28 species of Dolichoris, used all available
sequences for Oreosycea, and conducted phylogenetic and dating analyses with several calibration strategies. All our
analyses ruled out a vicariance scenario suggesting instead that New Caledonian colonization by Dolichoris and Oreosycea
involved dispersal across islands from Sundaland ca 45.9-32.0 Ma. Our results show that successful long-distance dispersal of
obligate mutualists may happen further suggesting that presence of intimate mutualisms on isolated islands should not be
used as a priori evidence for vicariance. Comparing our results to a review of all the published age estimates for New
Caledonian plant and animal taxa, we showed that support for a vicariant origin of the island biota is still lacking. Finally, as
demonstrating a causal relationship between geology and biology requires independent evidence, we argue that a priori
assumptions about vicariance or dispersal should not be used to constrain chronograms. This circular reasoning could lead
to under or overestimation of age estimates.
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Introduction

The New Caledonia archipelago (Grande Terre, Loyalty

Islands, Isle of Pines, and a number of smaller islands) is isolated

in the southwest Pacific. These islands are roughly located

1220 km east of Australia, 1700 km north of New Zealand,

1000 km south of the Solomon Islands, and about 400 km

southwest of the Vanuatu archipelago [1]. New Caledonia, and

especially Grande Terre, is known as a biodiversity hotspot due to

its diverse, endemic, and threatened biota [2,3]. Until recently, the

high level of diversity, the old age of New Caledonia’s geological

basement and the presence of some ancient groups were taken as

evidence that Grande Terre (hereafter shortly named ‘‘New

Caledonia’’) was a Gondwanan refuge where plants (e.g. Amborella

[4], Nothofagus [5], Araucaria [6], Ficus [7]) and vertebrates (e.g. the

Kagu flightless bird from the monotypic family Rhynochetidae [8])

have survived for more than 90 Myr [1]. However, recent

geological evidence suggest that the New Caledonian region

experienced complete submersion until ca 37 Ma [9,10,11] and no

mainland area was above sea level between the Cretaceous and

the Late Eocene [12]. This implies that the present day biota of

New Caledonia must comprise neo-endemics evolved from

Cenozoic transoceanic dispersers [1]. However, to explain an

apparent mosaic assemblage of taxa of different ages, some

biogeographers questioned a complete submersion of the island

[13,14] and some proposed that old taxa could have survived on

ephemeral habitats until New Caledonia’s emersion [15,16].

Therefore, New Caledonia is immersed in a controversy over

the age and origin of its biota.

Among the emblematic and putative Gondawanan groups

occurring in New Caledonia are the fig trees (Ficus, Moraceae) and

their associated pollinators (Chalcidoidea, Agaonidae) [7]. New

Caledonia hosts 24 endemic Ficus species all belonging to the

section Oreosycea (subgenus Pharmacosycea) and pollinated by wasps

from the genus Dolichoris [17], some of them endangered,

threatened by habitat destruction [18]. Corner [19] hypothesized

that the Coral Sea area including today’s main island of New

Caledonia was the radiation centre of this group of monoecious fig

trees. In New Caledonia, evolutionary radiation of Oreosycea figs as

well as their pollinators were accompanied by high ecological and

morphological disparity among species (habit, fruit position, leaf

shape; head shape, mandible size) [19,20]. Oreosycea fig trees and

their pollinators are distributed in the Paleotropics and Australa-

sia, suggesting vicariance resulting from the break-up of east-

Gondwanaland [7] (see materials and methods and Table S1, for

the detailed taxonomy and distribution). Moreover, available age

estimates (ca 70-45 Ma for the figs [21] and 95-46 Ma for the

wasps [22]) are contemporaneous with the opening of the Tasman

Sea that started 83 Ma and ended 52 Ma [11,23,24]. Here, we

propose to test whether a vicariance scenario could explain the
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presence of both partners on New Caledonia. Answering this

question is of particular importance to debates concerning New

Caledonia’s history. First, figs are a major resources for tropical

ecosystems [25], and one can suppose that the biogeographical

history of numerous frugivores is linked to those of fig-pollinator

mutualists. Second, pollinating fig wasps are mostly associated to a

single species of Ficus and neither partner can reproduce without

the other. Successful dispersal of obligate mutualisms requires to

quickly find one another after independent dispersal [26].

Theoretically [27] and intuitively, mutualisms appear less prone

to successful dispersion over long distance than single species.

Consequently, they might be viewed as evidence of ancient

vicariance. Moreover, testing a vicariance scenario may also shed

light on the dispersal ability of mutualisms.

We obtained nuclear and mitochondrial DNA sequences

(5.3 kb) from all major lineages of the genus Dolichoris and

gathered all the Oreosycea sequences published so far. We con-

ducted phylogenetic analyses on both datasets, though due to

undersampling of fig species we only used the fig wasp dataset to

conduct relaxed molecular dating analyses with several calibration

strategies. Since the review by Grandcolas et al. [1], including 11

taxa, a great number of studies including New Caledonian groups

have been published (see Table S4). We then conducted an up to

date review of all dated, molecular-based phylogenies incorporat-

ing New Caledonian taxa and compared these age estimates to our

results.

Materials and Methods

Taxonomic sampling and laboratory protocols
Oreosycea figs and their associated pollinators are distributed in

the Paleotropics, Australasia (mostly New Caledonia and Papua)

and South-East Asia [17,19]. A few species are known from Africa

and Madagascar [28] and only one species occurs in Australia

[29]. The detailed taxonomy and distribution of Oreosycea fig

trees is provided in Table S1. The section is divided into two

subsections: Glandulosae and Pedunculatae [30]. The sub-section

Glandulosae contains two groups of fig trees: the «Ficus austrocaledonia

group» that comprises 27 species restricted to Pacific Islands

(among which 24 are endemic to New Caledonia, 2 to Solomon

Islands and 1 to Vanuatus), and the «Ficus nervosa group» that

contains 23 species from India to the Solomon Islands. The

Subsection Pedunculatae includes nine species, three of which are

widely distributed from India and Continental Asia to Wallace line

and Australia.

We included 28 species of Dolichoris representing three times the

number of described species and about 33% of the world

estimated diversity (Rasplus, unpublished). Twenty-one of these

species are new to science (numbered sp. 01 to sp. 21). They

pollinate 23 of the 59 Oreosycea known species. Sixteen Dolichoris

species pollinate Ficus belonging to the F. austrocaledonica group,

fourteen of which are endemic to New Caledonia. Nine Dolichoris

species pollinate figs of the F. nervosa group and three species figs of

the sub-section Pedunculatae. None of these species were endan-

gered or protected species. Field studies have been funded by the

French National Research Agency (ANR project ‘‘BioNEOCAL’’

to J.Y. Rasplus). Eight species belonging to the genera Ceratosolen,

Pegoscapus, Pleistodontes and Tetrapus (Agaonidae) were used as

outgroups [31]. To test the relationship of Blastophaga (s.s.) with the

genus Dolichoris [31], Blastophaga psenes, the type species of the

genus, was also included in our analyses. All material was collected

alive and fixed in 95% EtOH. Vouchers are deposited at CBGP

(Centre de Biologie pour la Gestion des Populations), Montferrier-

sur-Lez, France. A list of all sampled species is given in Table S2.

Extraction, amplification and sequencing protocols follow Cruaud

et al. [31,32]. Our final dataset was composed of six concatenated

gene regions: 1) two nuclear genes: F2 copy of elongation factor-1a

(EF-1a, 516 bp) and wingless (Wg, 403 bp); 2) two mitochondrial

genes: cytochrome oxidase I (COI, 1449 bp) and cytochrome b

(Cytb, 744 bp); and, 3) two nuclear ribosomal genes: 28S rRNA

(D2–D3 and D4–D5 expansion regions, 1405 bp) and 18S rRNA

(variable regions V3–5, 772 bp). All sequences were deposited in

GenBank (Table S2). The Oreosycea phylogeny was reconstructed

from all the sequences available in GenBank. The final dataset was

comprised of ITS (891 bp), ETS (528 bp) and G3pdh (769 bp)

sequences from 11 Oreosycea species and 8 outgroup species. F. carica

which is pollinated by Blastophaga psenes was also included (Table S3).

Phylogenetic and dating analyses
Protein-coding genes and hypervariable regions were aligned

using ClustalW 1.81 default settings [33]. The alignment of rRNA

sequences was based on secondary structure models [31,34,35].

The most appropriate model of gene evolution for each data

subset (mitochondrial genes, EF-1a, rRNA stems and loops for

wasps and ETS, ITS and G3pdh for figs) was identified using the

Akaike information criterion implemented in MrAIC.pl 1.4.3 [36].

Phylogenetic trees were estimated using maximum likelihood (ML)

and Bayesian methods. Analyses were conducted on a 150 cores

Linux Cluster at CBGP. We performed ML analyses and

associated bootstrapping using the MPI-parallelized RAxML

7.0.4 [37]. GTRCAT approximation of models was used for

ML bootstrapping [38] (1000 replicates). Bayesian analyses of

phylogenetic relationships and dating analyses were conducted

using BEAST v 1.5.4 [39]. Indeed, recent studies have shown that

models assuming independent molecular rates in adjacent

branches perform better than those assuming a degree of rate

autocorrelation especially on extended taxon sampling [40] (but

see [41]). Due to insufficient sampling in the fig dataset, dating

analyses were conducted only on the fig wasp dataset. Several

calibration strategies have been examined to assess their effect on

estimating the age of New Caledonian colonisation. Two Agaonid

fossils belonging to the genera Tetrapus and Pegoscapus dated to the

Burdigalian (20.4-16.0 Ma) have been described from the

Dominican amber [42]. We first used these fossils to specify prior

age distributions for the corresponding nodes (crown groups)

by using 1) uniform (15.0–30.0 Ma), 2) normal (mean = 20;

stdev = 3.0; 95% highest posterior density intervals (HPD) = 15.0–

24.9 Ma) and 3) lognormal (offset = 15; log(mean) = 1.0; log(st-

dev) = 1.0; 95% HPD = 15.5–29.1 Ma) distributions successively.

We then combined these fossil calibrations with geological

information by specifying priors for the node grouping taxa

endemic to Vanuatu islands. We implemented two distributions: 1)

a lognormal prior distribution (offset = 0; log(mean) = 1.0;

log(stdev) = 1.0; 95% HPD = 0.5–14.1 Ma) and 2) a normal prior

distribution (mean = 2.0; stdev = 0.5; 95% HPD = 1.18–2.82 Ma).

The shapes of the distributions used allowed for different degrees

of uncertainty in fossil estimates, geological estimates and timing of

island colonisation, which may impact the results. With the

exception of a Yule tree prior, default priors were used for all

parameters. Two runs of 60 000 000 generations were performed

with sampling every 6000 generations. The two separate runs were

then combined using LogCombiner ver. 1.5.4. We ensured

convergence for each parameter using both TRACER ver. 1.5

and AWTY [43]. Following the removal of 10% burn-in, the

sampled posterior trees were summarized using TreeAnnotator

ver. 1.5.4 to generate a maximum clade credibility tree and

calculate the mean ages, 95% highest posterior density intervals

and posterior probabilities (PP).

Fig-Wasp Colonisation of New Caledonia
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Review of studies including New Caledonian taxa
We reviewed the literature on dated, molecular-based phylog-

enies incorporating New Caledonian taxa in order to assess

whether biological data contradict or agree with geological evi-

dence of a complete submersion of New Caledonia until ca 37 Ma.

As often as possible, and when available or applicable, we tried to

report both mean stem and crown ages with their 95% highest

posterior density (HPD) intervals. Indeed, one must keep in mind

that the age of the stem group is the time of divergence of the given

group from its sister taxon and the age of the crown group is the

time of the deepest bifurcation within the given group [44].

Therefore, a colonisation event can be inferred at any time

between the stem and the crown ages and the most conservative

window of possible colonisation times is given by the upper 95%

HPD interval of the first estimate and the lower 95% HPD interval

of the second estimate (e.g. [45]). To be conservative, when

authors reported variation on age estimates, we always kept the

oldest estimate. All studies that used the emergence of New

Caledonia (ca 37 Ma) as calibration point were discarded.

Results

Phylogenetic and dating analyses
Bayesian and ML tree topologies were similar, only differing in

the support of few clades and we arbitrarily chose to map node

support values on the bayesian topologies (Figure 1).

All Dolichoris species clustered in a strongly supported clade

(BP = 87; PP = 1.00). The Afrotropical species D. flabellatus was

recovered sister to the remaining Dolichoris with strong support

(BP = 71; PP = 1.00). The next node should be considered a

polytomy of five subclades as supports for relationships are weak:

1) Blastophaga psenes (Arabo-sindic, Mediterranean); 2) D. malabar-

ensis; 3) D. vasculosae (both Indo-China, Sundaland, Sulawesi,

Philippines); 4) the pollinators of the F. nervosa group (Indo-China,

Sundaland, Sulawesi, Philippines, New Guinea); and 5) Dolichoris

from New Caledonia and Vanuatu. Dolichoris species from

Vanuatu and Loyalty Islands are deeply nested within a strongly

supported clade of Dolichoris endemic to Grande Terre (BP = 100;

PP = 1.00).

Oreosycea was not recovered as monophyletic but instead formed

two groups, a result already observed by Weiblen [46] and

Rønsted et al. [47]. The F. albipila group (F. albipila (Indo-China,

Sundaland, New Guinea, Australia) and F. dicranostyla (Africa))

appeared only distantly related to the remaining Oreosycea (BP = 81;

PP = 1.00). F. nervosa (Indo-China), F. callosa (Indo-China, Sunda-

land, Sulawesi, Philippines) and F.vasculosa (Indo-China, Sunda-

land, Sulawesi, Philippines), were recovered sister to a well

supported clade grouping species from New Caledonia, New

Guinea and Sulawesi. BEAST results showed that all gene regions

greatly deviate from a strict clock model (ucld.stdev greater than

1.0 for each marker) and that there is no strong evidence of rate

autocorrelation in our phylogeny (covariance values spanning

zero). As expected, fossil and geological calibrations chosen as well

as the method for applying constraints to the nodes have a great

impact on divergence time estimates (Table 1). The less in-

formative the priors (uniform), the wider the credibility intervals of

the posterior estimates. A normal distribution assuming a

colonisation of Vanuatu Archipelago just after the emergence of

the present islands ca 2 Ma [48] gives younger estimates (about 10

Myr younger). The split between New Caledonian Dolichoris and

their closest relatives was estimated to a mean age ranging from

54.9 to 31.3 Ma. The most recent common ancestor of the New

Caledonian diversification was estimated to a mean age ranging

from 40.3 to 22.8 Ma. The colonisation of New Guinea occurred

later with a mean stem age ranging from 32.2 to 18.4 Ma and a

mean crown age ranging from 21.1 to 11.9 Ma. All these estimates

were in agreement with previous results based on independent

datasets [22].

Review of studies including New Caledonian taxa
Our review includes 47 studies focusing on 54 different taxa (6

vertebrates, 24 arthropods, 24 plants) with different levels of

endemicity (species, genus, family) (see Table S4 for details).

Figure 2 summarizes the estimates of crown and/or stem

divergence times obtained for each taxon. In about 75% of the

groups in which divergence ages have been estimated using

different markers, dating methods, and calibration points, both

crown and stem mean ages postdate New Caledonia emergence (ca

37 Ma). About 16% of the groups had mean stem ages that

predate New Caledonia emergence but their mean crown ages

date back at most to 41.1 Ma. For five groups, the literature only

reports stem ages, and three of them, namely Amborella trichopoda,

Oncotheca balansae, and Beauprea montana, exceed 80 Ma.

Discussion

Timing of arrival in New Caledonia
Vicariance hypothesis predicts that the stem Dolichoris estimate

should be older than the separation of Zealandia from Gondwana

ca 80 Ma [23]. However, our dating analyses revealed that the split

between New Caledonian species and their closest relatives is more

recent. With the exception of the most uninformative calibration

strategy (single calibration with uniform distribution, [49,50]),

even the upper confidence limit of our age estimate (76.5 Ma) rules

out the latter hypothesis. Therefore, Dolichoris and their host figs

have probably colonised New Caledonia by dispersal and not by

lineage survival on islands formed by tectonic breakup of

Gondwana.

A vicariance scenario is not supported by any of the age

estimates published to date. Indeed, a post Bartonian (ca 40.3 Ma)

colonisation cannot be rejected for any extant taxa (Figure 2 and

Table S4), corroborating the observations of Grandcolas et al.

(2008). Moreover, in most groups, both the colonisation and the

diversification are relatively recent, contradicting the view that the

native biota of New Caledonia is primarily a product of a long

isolation [51,52].

Even if three hypothetical vicariant groups, Amborella trichopoda,

the subfamily Oncothecaceae and the genus Beauprea, seem to

challenge other evidence, the available data appear uninformative

with regard to their New Caledonian history. Although the genus

Beauprea and the subfamily Oncothecaceae contain 13 and two

species respectively, the published estimates are only based on one

extant species per taxon allowing the estimation of stem ages only.

Therefore, including other extant species, fossils or yet undiscov-

ered species belonging to these groups is required to draw more

compelling conclusions. The monotypic family Amborellaceae is

likely a product of one of the oldest lineage-splitting events in all

angiosperms [4] and has an extremely restricted present-day

distribution. It seems therefore unlikely that it is the sole member

of its lineage ever to have evolved [53]. Consequently, this

phylogenetic relict, often referred to when arguing for a

Gondwanan origin of the New Caledonian biota, should not be

considered as informative [1,54].

Some authors argued that the age estimates for the New

Caledonian colonisation are underestimated because analyses are

based on inaccurate fossil or biogeographic calibration priors

[16,55]. For example, Heads [16,55] underlines that authors

should not rely on the fossil record to set maximum age constraint

Fig-Wasp Colonisation of New Caledonia
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on a given clade. It has been shown that using fossil evidence as

«hard» minimum bounds (point calibrations) can result in

underestimation of divergence times [49,56]. However, the

recently developed methods we used are able to incorporate

calibration uncertainty using «soft» priors with parametric

distributions [49,57]. It has been also shown that taxa can be

older than the land they inhabit (e.g. [58]), which is why using the

formation of islands as hard maximum bounds is inappropriate in

some cases. To date, Dolichoris species are known only from the

southern part of the Vanuatu archipelago that emerged ca 2 Ma

(Tanna and Anatom islands, [48]). For this reason, the use of a

normal prior distribution centered at 2 Ma and covering a narrow

range with 95% probability (1.18–2.82 Ma) for the node grouping

Vanuatu endemics would appear justified. However, Vanuatu’s

Figure 1. Maximum clade credibility trees obtained for Oreosycea fig trees (a) and chronogram showing the timing of evolution of
their pollinating wasps (b). The chronogram showing the timing of evolution of Dolichoris fig wasps is derived from the sixth calibration set
shown in Table 1. Grey bars around mean node ages (Ma) indicate the 95% HPD intervals. The geological time-scale is shown at the bottom.
Bootstrap supports (higher than 65) and posterior probabilities (higher than 0.90) are indicated at nodes. The delineation of biogeographical regions
follows Kreft [88] Afr: Africa, Ar-Sin: Arabo-Sindic; Aus: Australia, Ind-Chi: Indo-China, Ind: India, Med: Mediterranean; NC: New Caledonia, NG: New
Guinea, Phi: Philippines, Sul: Sulawesi, Sun: Sundaland, Van: Vanuatu. Stars indicate probable misidentifications of host Ficus in Genbank. Dolichoris
and Oreosycea species are highlighted in bold blue.
doi:10.1371/journal.pone.0030941.g001

Fig-Wasp Colonisation of New Caledonia
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ecosystems have formed during the last ca 25 Myr [59,60] and we

cannot rule out an older colonisation of the archipelago by the fig

wasp mutualism. The biodiversity of the archipelago is still poorly

known and endemics might have existed further north, on older

islands. Therefore the use of a lognormal prior with a rigid

minimum bound of zero and covering a wider range (0.5–14.1

Ma with 95% HPD), provides a more conservative calibration

approach. This strategy resulted in 10 Myr older estimates for the

New Caledonian colonisation (Table 1). This shows that a priori

assumptions about the biogeographical history of lineages can

have important effects on divergence time estimates. Even if

geological events, such as the formation of islands, can offer

plausible instances of maximum age bounds, these bounds must be

chosen carefully. Using a too recent dispersal event as constraint

on the origin of a given clade can result in underestimation of the

age of all the lineages. Conversely and although this is advocated

Table 1. Results of dating analyses using different calibration strategies.

Calibration strategies crown Dolichoris
stem
New Caledonia

crown
New Caledonia

Fossils: crown Pegoscapus & Tetrapus

1) uniform priors 60.8(97.1-30.6) 54.9(87.1-28.4) 40.3(64.5-20.7)

2) normal priors 52.6(80.0-26.0) 47.4(74.0-23.9) 35.0(55.8-15.7)

3) lognormal priors 53.0(83.6-24.5) 47.4(76.5-23.6) 35.8(56.1-17.5)

Fossils and islands
(node grouping species endemic to Vanuatu)

4) Fossil uniform priors & islands lognormal priors 55.7(86.9-27.0) 50.1(79.4-25.5) 36.6(58.0-18.3)

5) Fossil normal priors & islands lognormal priors 50.8(78.7-25.5) 45.9(71.3-23.0) 33.5(53.6-15.7)

6) Fossil lognormal priors & islands lognormal priors 48.6(78.0-23.7) 43.9(69.6-21.2) 32.0(50.9-15.5)

7) Fossil uniform priors & islands normal priors 39.3(54.9-24.0) 35.0(48.1-21.4) 25.6(36.6-14.5)

8) Fossil normal priors & islands normal priors 34.7(51.67-19.9) 31.3(46.2-18.4) 22.8(35.4-12.0)

9) Fossil lognormal priors & islands normal priors 35.5(51.0-21.4) 32.0(45.7-19.1) 23.2(34.6-13.4)

stem
New Guinea

crown
New Guinea

crown
Pegoscapus

Fossils: crown Pegoscapus & Tetrapus

1) uniform priors 32.2(51.6-15.2) 21.1(34.6-9.07) 20.6(28.2-15.0)

2) normal priors 27.4(43.0-12.8) 17.7(28.3-7.60) 19.1(25.0-13.8)

3) lognormal priors 27.0(43.3-11.0) 17.9(30.7-7.17) 17.6(21.9-15.1)

Fossils and islands
(node grouping species endemic to Vanuatu)

4) Fossil uniform priors & islands lognormal priors 29.0(46.0.6-13.2) 18.4(31.5-7.84) 19.9(27.5-15.0)

5) Fossil normal priors & islands lognormal priors 26.4(41.8-12.5) 16.5(27.3-6.53) 18.5(23.9-12.7)

6) Fossil lognormal priors & islands lognormal priors 25.2(40.1-10.9) 15.9(26.1-6.43) 17.4(21.5-15.1)

7) Fossil uniform priors & islands normal priors 19.8(27.8-12.0) 12.4(18.9-6.30) 18.3(24.5-15.0)

8) Fossil normal priors & islands normal priors 18.2(27.1-9.93) 11.7(19.0-5.87) 17.0(23.1-11.4)

9) Fossil lognormal priors & islands normal priors 18.4(27.7-10.9) 11.9(18.4-6.35) 16.9(20.0-15.1)

crown
Tetrapus

stem
Vanuatu

crown
Vanuatu

Fossils: crown Pegoscapus & Tetrapus

1) uniform priors 18.2(24.5-15.0) 19.6(31.5-9.56) 8.44(15.1-3.02)

2) normal priors 16.8(22.9-10.7) 16.05(26.7-8.27) 7.06(12.7-2.52)

3) lognormal priors 16.9(19.9-15.1) 14.4(27.2-9.14) 7.25(12.6-2.87)

Fossils and islands
(node grouping species endemic to Vanuatu)

4) Fossil uniform priors & islands lognormal priors 17.6(22.9-15.0) 17.4(27.6-8.89) 6.50(11.2-2.33)

5) Fossil normal priors & islands lognormal priors 16.2(22.3-10.3) 15.6(24.9-7.45) 5.76(10.1-2.19)

6) Fossil lognormal priors & islands lognormal priors 16.8(19.5-15.1) 14.9(23.5-7.29) 5.74(10.1-2.45)

7) Fossil uniform priors & islands normal priors 16.8(20.5-15.0) 11.6(16.8-6.84) 2.62(3.39-1.82)

8) Fossil normal priors & islands normal priors 14.4(20.2-8.45) 10.5(15.9-5.94) 2.57(3.34-1.75)

9) Fossil lognormal priors & islands normal priors 16.5(18.7-15.1) 10.9(16.4-6.09) 2.62(3.38-1.83)

Mean age estimates (Ma) with 95% highest posterior density (HPD) intervals are given for selected nodes in the phylogeny. Details about the prior age distribution
assumed in each case are provided in the method section.
doi:10.1371/journal.pone.0030941.t001
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by some authors as the only accurate method to date New

Caledonian colonisation [55,61], constraining chronograms ac-

cording to the ages of putative vicariance events would prevent

vicariance falsification and could result in overestimation of

divergence ages. Here, even under the most conservative dating

strategy, our analyses show that the colonisation of New Caledonia

by Dolichoris postdates the break-up of Gondwanaland. Moreover,

even if some of the published analyses could be refined using more

appropriate calibration strategies, it is striking that not one

supports a vicariance scenario. Therefore, in the light of our study

and the published evidence, we suggest that the most credible

hypothesis is that New Caledonian biota is comprised of de-

scendents of Cenozoic waif dispersers.

Origin of New Caledonian colonisation
Most New Caledonian taxa share sister group relationships to

taxa occurring in Australia, New Guinea, and New Zealand (see

Table S4 and [55]). However, the origin of the lineages ancestral

to New Caledonian endemics was rarely discussed in the studies

we reviewed. Reconstruction of ancestral areas or inferences based

on the closest outgroup node give ambiguous and contrasting

results. This suggests that further analyses with representative

sampling are still needed, to avoid reconstruction bias [54].

Interestingly, our results suggest an ancient colonisation of New

Caledonia by Oreosycea and Dolichoris (ca 45.9-32.0 Ma) at a time

when New Guinea was not yet formed and Sulawesi was divided

in two islands [62]. The ancestors of the New Caledonian

mutualists probably occurred somewhere in Sundaland and co-

lonised independently New Caledonia and later Southern Sulawesi

and New Guinea (ca 26.4-15.9 Ma). At least two colonisation route

hypotheses can be proposed:

Hypothesis 1. From Sundaland directly to Australia and

to New Caledonia. Although it cannot be definitively ruled out,

this hypothesis is weakened by 1) the long distance between

Sundaland and Northern Australia during the Eocene and early

Oligocene, which makes transoceanic dispersal of figs and figwasps

less likely (but see [54]); 2) the presence of only one Oreosycea

species in Australia (F. albipila), furthermore not related to the New

Caledonian clade [19,47]. F. albipila is a widely distributed fig tree

and its presence in Australia could be explained by its high

dispersal capacities [29].

Hypothesis 2. From Sundaland to North Sulawesi,

Philippines, Halmahera and New Caledonia through a

series of shorter overwater dispersal events between

islands. During the Eocene, distances between Sundaland,

North Sulawesi, Philippines and Halmahera were relatively short

[63] and may have enabled dispersal of the mutualists. About 45-

43 Ma two subduction systems started and generated the Inner

and the Outer (Vitiaz) Melanesian arcs [64]. All along the Vitiaz

arc, an archipelago of volcanic islands probably occurred during

the Eocene from north of present Papua to Vanuatu archipelago

[65]. Further south, the Vitiaz arc was connected to New

Caledonia by the Loyalty Ridge and the d’Entrecasteaux Ridge

[11,66]. Both the topology of our trees and the timing of New

Caledonian colonisation suggest that these arcs have served as

stepping stones for the eastward spread of Dolichoris and Oreosycea.

The stepping stones hypothesis predicts that close relatives of

New Caledonian taxa should be present on the intermediate

islands of the Vitiaz Arc. Indeed, two species of Oreosycea mor-

phologically closely related to the New Caledonian species (F.

magwana and F. bubulia [30], Table S1) occur in the Solomon

Islands but we failed to collect and include them in our analyses. If

the latter hypothesis is correct, their associated Dolichoris should be

recovered sister to the New Caledonian clade by further

phylogenetic analyses. Solomon Islands flora and fauna are still

poorly known [51] and we suggest that taxa from this region,

almost never included in studies, may be pivotal to our

understating of the origin of New Caledonian fig mutualists.

Once in New Caledonia, Dolichoris reached Vanuatu and Loyalties,

ruling out the hypothesis that the current Loyalty islands have

Figure 2. Review of the divergence time estimates for 50 New Caledonian clades. Taxon names refer to the list provided in Table S4.
‘‘Dolichoris 2’’ refers to the present study.
doi:10.1371/journal.pone.0030941.g002
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inherited their biota from previous ephemeral islands that dated

back to Cretaceous [16].

Co-dispersion of mutualists
Ficus are among the first trees to recolonize isolated islands after

volcanic eruption [67,68] and their fruits are dispersed by several

hundreds of vertebrate species [25]. Among them pigeons [69,70]

and flying floxes [71,72] are the most likely dispersers of figs in the

Pacific region. Ducula and Ptilinopus, two genera of pigeons present

in New Caledonia, retain seeds longer than do most other fru-

givorous birds [73]. Pteropus bats often fly long distances between

islands and fig seeds have been demonstrated to pass intact

through their guts [74].

Fig trees cannot reproduce without pollinating wasps and

consequently have to be pollinated during their life spans to

sucessfully colonized a new range. Life spans of fig trees are poorly

known but they vary from a few tens of years to over 2000 years in

banyan figs [75]. One of the oldest verified specimen of

angiosperm is a fig tree (F. religiosa) planted in 288 BC in Sri

Lanka [76]. Therefore agaonid pollinators have had to cross great

distance within an extremely small window of time (at most a few

hundred of years) in order to colonize New Caledonia and

establish. Agaonidae are short-lived wasps [77,78] blown by the

wing to carry pollen between trees [79,80]. They are capable of

long distance dispersal and can reach fig trees separated by a few

hundreds of kilometres of ocean or desert [81,82]. In Borneo,

Dolichoris and Platyscapa species are the agaonid wasps that flight

the highest, reaching 60 meters, above the canopy [80]. As a result

of turbulence and drag from tree crowns, wind-speeds increase

with height above the canopy for the first few tens of metres [83].

Therefore, it is not surprising to find Dolichoris species as New

Caledonian colonizers. The potential dispersal range of Dolichoris

must be wide and distances of hundred of kilometers could be no

barrier.

Conclusion
In studies to distinguish between vicariance and/or dispersal in

order to better explain the present-day distribution of biological

groups, one must be cautious of circularity of argument [84]. This

point seems of great importance here because the rejection of a

complete submersion of New Caledonia is based on the presence

of supposed Gondwanan groups on the island [14]. However, this

circular logic is not based on scientific reasoning [1,54]. De-

monstrating causal relationships between geological phenomena

and biological observations requires that geological and biological

evidence are assessed independently [85]. Here, independently of

any assumption about New Caledonian geological history, and

using several calibration strategies, we provided evidence of an

ancient dispersal for the fig wasp mutualism, a supposedly

Gondwanan old group. This is the second example of a successful

colonization of New Caledonia by mutualist partners. Indeed,

dispersal to the island was already observed twice in the

Phyllanthus/Epicephala obligate association [86,87]. Therefore,

while the presence of intimate mutualists on isolated islands might

be viewed as evidence for vicariance our results highlight the fact

that successful long-distance co-dispersal may occasionally hap-

pen. Finally, in reviewing the literature we showed that support for

vicariant origins of any New Caledonian taxa is lacking.

Therefore, biological data do not contradict but agree with

geological evidence of a complete submersion of the island until ca

37 Ma.
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12. Collot J, Herzer RH, Lafoy Y, Géli L (2009) Mesozoic history of the Fairway -

Aotea Basin: implications regarding the early stages of Gondwana fragmenta-

tion. Geochem Geophy Geosy 10: Q12019.

13. Morat P, Veillon JM, MacKee HS (1984) Floristic relationships of New

Caledonian rainforest phanerogams. In: Radovsky FJ, Raven PH, Sohmer SH,

eds. Biogeography of the tropical Pacific: Bishop Museum Special Publication

No. 72. Honolulu. pp 71–128.

Fig-Wasp Colonisation of New Caledonia

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e30941



14. Lowry PP (1998) Diversity, endemism, and extinction in the flora of New
Caledonia: a review. In: Peng CI, Lowry PP, eds. Rare, threatened, and

endangered floras of Asia and the Pacific rim Academica Sinica Monograph 16
Institute of Botany, Taipei. pp 181–206.

15. Ladiges PY, Cantrill D (2007) New Caledonia-Australian connections:
biogeographic patterns and geology. Aust Syst Bot 20: 383–389.

16. Heads M (2008) Panbiogeography of New Caledonia, south-west Pacific: basal
angiosperms on basement terranes, ultramafic endemics inherited from volcanic

island arcs and old taxa endemic to young islands. J Biogeogr 35: 2153–2175.

17. Berg CC, Corner EJH (2005) Moraceae - Ficus. Flora Malesiana, Ser. I, 17/2.

Leiden.

18. Ungricht S (2004) The endemic fig trees of New Caledonia: Quantitative

assessment of collections for taxonomy, floristics and conservation. Thèse de
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