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Testing the locality of transport in self-gravitating accretion discs
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ABSTRACT
In this paper, we examine the issue of characterizing the transport associated with gravitational
instabilities in relatively cold discs, discussing in particular the conditions under which it
can be described within a local, viscous framework. We present the results of global, three-
dimensional, smoothed particle hydrodynamics simulations of self-gravitating accretion discs,
in which the disc is cooled using a simple parametrization for the cooling function. Our
simulations show that the disc settles in a ‘self-regulated’ state, where the axisymmetric stability
parameter Q ≈ 1 and where transport and energy dissipation are dominated by self-gravity.
We have computed the gravitational stress tensor and compared our results with expectations
based on a local theory of transport. We find that, as long as the disc mass is smaller than
0.25M� and the aspect ratio H/R � 0.1, transport is determined locally, thus allowing for a
viscous treatment of the disc evolution.

Key words: accretion, accretion discs – gravitation – instabilities – stars: formation – galaxies:
active.

1 I N T RO D U C T I O N

One of the basic unknowns of accretion disc theory is the physical
mechanism ultimately responsible for angular momentum transport
and energy dissipation in the disc. It is well known that classical hy-
drodynamical viscosity is not sufficient to provide accretion at the
rates inferred from the observations in almost every astrophysical
context where accretion discs play a role. The usual way to over-
come this difficulty is to assume that transport is dominated by some
‘anomalous’ viscous phenomenon, possibly related to collective in-
stabilities in the disc, and to give some ad hoc parametrizations for
the viscosity. The most widely used of such parametrizations is the
so-called α-prescription (Shakura & Sunyaev 1973, see Section 2).

It has been recently recognized that accretion discs threaded by a
weak magnetic field are subject to magnetohydrodynamics (MHD)
instabilities (see Balbus & Hawley 1998, and references therein),
which can induce turbulence in the disc, thereby being able to trans-
port angular momentum and to promote the accretion process. How-
ever, in many astrophysically interesting cases, such as the outer re-
gions of protostellar discs, the ionization level is expected to be low,
reducing significantly the effects of magnetic fields in determining
the dynamics of the disc, at least over limited radial ranges (Gammie
1996). A possible alternative source of transport in cold discs is pro-
vided by gravitational instabilities (Lin & Pringle 1987; Laughlin &
Bodenheimer 1994; Armitage, Livio & Pringle 2001). Moreover, in
environments where the disc mass is a significant fraction of the cen-
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tral object mass, such as during the assembly of protostellar discs,
it is inevitable that disc self-gravity will play a role.

The axisymmetric stability of a thin disc with respect to its own
self-gravity is determined by the parameter Q (Toomre 1964), de-
fined as

Q = csκ

πG�
, (1)

where cs is the effective thermal speed of the disc, � is the surface
density and κ is the epicyclic frequency (which, for a Keplerian
disc, is equal to the angular velocity �). The disc is unstable if Q is
smaller than a threshold value Q̄ ≈ 1. It has been long recognized,
especially in the context of galactic dynamics (Hohl 1971; Bertin
& Romeo 1988), that the development of gravitational instabilities
would lead to a self-regulation process: if the disc is initially cold, in
the sense that Q < Q̄, then gravitational instabilities would heat it
up on the fast dynamical time-scale, bringing it toward stability; on
the other hand, if the disc is hot enough to begin with, then radiative
cooling is going to bring the value of Q down toward an unstable
configuration. As a result of the presence of these two competing
mechanisms, the ‘switch’ associated with the onset of gravitational
instabilities will act as a thermostat for the disc, which is therefore
expected to be always close to marginal stability. A similar approach
has been also suggested in the case of accretion discs (Paczyński
1978; Bertin 1997).

From the observational point of view, there are already some clues
that the disc self-gravity can be important both in the context of
protostellar discs and in accretion discs around supermassive black
holes in active galactic nuclei (AGN). However, a detailed com-
parison with observations is limited by the lack of detailed models
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of self-gravitating discs and by an incomplete understanding of the
basic physical processes involved.

The importance of the disc self-gravity in observations of proto-
stellar discs was pointed out by Adams, Lada & Shu (1988), who
realized that a massive disc, with a flat rotation curve, could repro-
duce the observed flat long-wavelength spectral energy distribution
(SED) of many protostellar sources. However, in these early studies
no detailed model of self-gravitating accretion discs was available,
so that the required disc mass turned out to be unreasonably large.
These ideas were recently revisited by Lodato & Bertin (2001) in
the light of a self-consistent disc model (Bertin & Lodato 1999), and
they were able to model the observed SED of FU Orionis objects
(a class of young stellar objects undergoing a phase of enhanced
accretion), with a disc mass comparable to that of the central ob-
ject. This model assumes that the outer disc (beyond a few au from
the central star) is self-regulated. However, non-self-gravitating
α-models of accretion discs would predict a rapidly declining radial
profile of Q, which would eventually become unphysically small in
the outer regions of the disc. In the case of FU Orionis discs, the disc
is predicted to be marginally stable already at a distance of ≈1 au
from the central star (Bell & Lin 1994). The arguments at the basis
of the self-regulation mechanisms would suggest that in the outer
regions of the disc an additional heating source is required in order to
keep the disc marginally stable. Lodato & Bertin (2001) argued that
the difficulty with α-models arises because these viscous models
assume that energy dissipation is determined locally, whereas grav-
itational instabilities would naturally act in a global way, leading to
a modification of the standard estimates of the viscous dissipation
power.

Analogous considerations also hold in the context of AGN discs.
Here, Lodato & Bertin (2003) have shown that the non-Keplerian ro-
tation curve traced by water masers in the Seyfert galaxy NGC 1068
(Greenhill et al. 1996; Greenhill & Gwinn 1997) can be reproduced
by self-regulated disc models. Sirko & Goodman (2003), following
the same arguments of Lodato & Bertin (2001), have modelled the
long-wavelength SED of AGN discs, based on the requirement that
Q ≈ 1. The latter authors also recognize the need for some addi-
tional heating, but, contrary to Lodato & Bertin (2001), attribute it
to some ‘external’ source, namely nuclear fusion in stars embedded
in the disc (see also Collin & Zahn 1999).

Actually, the issue of locality of transport in self-gravitating ac-
cretion discs still remains an open question. Lin & Pringle (1987)
have suggested that the transport induced by self-gravity could be
described within a viscous framework, and introduced a modified
α-prescription, where α ∼ Q−2. In this way, a self-regulated disc
would be characterized by a rather large effective viscosity, with
α ≈ 1. On the other hand, Balbus & Papaloizou (1999) have shown
that the energy equation for self-gravitating discs cannot be put in
the form of a diffusion equation, as required in a viscous scenario,
and that the energy flux contains some extra terms, associated with
global wave transport, that are ‘anomalous’ from the point of view
of viscosity. Similar ideas had also been suggested by Shu et al.
(1990).

In this context, numerical simulations play a central role. Laughlin
& Bodenheimer (1994) have performed global, smoothed particle
hydrodynamics (SPH) simulations of massive isothermal discs, con-
cluding that the density evolution of the disc could be reproduced
in terms of simple α-models. Laughlin & Ròżyczka (1996), using
two-dimensional (2D) grid-based simulations, have shown that in
order to reproduce the density evolution induced by gravitational
instabilities an α coefficient dependent on radius was needed. How-
ever, these simulations did not include a detailed treatment of the

heating and cooling processes in the disc, which have been shown to
play a fundamental role in determining the outcome of the instability
(Nelson et al. 2000; Pickett et al. 2000).

Gammie (2001) has performed local, shearing-sheet, zero-
thickness simulations of self-gravitating discs, including a simple
cooling term, and has concluded that a local description is adequate
in such ‘razor-thin’ discs. However, Gammie’s simulations are not
appropriate to test global effects, because locality is set up from
the beginning, and they are only valid for infinitesimally thin discs,
while the typical distance over which gravitational instabilities are
expected to travel scales with the disc thickness. Rice et al. (2003a,b)
have already shown, using global, three-dimensional (3D) simula-
tions, how global effects can be important in the dynamics of self-
gravitating discs, in relation to the related issue of the fragmentation
of a massive disc.

In this paper we present the results of global, 3D, SPH simulations
of massive, cooling, non-magnetized discs. Our main purpose is to
quantitatively determine the dissipation power provided by gravita-
tional instabilities and to compare the results with the expectations
based on a viscous theory of discs, in order to assess the extent
to which the transport induced by gravitational instabilities can be
regarded as a local process.

The paper is organized as follows. In Section 2 we summarize the
basic transport properties of viscous and of self-gravitating discs,
introducing the basic physical quantities involved. In Section 3 we
describe the numerical set-up of our simulations. In Section 4 we
show the results of our computations. In Section 5 we discuss our
results in comparison with previous investigations and in relation
to observed systems. In Section 6 we draw our conclusions. In
Appendix A we discuss the more technical issue of transport induced
by artificial viscosity in the numerical simulations presented.

2 T R A N S P O RT I N AC C R E T I O N D I S C S

In this section we will summarize a few well-known results about
the dynamics of viscous and self-gravitating accretion discs, that are
going to be essential in the description of our results. We will not go
into the full details of the derivation of the main results, for which
one can refer to standard reviews, such as that of Pringle (1981).

2.1 Non-self-gravitating discs

In the analysis performed in this paper we will adopt the thin disc
approximation, and will therefore deal with vertically integrated
quantities. The equations of motion for an axisymmetric disc, in
cylindrical coordinates, are the equation of continuity

∂�

∂t
+ 1

R

∂

∂R
(R�u) = 0, (2)

and the azimuthal component of Euler’s equation (expressed in
terms of angular momentum conservation)

∂

∂t
(�R2�) + 1

R

∂

∂R
(�R3�u) = − 1

R

∂

∂R

(
R2TRφ

)
, (3)

where u is the radial velocity and T Rφ is the relevant component of
the viscous stress tensor, integrated in the vertical direction. This
last term is the basic ingredient in the theory of accretion discs. As
we have already anticipated, standard hydrodynamical viscosity is
not sufficient to provide accretion at the required rates, and therefore
T Rφ is generally described by means of ad hoc prescriptions. The
α-prescription (Shakura & Sunyaev 1973), based on simple
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arguments on the relevant physical scales of turbulent cells in the
discs, assumes that T Rφ is proportional to the disc pressure

TRφ =
∣∣∣∣d ln �

d ln R

∣∣∣∣α�c2
s , (4)

where the proportionality constant α is an unknown parameter, usu-
ally considered to be smaller than unity. The α-prescription can
also be put in the following equivalent form, which involves the
kinematical viscosity coefficient ν

ν = αcs H , (5)

where H is the thickness of the disc.
The effect of viscosity on the energy balance is twofold: viscous

torques convect energy between neighbouring annuli of the disc and
they dissipate energy. The energy which is convected across a ring
at radius R per unit time is given by

dE

dt
= 2πR2TRφ�, (6)

while the dissipation rate per unit surface is given by

D(R) = TRφ |R�′|. (7)

If the disc is in thermal equilibrium, we can derive a useful relation
between the viscosity coefficient α and the cooling time-scale. If we
assume that cooling can be simply parametrized in the following way

Q− = U

tcool
= �c2

s

γ (γ − 1)tcool
, (8)

where U is the internal energy per unit surface and γ is the ratio of
the specific heats, then, equating the viscous dissipation term, ex-
pressed in equation (7) to the cooling term, expressed in equation (8),
leads to

α =
∣∣∣∣d ln �

d ln R

∣∣∣∣
−2

1

γ (γ − 1)tcool�
, (9)

where we have also used equation (4).

2.2 Self-gravitating discs

We will now turn to the transport properties of self-gravitating discs.
The gravitational potential due to the disc will be denoted by �s,
and g = −∇�s is the gravitational field.

It can be shown (Lynden-Bell & Kalnajs 1972) that the equation
of angular momentum conservation can be put in a form analo-
gous to equation (3), as required in a viscous framework, where the
gravitational stress tensor is

T grav
Rφ =

∫
dz

gRgφ

4πG
. (10)

Equation (10) only accounts for the transport induced by the gravita-
tional field itself. Gravitational instabilities will also produce density
and velocity perturbations that contribute to the transport and should
be included in the calculations. This contribution (the ‘Reynolds’
stress) can be expressed as

T Reyn
Rφ = �δvRδvφ, (11)

where δv= v− u is the velocity fluctuation, with v the fluid velocity
and u the mean fluid velocity.

Given an expression for the gravitational stress tensor, one could
therefore be tempted to use the α-prescription, and to assume that
T Rφ is simply proportional to the local pressure. If large-scale struc-
ture and global processes play a role in self-regulating the disc, it

could even be possible to give a ‘generalized’ α-prescription, where
α is to be determined by some global requirement (on this point,
see Coppi 1980; Bertin 1997). In any case, even if such global
parametrization is possible, it should be emphasized that the previ-
ous comments only apply to angular momentum transport. We still
have to face the issue of energy transport in self-gravitating discs. In
particular, we should check whether gravitational instabilities trans-
port energy between neighbouring annuli according to equation (6)
and whether they dissipate energy according to equation (7).

Balbus & Papaloizou (1999) have shown that, in general, energy
transport cannot be described viscously. The energy balance equa-
tion for self-gravitating discs contains some ‘extra’ terms (see equa-
tion 59 in Balbus & Papaloizou 1999), that Balbus & Papaloizou
ascribe to global wave transport. The important issue at this stage is
to determine how important these extra terms are, and under which
conditions they are able to influence the energy balance in the disc.

In this paper we use global numerical simulations in order to
compute explicitly the different physical quantities described in this
section. In particular, we will evaluate the gravitational stress ten-
sor, according to equations (10) and (11), and the corresponding
‘viscous’ dissipation term, which can then be directly compared to
the power actually dissipated in our simulated discs.

3 N U M E R I C A L S E T- U P

3.1 The code

The 3D simulations presented here were performed using SPH, a
Lagrangian hydrodynamic code (see Benz 1990; Monaghan 1992).
In these simulations the central object is modelled as a point mass
on to which gas particles can accrete if they approach to within
the sink radius, while the gaseous disc is simulated using 250 000
SPH particles. Both the point mass and the gas particles use a tree
to determine neighbours and to calculate gravitational forces (Benz
1990), and the central object is free to move under the influence of
the disc gas. A significant saving in computational time is made by
using individual, particle time-steps (Bate, Bonnell & Price 1995)
with the time-steps for each particle limited by the Courant condition
and by a force condition (Monaghan 1992).

Because the main aim of this work is to check the energy pro-
cesses associated with gravitational instabilities, we explicitly solve
the energy balance equation for the gas. We allow the disc to heat
up due to both PdV work and viscous dissipation. The ratio of the
specific heats is assumed to be γ = 5/3. For the cooling, we fol-
low Gammie (2001) and add a simple cooling term to the energy
equation. Specifically, we use the same type of parametrization as
in equation (8). For a particle with internal energy per unit mass ui,
the cooling is implemented using

dui

dt
= − ui

tcool
, (12)

with t cool = β�−1. Gammie (2001) and Rice et al. (2003b) have
shown that, for small cooling times, the disc may fragment into
gravitationally bound objects while, for longer cooling times, the
disc settles into a quasi-steady state with the imposed cooling bal-
anced by dissipation through the growth of the gravitational instabil-
ity. In particular, Gammie (2001) has shown that the fragmentation
boundary occurs for t cool � 3�−1, while Rice et al. (2003b) show
that global effects may lead to an enhanced tendency for fragmenta-
tion, so that the critical value for t cool is increased. The reason why a
disc that cools too rapidly is more prone to fragmentation is because
gravitational heating of the disc occurs on the dynamical time-scale,
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so if the disc cools very rapidly, self-gravity has not enough time
to prevent the formation of bound objects in the disc. In our simu-
lations we have adopted β = 7.5, in which case none of our discs
should or was found to fragment.

3.2 Initial conditions

We consider a system comprising a central star, modelled as a point
mass with mass M�, surrounded by a disc with mass M disc. We have
performed three simulations with mass ratios q = M disc/M�, of
0.05, 0.1 and 0.25, respectively. The initial surface density profile
is taken to be a power law � ∝ R−1, while the initial temperature
profile is T ∝ R−1/2. The initial velocity profile is calculated by in-
cluding the enclosed cylindrical mass when determining the angular
frequency �. With these initial conditions, the minimum value of
Q is attained at the outer edge of the disc. For each simulation the
temperature normalization is chosen such that the minimum value
of Q is Qmin = 2, and the whole disc is initially gravitationally sta-
ble. The disc is assumed to be in vertical hydrostatic equilibrium
(see, for example, Pringle 1981), and we compute the scaleheight,
H, using H = cs/� and distribute the particles such that the vertical
density profile is a Gaussian. Actually, in a self-gravitating disc, the
vertical density profile is not rigorously Gaussian (Bertin & Lodato
1999), so our initial set-up, strictly speaking, is not in dynamical
equilibrium. However, dynamical equilibrium is achieved rapidly
(i.e. in a dynamical time-scale) during the simulation.

Our calculations are essentially scale-free. In dimensionless units,
the disc extends from R in = 0.25 to Rout = 25, and we have taken
M� = 1. In these units, one dynamical time-scale (orbital period) at
R = 1 is equal to 2π code units. Therefore, one orbital period at the
outer edge of the disc is roughly equal to 800 time units.

The disc is not initially in thermal equilibrium because the main
source of heating, i.e. gravitational instabilities, is turned off because
the disc is initially stable, while cooling is already effective. We
follow our simulations for ≈5000 time units (i.e. approximately six
orbital periods at the outer edge of the disc), by which stage the
whole disc has reached thermal equilibrium.

3.3 Artificial viscosity: the Balsara switch

The standard SPH viscosity (e.g. Monaghan 1992) consists of a
quadratic term similar to a Von Neumann–Richtmeyer viscosity
(characterized by a dimensionless coefficient called β SPH) and a
linear term that introduces a viscosity in shearing flows (character-
ized by a dimensionless coefficient called αSPH). Because the goal
of this work is to study transport associated with gravitational insta-
bilities, we would like to reduce any angular momentum transport
associated purely with the artificial viscosity (i.e. we wish to reduce
the artificial shear viscosity).

Balsara (1995) suggested adding a shear correction term, known
as the Balsara switch, to the standard SPH artificial viscosity which
maintains the viscosity in compressional flows but reduces it to zero
in pure shear flows. For all the simulations presented here we have
used the Balsara form of the artificial viscosity and have used a
value of 0.1 for the coefficient of the linear artificial viscosity term
(αSPH) and a value of 0.2 for the coefficient of the quadratic viscosity
term. A detailed discussion of the transport of angular momentum
induced by the chosen artificial viscosity is presented in Appendix A.
Here we anticipate that the angular momentum transport induced by
artificial viscosity is at least a factor of 10 smaller than that induced
by gravitational instabilities in our simulated discs, and therefore
plays a minor role in the dynamics of the disc.

4 R E S U LT S

4.1 General features

In all our simulations the disc initially cools down until the value
of Q becomes small enough for gravitational instabilities to be-
come effective and to provide a source of effective heating. At later
stages the disc settles into a quasi-steady state, where the heating
provided by the instabilities balances the imposed cooling term. As
predicted by the argument of self-regulation, this quasi-steady state
is characterized by an almost constant value of Q ≈ 1, over a wide
radial range. The main features of the simulations are summarized
in Figs 1–4.

Fig. 1 shows the surface density structure for the three simula-
tions, with different total disc mass (q = 0.05, 0.1 and 0.25). The
global structure induced by self-gravity is clearly seen in all three
cases. The density enhancement in the spiral arms �ρ/ρ typically
ranges between 2 and 4 in all cases. Already from this figure it can
be noticed that, as the total disc mass increases, the pattern of the in-
stability becomes progressively more dominated by low-m modes.
This is confirmed by the Fourier analysis shown in Fig. 2, that shows
how, in the higher total mass cases, the modes with m < 5 domi-
nate the structure. The Fourier amplitudes in Fig. 2 are computed
as follows. We divide the disc in concentric rings of width �R =
2.5 in dimensionless units. For each ring we then compute the mode
amplitude Am as

Am =
∣∣∣∣∣

Nring∑
i=1

e−imφi

Nring

∣∣∣∣∣, (13)

where N ring is the number of particles in the ring, and φ i is the
azimuthal angle of the ith particle.

Fig. 3 shows the radial profile of Q at three different times, to-
wards the end of the simulation. The profile is not significantly al-
tered with time, indicating that the simulations have reached thermal
equilibrium, and are in a quasi-steady state. Actually, the fact that
the self-regulated value of Q turns out to be so close to unity in our
simulations is quite remarkable. In fact, the marginal stability value
Q̄ is equal to unity only when the perturbation analysis is restricted
to the case of the axisymmetric stability of an infinitesimally thin
disc. The disc thickness has an important stabilizing effect, which
leads to a lower temperature (and thus a lower value of Q) of the
marginally stable state; on the other hand, even a light disc can be
destabilized by the presence of swing amplified non-axisymmetric
disturbances with high m (for a discussion of these mechanisms see,
for example, Bertin 2000). It then appears that these two competing
effects basically counterbalance each other. A detailed investigation
of the combined effect of these physical mechanisms in determining
the precise value of Q at marginal stability is, however, beyond the
scope of the present paper.

Fig. 4 displays the initial and final radial profiles of the surface
density (averaged in the azimuthal direction). It can be noticed that
there is no significant evolution of the surface density at large radii.
The major changes in the surface density occur close to the bound-
aries. In particular, there is a rapid drop in surface density close to the
inner boundary. This is due to the fact that we have not attempted
to give a detailed description of the boundary layer. The sudden
lack of SPH particles at R < 0.25 causes an increased artificial
pressure which pushes the inner particles into the sink radius of the
star. This effect should be reduced with a more accurate description
of the boundary layer. We have also checked that the total angular
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Figure 1. Surface density structure at the end of the simulations for (upper left) q = 0.05, (upper right) q = 0.1 and (bottom) q = 0.25.

momentum of the disc is conserved to within a few per cent through-
out all the simulations.

When low values of the artificial viscosity are used, particle in-
terpenetration might lead to a poor representation of strong shocks
in SPH. This is not a serious issue in our case, because in our sim-
ulations only mildly supersonic shocks are involved. Based on the
density contrast in the spiral arms, we estimate the Mach number
of the shocks to be M � 1.5. At these low values of M, a value
of β SPH ≈ 0.2 is already sufficient to stop particle interpenetration
(Bate 1995). This is confirmed by the well-defined spiral structure
that we obtain (which would have been smeared out if significant
particle interpenetration was indeed present), consistent with the re-
sults of previous simulations that used the standard SPH viscosity
and higher values for the viscosity coefficients (Rice et al. 2003a,b).

4.2 Angular momentum transport and energy dissipation

The torque produced by gravitational instabilities in the disc is given
by the sum of the two terms described in equations (10) and (11).
After averaging the stress tensor azimuthally and radially, over a
small region �R = 0.1, we compute the corresponding value of α

(see equation 4):

α(R) =
∣∣∣∣d ln �

d ln R

∣∣∣∣
−1 〈

T grav
Rφ

〉 + 〈
T Reyn

Rφ

〉
�c2

s

. (14)

The resulting radial profiles of α are shown in Fig. 5 for the three
cases q = 0.05, 0.1 and 0.25. The upper panels show separately
the hydrodynamic and gravitational contributions to α, while the
bottom panels show the sum of the two. The plots show the time
average of α at the end of the simulation, once the disc has reached
a quasi-steady state. The time-averaging interval is 500 time units,
i.e. 0.6 orbital times at the outer disc edge.

We can now use the general results of viscous disc theory outlined
in Section 2 to test the locality of transport in our simulations. In fact,
equation (9) gives us firm expectations for the value of α needed to
balance the imposed cooling, if energy dissipation can be treated in
a viscous framework, i.e. by using equation (7). In particular, in our
simulations t cool� = β = 7.5, γ = 5/3 and, because our discs are
nearly Keplerian, d ln �/d ln R ≈ −3/2. Inserting these numbers
in equation (9) would give us an expected value of α ≈ 0.05. It
is important to note that the fact that the expected α turns out to
be nearly independent on radius is a result of choosing the cooling
time to be simply proportional to the dynamical time-scale. In the
general case, of course, the resulting α need not be constant. The
dotted line in Fig. 5 shows the expected value of α. Our results are
in fairly good agreement with the expectations of viscous transport
theory.

It is also interesting to compare the dissipation rate D(R) that
would result if the transport process were viscous, i.e. computing
D(R) based on equation (7), with the actual dissipation rate. Because
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Figure 2. Amplitude of the first Fourier components of the density structure for different radial ranges in the three cases: (upper left) q = 0.05; (upper right)
q = 0.1; (bottom) q = 0.25.

our discs are in thermal equilibrium, the dissipation rate can be
obtained from the cooling rate using equation (8). This comparison
is shown in Fig. 6, where the solid line shows D(R) computed from
equation (7), while the dotted line shows the cooling rate. Again,
the plots show a good agreement with the expectations, the only
exception being the outer parts of the most massive disc, where the
actual dissipation rate seems to be slightly larger than that expected
from a viscous process.

In general, our results indicate that, up to disc masses of
M disc = 0.25M�, gravitationally induced transport is reasonably
well described within a local framework. This result could also be
anticipated because the disc dynamics in all three simulations are
dominated by rather high-m modes, that dissipate on a short length-
scale.

As a separate test for the locality of the transport, we have also
computed αpart(R, d), which we define as the gravitational part of
α(R), taking into account only those particles inside a spherical
radius d from the radial point R where we compute the stress. This
quantity gives us a measure of the size of the region that has the most
significant contribution to the gravitational stress at a given point.
However, it should be kept in mind that this quantity only accounts
for the stress produced by the gravitational field, without including
the hydrodynamical component.

Fig. 7 shows the results for R = 15 for the three simulations. The
upper panel shows clearly that the more massive the disc, the more

distant regions from the point contribute to the stress. However, it
should be noted that, because in the thermal equilibrium state Q ≈ 1
in all three cases, a more massive disc is also characterized by a
larger value of the effective thermal speed cs, and is therefore thicker.
Because we expect that gravitational disturbances propagate over a
length-scale of the order of the thickness of the disc, to compare
appropriately the results of the three simulations, we should check
the dependence of αpart on d/H. This is shown in the bottom panel
of Fig. 7. In all cases, more than 80 per cent of the contribution to
the gravitational torque comes from a region with size � ≈ 10H .
Transport is local if � � R. We can therefore conclude that angular
momentum transport is determined by local conditions only for discs
with H/R � 0.1. When Q ≈ 1, the ratio H/R is proportional to
M disc/M�, which means that sufficiently massive discs may violate
the previous condition. Actually, our most massive disc (for which
M disc/M� = 0.25) only marginally satisfies H/R < 0.1. Indeed, as
can be seen from Figs 5 and 6, global wave transport might play
some role in the outer disc, in this case.

5 D I S C U S S I O N

5.1 Comparison with previous work

The distinctive feature of the present work is that we have performed
global, 3D simulations of massive discs, including the detailed
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Figure 3. Profiles of the Q parameter for the three simulations: (upper left) q = 0.05; (upper right) q = 0.1; (bottom) q = 0.25.

effects of heating from gravitational instabilities and cooling. Our
simulations are similar to those performed by Rice et al. (2003a,b),
with the difference that these previous investigations were concerned
about either the motion of the central object caused by the massive
disc, or the issue of fragmentation of the disc, while here the main
goal is to characterize the transport properties induced by gravita-
tional instabilities.

We believe that both performing 3D simulations and solving ex-
plicitly the energy equation are essential to determine the final out-
come of the instabilities. In fact, the dynamical properties of self-
gravitating discs are determined to a large extent by the process of
self-regulation, which is strongly dependent on the detailed heating
and cooling mechanisms, as outlined in the introduction. Further-
more, because one of the main tests we want to perform is to check
the type of dissipative process associated with gravitational insta-
bilities, solving the energy equation is essential. The requirement
of 3D simulation is also fundamental, because the typical size of
gravitational disturbances is related to the disc thickness, so that
any zero-thickness simulation will automatically lead to an under-
estimate of global effects.

Previous numerical work carried out on the subject includes:
global, 3D SPH simulations of massive isothermal discs (Laughlin
& Bodenheimer 1994); global, 2D SPH simulations with detailed
heating and cooling (Nelson et al. 2000); global, 3D grid-based sim-
ulations with heating and cooling (Pickett et al. 2000); and local, 2D

grid-based simulations with heating and cooling (Gammie 2001). In
this section we describe the similarities and the differences between
our study and these previous studies.

One of the first studies of gravitational instabilities in discs was
performed by Laughlin & Bodenheimer (1994). They modelled a
very massive disc (with M disc ≈ M�) and followed its evolution with
a 3D SPH code, without including any heating or cooling term, but
simply assuming that the disc was locally isothermal. In this study,
the authors also tried to give a detailed characterization of the trans-
port. Their approach was however slightly different to ours, in that
they evolved their simulation long enough to capture the viscous
evolution of the disc, and then compared the evolution of the az-
imuthally averaged surface density with simple one-dimensional
viscous models, concluding that the disc evolution could be well
reproduced by a viscous model with α ≈ 0.03. This work is impor-
tant because it clarifies that gravitational instabilities are actually
able to transport angular momentum efficiently and that the surface
density evolution is indeed of a diffusive nature, as expected (see
Section 2), but does not answer the important question of whether
energy dissipation is local or global.

Nelson et al. (2000) performed 2D simulations with particular
emphasis on the cooling processes in the disc and included a more
realistic cooling function than the simple parametrization adopted
here. Their disc mass was M disc = 0.2M�, very similar to our
most massive case. They estimated the effective α associated with
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Figure 4. Radial profiles of the surface density at the end of the three simulations: (upper left) q = 0.05; (upper right) q = 0.1; (bottom) q = 0.25. The solid
line shows the initial surface density profile.

artificial viscosity (see Section 3.3) to be of the order of 5 × 10−3,
comparable to the expectations based on equations (A1) and (A2),
and an order of magnitude smaller than what we obtain here from
transport induced by gravitational torques. Indeed, in our simula-
tions most of the angular momentum is carried by collective in-
stabilities and by gravitational torques, rather than by the artificial
shear. Comparing the dissipation rates from shock heating with that
from turbulent heating in their simulations, Nelson et al. (2000) con-
clude that, at least in the outer disc, gravitational torques should not
contribute more than the torques associated with artificial viscosity,
while in our simulation gravitational torques are everywhere dom-
inant. A possible reason for this discrepancy lies in the 3D nature
of our simulations, which may allow gravitational disturbances to
travel further and allows low-m modes to be more prominent. Ac-
tually, even if the mode amplitudes that we obtain here (see Fig. 2)
are in rough agreement with those obtained by Nelson et al. (2000),
they find very similar mode amplitudes for all modes with m < 8,
while in our case there is a marked increase of mode amplitude for
modes with m < 5 (see Fig. 2).

Gammie (2001) performed an analysis very similar to our own
(actually, we adopt the same prescription for the cooling term, see
equation 12). The main difference is that Gammie’s simulations
are local and 2D, while ours are global and 3D. He computes the

effective α based on equation (14), as we do. The main results that
we obtain are basically in agreement with Gammie’s results, in that
the expected value of α from a viscous theory of discs is very close
to the computed value in the simulations. However, by using a global
approach, we are now able to check how these results depend on the
total disc mass and on the disc thickness, whereas Gammie could
only extrapolate his results to thicker configurations.

Recently, Johnson & Gammie (2003) have extended the work of
Gammie (2001) to include a more realistic cooling function in 2D
simulations. Actually, the use of detailed cooling functions makes
it even more important to perform a full 3D simulation, because
most of the radiative transport will occur in the vertical direction,
so that using vertically averaged values for the relevant physical
quantities, as done by Johnson & Gammie (2003), might lead to
incorrect results.

5.2 Impact on observed systems

It is now commonly accepted that most low-mass young stellar ob-
jects possess a circumstellar disc, with lifetimes of at least 1 Myr.
Circumstellar discs play an important role in the process of star
formation and are believed to be the site where planet formation oc-
curs. Observational evidence for the presence of such discs is either
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Figure 5. Effective α produced by gravitational instabilities for (upper left) q = 0.05, (upper right) q = 0.1 and (bottom) q = 0.25. The top panel shows the
separate contribution of αgrav and αReyn, and the lower panel shows the sum of the two contributions compared with the expected value from a local viscous
model (dotted line).

indirect, i.e. based on the disc emission at long wavelengths, such
as in the infrared (starting from Adams et al. 1988) and at submil-
limetre (submm) wavelengths (Beckwith et al. 1990), or direct, i.e.
by imaging of silhouette discs in the Orion nebula (McCaughrean
& O’Dell 1996). Especially in the earliest phases of star forma-
tion these discs might be fairly massive; for example, Launhardt &
Sargent (2001), using submm observations, report the discovery of
a massive disc (with M disc/M� � 0.3) in a very young (class I)
protostellar object. There are also some indications that the discs in
FU Orionis objects might be fairly massive; Sandell & Weintraub
(2001) report M disc/M� � 0.1 in most of the FU Orionis discs they
have observed. As already mentioned, detailed modelling of FU
Orionis outbursts produces radial profiles of Q that fall below unity
already at a distance of ≈1 au from the central object (Bell & Lin
1994). All these systems are likely to be affected by self-gravity
that, if indeed energy dissipation is non-local, may produce some
observable modification in the SED. It is then interesting to see that
the models by Bell & Lin (1994) predict H/R � 0.1, which, accord-
ing to the results of this work, are large enough for non-local effects
to become important, as suggested by Lodato & Bertin (2001).

In the context of AGN discs, the distance at which the disc be-
comes marginally stable to gravitational instabilities is typically of
the order of 103 Rg (Lodato & Bertin 2003), where Rg is the grav-
itational radius of the black hole. Water maser emission (Greenhill

& Gwinn 1997) and radio continuum observations (Gallimore et al.
1997) show that in many cases the disc can extend to radii much
larger than that, thus allowing self-gravity to influence the disc struc-
ture. In this context, self-regulated models have been applied both
to the modelling of the SED (Sirko & Goodman 2003) and to the
modelling of the rotation curve in the outer disc of the Seyfert galaxy
NGC 1068 (Lodato & Bertin 2003). Johnson & Gammie (2003) use
their 2D results with ‘realistic’ cooling (see Section 5.1) to argue
that the disc model proposed by Lodato & Bertin (2003) for NGC
1068 would be subject to fragmentation, but unfortunately Johnson
& Gammie (2003) do not explore the region of the parameter space
relevant to the Lodato & Bertin model.

As a final comment, we note that the present work refers to the
situation where the dominant source of transport and dissipation is
provided by gravitational instabilities. In observed systems, other
sources of transport could be present, which might reduce the effect
of gravitational instabilities.

6 C O N C L U S I O N S

In this paper we have investigated the transport properties induced by
disc self-gravity in relatively massive accretion discs. In particular,
we have discussed the extent to which angular momentum transport
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Figure 6. Viscous dissipation rate (solid line, from equation 7) and actual cooling rate (dotted line) for (upper left) q = 0.05, (upper right) q = 0.1 and (bottom)
q = 0.25.
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Figure 7. Contribution to the stress at R = 15 from regions of the discs at
a distance <d from R: dashed line, q = 0.05; solid line, q = 0.1; dotted line,
q = 0.25.

and energy dissipation can be described within a viscous frame-
work. To this goal, we have performed global, 3D simulations using
SPH.

Most of the recent work on the subject has focused on the issue
of the conditions for disc fragmentation, especially in relation to the
process of planet formation in protostellar discs (Boss 2002; Mayer
et al. 2002; Rice et al. 2003b), or massive star formation in AGN
discs (Levin 2003; Goodman & Tan 2004). Here, we would like
to check the behaviour of self-gravitating discs in the case where
fragmentation does not occur and the disc evolves towards a quasi-
steady state where cooling is balanced by heating from gravitational
instabilities.

The issue of the transport properties induced by gravitational
instabilities has been discussed analytically in the past by Lynden-
Bell & Kalnajs (1972) and, more recently, by Balbus & Papaloizou
(1999). There are two major aspects of the problem, as follows. (i)
To what extent is the shear stress T Rφ at a given radius R determined
by local conditions? This point directly calls into question the use
of the α formalism, which explicitly requires that T Rφ is only de-
pendent on the local values of density and thermal velocity (see also
the discussion in Section 2.2). (ii) The second aspect is whether
energy transport is only determined by the gravitationally induced
shear stress or whether instead global wave transport occurs, hence
influencing energy dissipation in the disc, as argued by Balbus &
Papaloizou (1999).
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We have performed several simulations, with different values of
the ratio M disc/M�, to test how the global transport properties of the
disc change with increasing total disc mass. Our simulations appear
to evolve to a quasi-steady state, characterized by an almost flat
profile of the axisymmetric stability parameter Q ≈ 1, in which the
heating provided by gravitational instabilities balances the imposed
cooling rate. We have computed the torque induced by gravitational
instabilities and the corresponding viscous dissipation rate, which
we then compare to the actual dissipation rate in our simulated discs.
We have found values of α ≈ 0.05, in reasonable agreement with the
expectation from a viscous theory. Energy dissipation in our simu-
lations is also fairly well described using a viscous approach. These
results directly address aspect (ii), described above, and confirm the
argument of Balbus & Papaloizou (1999), who had indeed argued
that for ‘self-regulated’ discs, in which Q ≈ 1, global wave transport
of energy would not play a major role.

On the other hand, we have indeed noticed that more massive discs
tend to be dominated by lower m modes, leading to a more global
pattern of the gravitational disturbances. We have also been able to
determine the size of the region that mostly contributes to the torque
at a given point in the disc. More than 80 per cent of the torque is
produced within a region of size � ≈ 10H , where H is the thickness
of the disc. These results directly address issue (i), described above.
We can therefore conclude that a viscous description of the transport
in self-gravitating discs is only appropriate when H/R � 0.1. In
systems like FU Orionis, where models predict disc thickness ≈0.1
(Bell & Lin 1994), global effects could play a role and modify the
dissipation rates in the outer disc.

The results of this work should be extended both toward a more
thorough investigation of the parameter space (in particular, it is
very important to test the transport properties of discs more mas-
sive than 0.25M�, and to explore the results obtained with different
initial conditions and cooling time-scale, which in the present work
has been taken to be t cool = 7.5�−1), and toward a more realistic
description of the cooling function; see, for example, Nelson et al.
(2000) and Johnson & Gammie (2003).
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Paczyński B., 1978, Acta Astron., 28, 91
Pickett B. K., Cassen P., Durisen R. H., Link R., 2000, ApJ, 529, 1034
Pringle J. E., 1981, ARA&A, 19, 137
Rice W. K. M., Armitage P. J., Bate M. R., Bonnell I. A., 2003a, MNRAS,

338, 227
Rice W. K. M., Armitage P. J., Bate M. R., Bonnell I. A., 2003b, MNRAS,

339, 1025
Sandell G., Weintraub D., 2001, ApJ, 134, 115
Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
Shu F., Tremaine S., Adams F. C., Ruden S. P., 1990, ApJ, 358, 495
Sirko E., Goodman J., 2003, MNRAS, 341, 501
Thacker R. J., Tittley E. R., Pearce F. R., Couchman H. M. P., Thomas P. A.,

2000, MNRAS, 319, 619
Toomre A., 1964, ApJ, 139, 1217

A P P E N D I X A : A N G U L A R M O M E N T U M
T R A N S P O RT I N D U C E D B Y
A RT I F I C I A L V I S C O S I T Y

In this appendix we discuss the magnitude of the angular momentum
transport associated with the artificial SPH viscosity, in order to
be sure that the main contribution to the shear stress described in
Section 4 is actually due to the effect of gravitational disturbances.

The Balsara switch

As mentioned in the main text, we have adopted the Balsara form
of viscosity in order to reduce the effect of artificial viscosity in
transporting angular momentum. Although this modification to the
standard SPH viscosity has been studied in some detail (Navarro &
Steinmetz 1997; Thacker et al. 2000), it would be useful to have
some idea of the reduction in shear viscosity that occurs when using
this form of the artificial viscosity.

In the continuum limit, the linear term in the standard SPH artifi-
cial viscosity can be shown to have the following form (Artymowicz
& Lubow 1994; Murray 1996)
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Figure A1. Radial surface density plots at times of t = 0.0, t = 0.4 and
t = 1.0 for an axisymmetric ring evolved using SPH with the standard arti-
ficial viscosity (dots) and evolved analytically (solid lines) with a viscosity
determined using the parameters of the SPH calculation.

ν = 1

8
αSPHcsh, (A1)

where αSPH is the linear viscosity coefficient, cs is the sound speed
and h is the SPH smoothing length (which essentially determines the
resolution of the simulation). As shown by Lynden-Bell & Pringle
(1974), the time evolution of the surface density and radial velocity
of an initial Gaussian ring can be determined analytically. To test
the standard SPH viscosity, Murray (1996) therefore considered the
evolution of an initial Gaussian ring with the initial radial velocity
determined analytically, using equation (A1) to determine the vis-
cosity. We have repeated this calculation and show the results in
Fig. A1. The SPH calculation had a linear viscosity coefficient of
αSPH = 10, a sound speed of cs = 0.02, and a constant smoothing
length of h = 0.0075. The choice of the SPH parameter was made
in order to be consistent with Murray (1996). As in Murray (1996),
the pressure forces were switched off so as to study the artificial
viscosity in isolation. This, on the one hand, prevents the ring from
spreading due to pressure forces, but on the other hand would cause

Figure A2. Radial surface density plots at times of t = 0.0, t = 0.4 and t = 1.0 for an axisymmetric ring evolved using SPH (dots) and evolved analytically
(solid lines). In the left-hand figure the Balsara switch was used in the SPH artificial viscosity while in the right-hand figure the simulation was evolved using
the standard SPH viscosity. The Balsara switch clearly reduces the effective shear viscosity by a factor of between 5 and 10.

the disc to collapse to the mid-plane. As a check that converging
flows do not influence our results, we have also performed some
tests with a fixed vertical coordinate of the SPH particles, and we
found no significant differences. The dots in Fig. A1 show the time
evolution of the SPH surface density. For the chosen SPH param-
eters, the associated shear viscosity, according to equation (A1),
is ν = 1.9 × 10−4. The solid lines in Fig. A1 show the analytical
viscous evolution of an initial Gaussian ring with an imposed shear
viscosity of ν = 1.9 × 10−4. As in Murray (1996) the SPH evo-
lution of the initial Gaussian ring follows the analytical result very
closely and equation (A1) appears to be a good representation of the
shear viscosity associated with the linear term in the standard SPH
artificial viscosity.

To perform a similar calculation to determine the viscous transport
when using the Balsara switch is more subtle because the shear
viscosity should, ideally, go to zero. This will, of course, not be
exactly true in practice, but we cannot now determine what the
initial radial velocity profile should be. To get some idea of the
viscous transport when using the Balsara switch, we have considered
the time evolution of a Gaussian ring in which, because ideally
we expect no shear viscosity, we set the initial radial velocities to
zero. For linear viscosity coefficients of αSPH = 0.1 and αSPH = 1
there is no noticeable spreading between t = 0 and t = 1. For
αSPH = 10, however, the ring did spread slightly. The left-hand side
of Fig. A2 shows the SPH evolution of an initial Gaussian ring (dots)
plotted at times of, as in Fig. A1, t = 0.0, 0.4 and 1 for αSPH = 10.
A direct comparison with the analytical prediction for the surface
density evolution and with the results shown in Fig. A1 would be
misleading in this case, because initially the ring has to settle down
before attaining the appropriate radial velocities resulting from the
viscous evolution. As a result, the initial evolution of the ring is
slower than predicted analytically by Lynden-Bell & Pringle (1974).
In the left panel of Fig. A2 we also plot the analytical evolution
of an initial Gaussian ring (solid line) with an imposed viscosity
of ν = 8.0 × 10−6, which appears to best describe the average
evolution of the ring. In order to compare these results with those
obtained from the use of the standard SPH viscosity, we performed
an identical calculation (with the initial radial velocities set to zero)
except using the standard SPH viscosity without the Balsara switch.
This is shown in the right-hand side of Fig. A2. Again the dots
represent the evolution of the SPH surface density at times of t =
0.0, 0.4 and 1, and the solid line shows the analytical evolution of
the surface density. Also in this case, as discussed above, the initial
evolution is slower than expected. The average evolution between
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t = 0 and t = 1 can be fitted with a viscosity ν = 4.5 × 10−5. These
results, although not conclusive, indicate that the Balsara switch
reduces the effective shear viscosity by a factor of between 5 and
10. By using the Balsara switch we should therefore be able to
reduce the angular momentum transport due to the artificial shear
viscosity without, according to Thacker et al. (2000), significantly
influencing the handling of shocks.

A comparison between equations (A1) and (5) readily shows that
the artificial shear viscosity in SPH (not using the Balsara switch)
can be described in terms of the α parametrization in the following
way:

αart = 1

8
αSPH

h

H
. (A2)

Equation (A2) therefore shows that the magnitude of αart depends
on how well the vertical structure of the disc is resolved. In most
of our simulations we typically had H ≈ 5h, so that, if we had
used the normal SPH viscosity, we would expect αart ≈ 2.5 × 10−3,
for αSPH = 0.1 (the value used in all our simulations). The use of
the Balsara switch enables us to further reduce this contribution to
αart ≈ 5 × 10−4.

Artificial transport in disc simulations

As discussed in Appendix A1, thanks to the Balsara switch, we
expect the linear term in the viscosity to produce only a minor
contribution to the shear stress. However, the quadratic term of the
artificial viscosity (parametrized by β SPH) might still give some
contribution to the angular momentum transport. In addition, in
our self-gravitating disc simulations, we have also added pressure
force, which might as well contribute to the stress, as found also
by Murray (1996). Moreover, we would also like to test this issue
in a less idealized case, with respect to the simple spreading ring
calculations described in Appendix A1. For this purpose, we have
performed some simulations, taking the same surface density profile
as in Section 4 (i.e. � ∝ R−1) and a constant Q profile, with Q = 1,
but in which we have switched off the main source of transport and

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

Figure A3. Angular momentum transport induced by artificial viscosity in
our SPH simulations, as parametrized by an effective αart.

dissipation (i.e. the disc self-gravity) and the cooling. The artificial
viscosity coefficients were αSPH = 0.1 and β SPH = 0.2, as in the
simulations presented in Section 4. We have computed the Reynolds
stress according to equation (11), and obtained an effective αart from
equation (4). The results are shown in Fig. A3. The magnitude of
this artificial transport is never larger than αart ≈ 5 × 10−3. Because
our results (see Section 4) indicate that the transport induced by
gravitational torques can be parametrized with an effective α ≈ 5 ×
10−2, we can be confident that the major contribution to the stress
tensor comes from gravitational torques rather than from artificial
viscosity.
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