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TESTING THE MARKOV PROPERTY WITH ULTRA HIGH FREQUENCY

FINANCIAL DATA

Abstract: This paper develops a framework to nonparametrically test whether discrete-

valued irregularly-spaced financial transactions data follow a Markov process. For that

purpose, we consider a specific optional sampling in which a continuous-time Markov

process is observed only when it crosses some discrete level. This framework is convenient

for it accommodates not only the irregular spacing of transactions data, but also price

discreteness. Under such an observation rule, the current price duration is independent

of previous price durations given the current price realization. A simple nonparametric

test then follows by examining whether this conditional independence property holds.

Finally, we investigate whether or not bid-ask spreads follow Markov processes using

transactions data from the New York Stock Exchange. The motivation lies on the fact

that asymmetric information models of market microstructures predict that the Markov

property does not hold for the bid-ask spread. The results are mixed in the sense that

the Markov assumption is rejected for three out of the five stocks we have analyzed.

JEL Classification: C14, C52, G10, G19.

Keywords: Bid-ask spread, nonparametric testing, price durations, Markov property,

ultra-high frequency data.
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1. Introduction

Despite the innumerable studies in financial economics rooted in the Markov property,

there are only two tests available in the literature to check such an assumption: Aı̈t-Sahalia

(2000) and Fernandes and Flôres (1999). To build a nonparametric testing procedure,

the first uses the fact that the Chapman-Kolmogorov equation must hold in order for a

Markov process compatible with the data to exist. If, on the one hand, the Chapman-

Kolmogorov representation involves a quite complicated nonlinear functional relationship

among transition probabilities of the process, on the other hand, it brings about several

advantages. First, estimating transition distributions is straightforward and does not

require any prior parameterization of conditional moments. Second, a test based on

the whole transition density is obviously preferable to tests based on specific conditional

moments. Third, the Chapman-Kolmogorov representation is well defined, even within a

multivariate context.

Fernandes and Flôres (1999) develop alternative ways of testing whether discretely

recorded observations are consistent with an underlying Markov process. Instead of using

the highly nonlinear functional characterization provided by the Chapman-Kolmogorov

equation, they rely on a simple characterization out of a set of necessary conditions for

Markov models. As in Aı̈t-Sahalia (2000), the testing strategy boils down to measuring

the closeness of density functionals that are nonparametrically estimated by kernel-based

methods.

Both testing procedures assume, however, that the data are evenly spaced in time.

Financial transactions data do not satisfy such an assumption and hence these tests are

not appropriate. To design a consistent test for the Markov property that is suitable

to ultra-high frequency data, we build on the theory of Markov processes with stochastic

time changes. We assume that there is an underlying continuous-time Markov process that
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is observed only when it crosses some discrete level. Accordingly, we accommodate not

only the irregular spacing of transaction data, but also price discreteness. Further, such

an optional sampling scheme implies that consecutive spells between price changes are

conditionally independent given the current price realization. This paper then develops

a simple nonparametric test for the Markov property by testing whether this conditional

independence property holds.

There is an extensive literature on how to test either unconditional independence (e.g.,

Hoeffding, 1948; Rosemblatt, 1975; Pinkse, 1999) or serial independence (e.g., Robinson,

1991; Skaug and Tjøstheim, 1993; Pinkse, 1998). However, there are only a few works

discussing tests of conditional independence: Linton and Gozalo (1999) and, more recently,

Su and White (2002, 2003a,b). Linton and Gozalo (1999) test for conditional independence

between iid random variables by looking at the restrictions on the cumulative distribution

function under a quadratic measure of distance. Su and White (2002, 2003a,b) extend

their approach so as to consider weakly dependent stochastic processes as well as different

metrics. In particular, Su and White (2003a,b) respectively check restrictions on the

characteristic function and on the empirical likelihoods, whereas Su and White (2002)

verify whether the density restriction implied by conditional independence hold using the

Hellinger distance. Our setting can be seen as combining the setups that Linton and

Gozalo (1999) and Su and White (2002) consider. As in Su and White (2002), we derive

tests under mixing conditions so as to deal with the time-series dependence associated

with the Markov property. However, we gauge how well the density restriction implied by

the conditional independence property fits the data using a quadratic measure of distance

as in Linton and Gozalo (1999).

A relevant application of our testing procedure is to check whether bid-ask spreads

follow Markov processes. Asymmetric information models of market microstructure pre-

dict that the bid-ask spread depends on the whole trading history, and hence the Markov
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property does not hold (e.g., Easley and O’Hara, 1992). Our nonparametric approach to

test the Markov property is consistent with Hasbrouck’s (1991) goal to uncover the extent

of adverse selection costs in a framework that is robust to deviations from the assumptions

of the formal models of market microstructure. Bearing that in mind, we examine trans-

actions data from five stocks actively traded on the New York Stock Exchange (NYSE):

Boeing, Coca-Cola, Disney, Exxon, and IBM.

The results reveal that the Markov assumption is consistent with the Disney and

Exxon bid-ask spreads, whereas the converse is true for Boeing, Coca-Cola and IBM. This

indicates that the latter stocks presumably have higher rates of return for, in equilibrium,

uninformed traders require compensation to hold stocks with greater private information

(Easley, Hvidkjaer and O’Hara, 2002). The usual objection that the actions of arbitrageurs

remove any chance of higher returns does not apply because adverse selection risk is

systematic. An uninformed investor indeed is always at a disadvantage relative to traders

with better information. Our results thus imply that the standard asset-pricing framework

is not suitable to examine the Boeing, Coca-Cola and IBM returns, though it may work

for Disney and Exxon.

The remainder of this paper is organized as follows. Section 2 discusses how to design

a nonparametric test for Markovian dynamics that is suitable to high frequency data. The

asymptotic normality of the test statistic is then derived both under the null hypothesis

that the Markov property holds and under a sequence of local alternatives. Section 3

reports a simulation study that evinces that, although our asymptotic test exhibits huge

size distortions, a bootstrap variant of the test seems to entail reasonable size and power

properties. Section 4 applies the above ideas to test whether the bid-ask spreads of

five actively traded stocks on the NYSE follow a Markov process with stochastic time

changes. Section 5 summarizes the results and offers some concluding remarks. For ease

of exposition, we collect all proofs and technical lemmas in the appendix.
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2. Testing Markov processes with stochastic time changes

Let ti (i = 1, 2, . . .) denote the observation times of the continuous-time price process

{Xt, t > 0} and assume that t0 = 0. Suppose that the shadow price {Xt, t > 0} follows

a strong stationary Markov process. To account for price discreteness, we assume that

prices are observed only when the cumulative change in the shadow price is at least c, say

a basic tick. The price duration then reads

di+1 ≡ ti+1 − ti = inf
τ>0

{|Xti+τ −Xti| ≥ c} (1)

for i = 0, . . . , n − 1. The data available for statistical inference are the price durations

(d1, . . . , dn) and the corresponding realizations (X1, . . . , Xn), where Xi = Xti .

The observation times {ti, i = 1, 2, . . .} form a sequence of increasing stopping times

of the continuous-time Markov process {Xt, t > 0}, hence the discrete-time price process

{Xi, i = 1, 2, . . .} satisfies the Markov property as well. Further, the price duration di+1

is a measurable function of the path of {Xt, 0 < ti ≤ t ≤ ti+1}, and thus depends on the

information available at time ti only through Xi (Burgayran and Darolles, 1997). In other

words, the sequence of price durations are conditionally independent given the observed

price (Dawid, 1979). Therefore, one can test the Markov assumption by checking the

property of conditional independence between consecutive durations given the current

price realization.

Assume the existence of the joint density fiXj(·, ·, ·) of (di, Xi, dj), and let fi|X(·) and

fXj(·, ·) denote the conditional density of di given Xi and the joint density of (Xi, dj),

respectively. The null hypothesis of conditional independence implied by the Markov

character of the price process then reads

H∗
0 : fiXj(a1, x, a2) = fi|X(a1)fXj(x, a2) a.e. for every j < i.

It is of course unfeasible to test such a restriction for all past realizations dj of the duration

process. Accordingly, it is convenient to fix j as in the pairwise approach taken by the
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serial independence literature (see Skaug and Tjøstheim, 1993). Thus, the resulting null

hypothesis is the necessary condition

H0 : fiXj(a1, x, a2) = fi|X(a1)fXj(x, a2) a.e. for a fixed j. (2)

To keep the nonparametric nature of the testing procedure, we employ kernel smoothing

to estimate both the right- and left-hand sides of (2). Next, it suffices to gauge how well

the density restriction in (2) fits the data by the means of some discrepancy measure.

For the sake of simplicity, we consider the mean squared difference,1 yielding the

following test statistic

Λf = E[fiXj(di, Xi, dj)− fi|X(di|Xi)fXj(Xi, dj)]
2. (3)

The sample analog then is

Λf̂ =
1

n− i+ j

n−i+j∑
k=1

[f̂iXj(dk+i−j, Xk+i−j, dk)− ĝiXj(dk+i−j, Xk+i−j, dk)]
2,

where ĝiXj(dk+i−j, Xk+i−j, dk) = f̂i|X(dk+i−j|Xk+i−j)f̂Xj(Xk+i−j, dk).

At first glance, deriving the limiting distribution of Λf̂ seems to involve a number

of complex steps since one must deal with the cross-correlation among f̂iXj, f̂i|X and

f̂Xj. Happily, the fact that the rates of convergence of the three estimators are different

simplifies things substantially. In particular, f̂iXj converges slower than f̂i|X and f̂Xj due

to its higher dimensionality. As such, estimating the conditional density fi|X and the joint

density fXj does not play a role in the asymptotic behavior of the test statistic.

To derive the asymptotic theory, we impose the following regularity conditions as in

Aı̈t-Sahalia (1994), Fan and Li (1999), and Fan and Ullah (1999).

Assumption A1: The sequence {di, Xi, dj} is strictly stationary and β-mixing with

βτ = O (ρτ ), where 0 < ρ < 1.

1 One could also consider other distance measures such as the integrated squared difference
(Rosemblatt, 1975), the Kullback-Leibler contrast (Robinson, 1991), and the Hellinger metric (Su and
White, 2002).
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Assumption A2: The density function fiXj is continuously differentiable up to order

s + 1 and its derivatives are bounded and square integrable. In addition, the marginal

density fX is bounded away from zero and the following Lipschitz-type conditions hold:

|fiXj(a1 + ∆1, x + ∆2, a2 + ∆3) − fiXj(a1, x, a2)| ≤ D(a1, x, a2) ‖∆‖, where D(·, ·, ·) is

integrable.

Assumption A3: Let eK ≡
∫
|K(u)|2 du and vK ≡

∫ [∫
K(u)K(u+ v) du

]2
dv, where

the kernel K is of order s (even integer) and is continuously differentiable up to order s

on R3 with derivatives in L2 (R3).

Assumption A4: The bandwidths bd,n and bx,n are of order o
(
n−1/(2s+3)

)
as the sample

size n grows.

Assumption A1 restricts the amount of dependence allowed in the observed data se-

quence to ensure that the central limit theorem holds. It requires that the stochastic pro-

cess is absolutely regular with geometric decay rate (see, e.g., Meitz and Saikkonen, 2004).

Assumption A2 requires that the joint density function fiXj is smooth enough to admit

a functional Taylor expansion, and that the conditional density fi|X is everywhere well

defined. Although assumption A3 provides enough room for higher order kernels, here-

inafter, we implicitly assume that the kernel is of second order (s = 2). Assumption A4

restricts the rate at which the bandwidth must converge to zero. In particular, it induces

a slight degree of undersmoothing in the density estimation, since the optimal bandwidth

is of order O
(
n−1/(2s+3)

)
. Other limiting conditions on the bandwidth are also applicable,

but they would result in different terms for the bias as in Härdle and Mammen (1993).

The following proposition documents the asymptotic normality of the test statistic.

Proposition 1: Under the null and assumptions A1 to A4, the statistic

λ̂n =
n b

1/2
n Λf̂ − b

−1/2
n δ̂Λ

σ̂Λ

d−→ N(0, 1), (4)
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where bn = b2d,n bx,n is the bandwidth for the kernel estimation of the joint density fiXj, and

δ̂Λ and σ̂2
Λ are consistent estimates of δΛ = eK E(fiXj) and σ2

Λ = vK E(f 3
iXj), respectively.

Thus, a test that rejects the null hypothesis at level α when λ̂n is greater or equal to

the (1− α)-quantile z1−α of a standard normal distribution is locally strictly unbiased.

To examine the local power of our testing procedure, we first define the sequence

of densities f
[n]
iXj and g

[n]
iXj such that

∥∥∥ f [n]
iXj − fiXj

∥∥∥ =
(
n−1b

−1/2
n

)
and

∥∥∥ g[n]
iXj − giXj

∥∥∥ =(
n−1b

−1/2
n

)
. We then consider the sequence of local alternatives

H
[n]
1 : sup

∣∣∣ f [n]
iXj(a1, x, a2)− g

[n]
iXj(a1, x, a2)− εn`(a1, x, a2)

∣∣∣ = o(εn), (5)

where εn = n−1/2b
−1/4
n and the function `(·, ·, ·) is such that `1 ≡ E[`(a1, x, a2)] = 0 and

`2 ≡ E[`2(a1, x, a2)] < ∞. The next result illustrates the fact that the testing procedure

entails nontrivial power under local alternatives that shrink to the null at rate εn.

Proposition 2: Under the sequence of local alternatives H
[n]
1 and assumptions A1 to

A4, λ̂n
d−→ N (`2/σΛ, 1).

It is also possible to derive alternative testing procedures that rely on the restric-

tions imposed by the conditional independence property on the cumulative probability

functions. For instance, Linton and Gozalo (1999) propose two nonparametric tests for

conditional independence restrictions rooted in a generalization of the empirical distribu-

tion function. They show that, in an iid setup, the asymptotic null distribution of the test

statistic is a quite complicated functional of a Gaussian process. Unfortunately, extending

their results to the time-series context is not simple as opposed to the case of tests based

on smoothing techniques. This is due to the fact that smoothing methods effectively use

the nearest neighbors in the state space, which are unlikely to be the neighbors in the

time space under the mixing condition in Assumption A1.
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3. Finite sample properties

It is well known that the asymptotic behavior of kernel-based tests is sometimes of little

value in finite samples (see Fan and Linton, 2003). It is therefore natural to consider

a bootstrap-version of our test that relies on a Markov resampling scheme that satisfies

the null hypothesis (Horowitz, 2003). More precisely, our bootstrap-based test consists of

three steps:

S1 Draw the initial observation X
(b)
0 from the kernel-based nonparametric estimate

of the stationary distribution of the bid-ask spreads and then draw the remaining

artificial sample
{
d

(b)
j , X

(b)
j

}m

j=1
from the kernel estimates of the conditional distri-

bution F
(
Xj, dj

∣∣∣Xj−1 = X
(b)
j−1

)
of the random vector (dj, Xj) given the previous

realization of the bid-ask spread. This is the bootstrap sample, for which the null

hypothesis in (2) holds conditional on the original sample.

S2 Compute the test statistic T
(b)
m as in (4) using the bootstrap sample rather than the

original data.

S3 Repeat the steps S1 and S2 for a large number of time, say B, and obtain the

empirical distribution function of
{
T

(b)
m

}B

b=1
.

Note that, as suggested by Bickel, Götze and van Zwet (1997), we resample only m out of

n observations so as to cope with the fact that the U-statistic implied by (3) is degenerate

(see Appendix).

To evaluate the finite-sample performance of our asymptotic and bootstrap-based

tests, we conduct a simple Monte Carlo study. As our empirical interest lies on testing

for adverse selection costs by checking whether the bid-ask spread satisfies the Markov

property, we simulate Easley and O’Hara’s (1992) model with empirically plausible esti-

mates for the parameters in the model. In their setup, there is a single market maker,
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who is risk neutral and acts competitively. Let V denote the value of the asset and define

an information event as the occurrence of a signal ψ about V . The signal can take on

one of two values, L and H, with probabilities δ > 0 and 1− δ > 0. The expected value

of the asset conditional on the signal is E(V |ψ = L) = VL or E(V |ψ = H) = VH . If

no information event occurs (ψ = 0), then the expected value of the asset remains at

V∗ = δVL + (1− δ)VH .

Information events occur with probability α ∈ (0, 1) before the start of the current

trading day. There are two types of traders: uninformed and informed. The informed

traders are risk neutral and price takers. As such, their optimal trading strategy reads: If a

high (low) signal occurs, the insider buys (sells, respectively) the stock if the current quote

is below VH (above VL). The uninformed market participants trade for nonspeculative

reasons, with a fraction γ of potential sellers and a fraction 1 − γ of potential buyers.

Uninformed buyers trade with probability εB, whereas an uninformed seller’s trading

probability is εS.

Transactions occur throughout the day along discrete intervals of time that are long

enough to accommodate at most one trade. The exact length of a trading interval is

arbitrary and could even approach zero so as to reformulate the statistical model in terms

of Poisson arrivals. At each trading interval t, the market maker announces the bid and

ask prices at which she is willing to trade one unit of the asset. Easley and O’Hara (1992)

show that the spread Xd,t+1 at time t+ 1 on a particular day d is

Xd,t+1 = [Pr(ψ = L |Nd,t, Sd,t + 1, Bd,t)− Pr(ψ = L |Nd,t, Sd,t, Bd,t + 1)] VL

+ [Pr(ψ = H |Nd,t, Sd,t + 1, Bd,t)− Pr(ψ = H |Nd,t, Sd,t, Bd,t + 1)] VH

+ [Pr(ψ = 0 |Nd,t, Sd,t + 1, Bd,t)− Pr(ψ = 0 |Nd,t, Sd,t, Bd,t + 1)] V∗,

where Nd,t is the number of intervals with no trades, Sd,t is the number of sells, and Bd,t

is the number of buys up to time t on the mth day. It is straightforward to compute the
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above probabilities in terms of the tree parameters (α, δ, µ, γ, εS, εB).

We simulate 66 days with 96 trading intervals of 5 minutes using the parameter es-

timates in Easley, Kiefer and O’Hara (1997): α = 3/4, δ = 1/2, µ = 1/6, γ = 1/3, and

εS = εB = 1/3. As for the stochastic process of the asset value, we use a simple binomial

model in which the asset value today equals the asset value yesterday plus an error term,

which may take values plus or minus two with equal probabilities. We fix the initial

condition for the asset value process at V0 = 50 and then simulate the trading outcomes

for each interval t = 1, . . . , 96 on each day d = 1, . . . , 66 according to the tree diagram in

Figure 1. The output then includes 66 daily observations (about 3 months) of the asset

value as well as 6,336 (66 × 96) intraday observations of the bid-ask spread, from which

we construct a sample of bid-ask spreads and their durations according to the optional

sampling given by (1) with c = 1/16. We consider 10,000 replications and the sample size

of the resulting series of bid-ask spreads is, on average, about 3,200 observations.

To compute the test statistic in (4), we carry out all density estimations using the

product Gaussian kernel, namely

K(u) = (2π)−3/2 exp

(
−u

2
1 + u2

2 + u2
3

2

)
, (6)

which implies that eK = (4π)−3/2 and vK = (8π)−3/2. As for the bandwidths, we ad-

just Silverman’s (1986) rule of thumb so as to conform to the degree of undersmoothing

required by Assumption A4. More precisely, we set

bu,n =
σ̂u

log(n)
(7n/4)−1/7, u = d, x (7)

where σ̂d and σ̂x denote the standard errors of the spread duration di and bid-ask spread

Xi data, respectively. As for the bootstrap-based tests, we compute the test statistics

using the product Gaussian kernel and the bandwidths as in (7) for B = 499 bootstrap

samples of size m = 1, 000.
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The simulation results suggest that our asymptotic and bootstrap-based tests perform

equally well in that both tests always reject the null hypothesis that the Markov prop-

erty holds for the bid-ask spread. It rests to check whether the excellent finite-sample

performance is an artifact due to size distortions of the tests. We take a similar approach

to Easley et al. (1997), who test their specification against a simpler trinomial model in

which the probabilities of buy, sell or no-trade are constant over time. We simulate such

a trinomial model with the following constant probabilities:

Pr(buy) = α(1− δ)µ+ (1− γ)εB[α(1− µ) + (1− α)]

Pr(sell) = αδµ+ γεS[α(1− µ) + (1− α)]

Pr(no-trade) = [γ(1− εS) + (1− γ)(1− εB)][α(1− µ) + (1− α)].

Using the above set of parameters, the probabilities of buy and sell are both equal to 5/24

and the probability of no-trade is 7/12.

The Monte Carlo results evince that, at the 1% level, the asymptotic test never rejects

the null, whereas the rejection frequency for the bootstrap-based test amounts to about

0.2%. At the 5% level, the rejection frequency of the asymptotic and bootstrap-based

tests increase to 0.4% and 4.2%, respectively. Altogether, we find that, although the

asymptotic test exhibits a huge difference between the empirical and nominal sizes, the

bootstrap version of our test has reasonable size properties.

4. Empirical exercise

We illustrate the above ideas using transactions data on bid and ask quotes. The motiva-

tion for such an exercise is natural. Information-based models of market microstructure,

such as Glosten and Milgrom (1985) and Easley and O’Hara (1987, 1992), predict that

the quote-setting process depends on the whole trading history rather than exclusively on

the most recent quote, and thus both bid and ask prices, as well as the bid-ask spread,
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are non-Markovian. One can therefore indirectly test for the presence of asymmetric

information by checking, for instance, whether the bid-ask spread satisfies the Markov

property.

We focus on New York Stock Exchange (NYSE) transactions data ranging from

September to November 1996. In particular, we look at five actively traded stocks from

the Dow Jones index: Boeing, Coca-Cola, Disney, Exxon, and IBM.2 Trading on the

NYSE is organized as a combined market maker/order book system. A designated spe-

cialist composes the market for each stock by managing the trading and quoting processes

and providing liquidity. Apart from an opening auction, trading is continuous from 9:30

to 16:00. Table 1 reports however that the bid and ask quotes are both integrated of order

one, and hence nonstationary. In contrast, there is no evidence of unit roots in the bid-ask

spread processes. As kernel density estimation relies on the assumption of stationarity

(see Assumption A1), spread data are therefore more convenient to serve as input for the

subsequent analysis.

Spread durations are defined as the time interval needed to observe a change in the

bid-ask spread (i.e., c = 1/16). For all stocks, durations between events recorded out-

side the regular opening hours of the NYSE, as well as overnight spells, are removed. As

documented by Giot (2000), durations feature a strong time-of-day effect related to prede-

termined market characteristics, such as trade opening and closing times and lunch time

for traders. To account for this feature, we also consider seasonally adjusted spread du-

rations d∗i = di/φ(ti), where di is the original spread duration in seconds and φ(·) denotes

a time-of-day factor determined by averaging durations over thirty-minutes intervals for

each day of the week and fitting a cubic spline with nodes at each half hour. With such

a transformation we aim at controlling for possible time heterogeneity of the underlying

Markov process. As before, we estimate all density functions using the product Gaussian

2 Luc Bauwens and Pierre Giot kindly provided the data, which originally come from the NYSE’s
Trade and Quote (TAQ) database. Giot (2000) describes the data more thoroughly.
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kernel and bandwidths as in (7) and compute the bootstrap-based tests using B = 499

artificial Markov samples.

Table 2 reports mixed results in the sense that the Markov hypothesis seems to suit

only some of the bid-ask spreads under consideration. We clearly reject the Markov

property for the Boeing, Coca-Cola and IBM bid-ask spreads, indicating that adverse

selection may play a role in the formation of their prices. In contrast, there is no indication

of non-Markovian behavior in the Disney and Exxon bid-ask spreads. Interestingly, the

results are quite robust in the sense that they do not depend on whether the spread

durations are adjusted or not for the time-of-day effect.3 This is surprising because the

Markov property is not invariant under such a transformation and one could argue that

conflicting results could cast doubts on the outcome of the analysis. Further, it is also

comforting that there is no palpable difference between the asymptotic and bootstrap-

based test results.

5. Conclusion

This paper develops a test for Markovian dynamics that is particularly tailored to ultra-

high frequency data. Although we derive the asymptotic normality of our test statistic, we

also propose a bootstrap-based variant of the test so as to enhance the finite-sample prop-

erties of the testing procedure. Monte Carlo simulations show indeed that our bootstrap-

based test seems to have reasonable size and power properties.

Our testing procedures are especially interesting in the context of information-based

models of market microstructure. For instance, Easley and O’Hara (1992) predict that the

price discovery process is such that the Markov assumption does not hold for the bid-ask

spread set by the market maker. We therefore check whether the Markov hypothesis is

3 Further analyses show that the results are not very sensitive to reasonable changes in the bandwidths,
as well.
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reasonable for the bid-ask spread of five stocks actively traded on the New York Stock

Exchange. The results show that the Markov assumption seems inadequate for the Boe-

ing, Coca-Cola and IBM bid-ask spreads, indicating that the market maker may account

for asymmetric information in the quote-setting process. In contrast, a Markovian char-

acter appears to suit the Disney and Exxon bid-ask spreads well, suggesting low adverse

selection costs. We thus conclude that market microstructure models rooted in Markov

processes, such as in Amaro de Matos and Rosário (2002), may deserve more attention.

Appendix: Proofs

Lemma 1: Consider the functional

In =

∫
ϕ(a1, x, a2)

[
f̂(a1, x, a2)− f(a1, x, a2)

]2

d(a1, x, a2).

Under assumptions A1 to A4,

n b1/2
n In − b−1/2

n eK E [ϕ(a1, x, a2)]
d−→ N

(
0, vK E

[
ϕ2(a1, x, a2)f(a1, x, a2)

])
,

provided that the above expectations are finite.

Proof: Let z = (a1, x, a2), Kbn(z) = b−1
n K(z/bn), rn(z, Z) = ϕ(z)1/2Kbn(z − Z), and

r̆n(z, Z) = rn(z, Z)− EZ [rn(z, Z)]. Consider then the following decomposition

In =

∫
ϕ(z)[f̂(z)− Ef̂(z)]2 dz +

∫
ϕ(z)[Ef̂(z)− f(z)]2 dz

+ 2

∫
ϕ(z)[f̂(z)− Ef̂(z)]

[
Ef̂(z)− f(z)

]
dx,

or equivalently, In = I1n + I2n + I3n + I4n, where

I1n =
2

n2

∑
i<j

∫
r̆n(z, Zi)r̆n(z, Zj) dz

I2n =
1

n2

∑
i

∫
r̆2
n(z, Zi) dz

I3n =

∫
ϕ(z)

[
Ef̂(z)− f(z)

]2

dz

I4n = 2

∫
ϕ(z)

[
f̂(z)− Ef̂(z)

] [
Ef̂(z)− f(z)

]
dz.
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We show in the sequel that the first term is a degenerate U-statistic and contributes with

the variance in the limiting distribution, while the second gives the asymptotic bias. In

turn, assumption A4 ensures that the third and fourth terms are negligible. To begin,

observe that the first moment of rn(z, Z) reads

EZ [rn(z, Z)] = ϕ1/2(z)

∫
Kbn(z − Z)f(Z) dZ

= ϕ1/2(z)

∫
K(u)f(z + ubn) du

= ϕ1/2(z)

∫
K(z)

[
f(z) +

1

2
f ′(z)ubn + f ′′(z∗)u2b2n

]
du

= ϕ1/2(z)f(z) +O
(
b2n

)
,

where f (i)(·) denotes the ith derivative of f(·) and z∗ ∈ [z, z + ubn]. Applying similar

algebra to the second moment yields EZ [r2
n(z, Z)] = b−1

n eK ϕ(z)f(z) +O(1). This means

that

E(I2n) =
1

n

∫
EZ [r2

n(z, Z)] dz − 1

n

∫
E2

Z [rn(z, Z)] dz

=
1

n

∫ [
b−1
n eK ϕ(z)f(z) +O(1)

]
dz +O

(
n−1

)
= n−1b−1

n eK

∫
ϕ(z)f(z) dz +O

(
n−1

)
,

whereas Var(I2n) = O (n−3b−2
n ). It follows from Chebyshev’s inequality that n b

1/2
n I2n −

b
−1/2
n eK E[ϕ(z)] = op(1). In turn, the deterministic term I3n is proportional to the in-

tegrated squared bias of the fixed kernel density estimation, hence it is of order O (b4n).

Assumption A4 then implies that n b
1/2
n I3n = o(1). Further,

E(I4n) = 2

∫
ϕ(z)EZ

[
f̂(z)− Ef̂(z)

] [
Ef̂(z)− f(z)

]
dz = 0,

whereas E(I2
4n) = O (n−1b4n) as in Hall (1984, Lemma 1). It then suffices to impose

assumption A4 to ensure, by Chebyshev’s inequality, that n b
1/2
n I4n = op(1). Lastly, recall

that I1n =
∑

i<j Hn(Zi, Zj), where

Hn(Zi, Zj) = 2n−2

∫
r̆n(z, Zi)r̆n(z, Zj) dz.

17



Because Hn(Zi, Zj) is symmetric, centered and such that E [Hn(Zi, Zj)|Zj] = 0 almost

surely, I1n is a degenerate U-statistic. Fan and Li’s (1999) central limit theorem for

degenerate U-statistics implies that, under assumptions A1 to A4, n b
1/2
n I1n

d−→ N(0,Ω),

where

Ω =
n4bn

2
EZ1,Z2 [H

2
n(Z1, Z2)]

= 2bn

∫
Z1,Z2

[∫
r̆n(z, Z1)r̆n(z, Z2) dz

]2

f(Z1, Z2) d(Z1, Z2)

= 2bn

∫ [∫
r̆n(z, Z)r̆n(z′, Z)f(Z) dZ

]2

d(z, z′)

= 2

∫
ϕ2(z)

[∫
K(u)K(u+ v)f(z − ubn) du

− bn

∫
K(u)f(z − ubn) du

∫
K(u)f(z + vbn − ubn) du

]2

d(z, v)

∼= 2

∫
ϕ2(z)

[∫
K(u)K(u+ v)f(z − ubn)

]2

d(z, v)

∼= 2 vK

∫
ϕ2(z) f(z) dF (z),

which completes the proof.

Proof of Proposition 1: Consider the second-order functional Taylor expansion

Λf+h = Λf + DΛf (h) +
1

2
D2Λf (h, h) +O

(
||h||3

)
,

where h denotes the perturbation hiXj = f̂iXj − fiXj. Under the null hypothesis that

fiXj = giXj, both Λf and DΛf equal zero. To appreciate the singularity of the latter, it

suffices to compute the Gâteaux derivative of Λf,h(λ) = Λf+λh with respect to λ evaluated

at λ→+ 0. Let

giXj(λ) =

∫
[fiXj + λhiXj](a1, x, a2)da2

∫
[fiXj + λhiXj](a1, x, a2)da1∫

[fiXj + λhiXj](a1, x, a2)d(a1, a2)
.

It then follows that

∂Λf,h(0)

∂λ
= 2

∫
[fiXj − giXj][hiXj −DgiXj]fiXj(a1, x, a2) d(a1, x, a2)

+

∫
[fiXj − giXj]

2hiXj(a1, x, a2) d(a1, x, a2),
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where DgiXj is the functional derivative of giXj with respect to fiXj, namely

DgiXj =

(
hiX

fiX

+
hXj

fXj

− hX

fX

)
giXj.

As is apparent, imposing the null hypothesis induces singularity in the first functional

derivative DΛf . To complete the proof, it then suffices to appreciate that, under the null,

the second-order derivative reads

D2Λf (h, h) = 2

∫
[hiXj(a1, x, a2)−DgiXj(a1, x, a2)]

2 dFiXj(a1, x, a2)

given that all other terms will depend on fiXj − giXj. Observe, however, that DgiXj

converges at a faster rate than does hiXj due to its lower dimensionality. The result then

follows from a straightforward application of Lemma 1 with ϕ(a1, x, a2) = fiXj(a1, x, a2).

Proof of Proposition 2: The conditions imposed are such that the second-order

functional Taylor expansion is also valid in the double array case (di,n, Xi,n, dj,n). Thus,

under H
[n]
1 and assumptions A1 to A4,

λ̂n −
b
1/2
n

σ̂Λ

n−i+j∑
k=1

[fiXj(dk+i−j,n, Xk+i−j,n, dk,n)− giXj(dk+i−j,n, Xk+i−j,n, dk,n)]2

converges weakly to a standard normal distribution under f [n]. The result then follows

by noting that σ̂Λ
p[n]

−→ σΛ and

Λf [n] = E
[
f [n](di,n, Xi,n, dj,n)− g[n](di,n, Xi,n, dj,n)

]2
+Op

(
n−1/2

)
= n−1b−1/2

n `2 + op

(
n−1b−1/2

n

)
.
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α

1− α

δ

1− δ

µ

1− µ

1− γ

γ
insider sells
εS : uninformed sells

1− εS : uninformed does not trade
εB: uninformed buys

1− εB: uninformed does not trade

insider buys
µ

1− µ

γ

1− γ

εS : uninformed sells

1− εS : uninformed does not trade
εB: uninformed buys

1− εB: uninformed does not trade

εS : uninformed sells

1− εS : uninformed does not trade
εB: uninformed buys

1− εB: uninformed does not trade1− γ

γ

FIGURE 1

Tree diagram of the trading process

Notation: α is the probability of an information event, δ is the probabil-
ity of a low signal, µ is the probability a trade comes from an informed
trader, γ is the probability that an uninformed trader is a seller, 1 − γ

is the probability that an uninformed trader is a buyer, εS is the prob-
ability that the uninformed trader will sell, and εB is the probability
that the uninformed trader will buy. Nodes to the left of the dotted line
occur only at the beginning of the trading day; nodes to the right occur
at each trading interval.
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TABLE 1

Phillips and Perron’s (1988) unit root tests

Both ask and bid prices are in logs, whereas the spread refers to the differ-
ence of the logarithms of the ask and bid prices. The truncation lag ` of
the Newey and West’s (1987) heteroskedasticity and autocorrelation consis-
tent estimate of the spectrum at zero frequency is based on the automatic
criterion ` = b4(T/100)2/9c, where bzc denotes the integer part of z.

stock sample size truncation lag test statistic

Boeing ask 6,317 10 -1.6402

bid 6,317 10 -1.6655

spread 6,317 10 -115.3388

Coca-Cola ask 3,823 8 -2.1555

bid 3,823 8 -2.1615

spread 3,823 8 -110.2846

Disney ask 5,801 9 -1.2639

bid 5,801 9 -1.2318

spread 5,801 9 -112.1909

Exxon ask 6,009 9 -0.6694

bid 6,009 9 -0.6405

spread 6,009 9 -121.8439

IBM ask 15,124 12 -0.2177

bid 15,124 12 -0.2124

spread 15,124 12 -163.0558
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TABLE 2

Nonparametric tests of the Markov property

Adjusted durations refer to the correction for time-of-day effects.
Asymptotic p-values are in parentheses, whereas the p-values in
brackets are based on 499 Markov bootstrap samples.

duration adjusted duration
stock

λ̂n p-value λ̂n p-value

Boeing 2.8979 (0.0019) 4.0143 (0.0000)

[0.0002] [0.0000]

Coca-Cola 19.4297 (0.0000) 18.6433 (0.0000)

[0.0000] [0.0000]

Disney -3.2095 (0.9993) -2.6822 (0.9963)

[0.9940] [0.7820]

Exxon -1.0120 (0.8442) 0.4234 (0.3360)

[0.6680] [0.1480]

IBM 20.0711 (0.0000) 14.1883 (0.0000)

[0.0002] [0.0000]
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