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ABSTRACT

Confidence intervals for asymmetric distributions can be
based on Student's t statistic or on Johnson's modified t sta-
tistic which has two variants, namely a linear and a quadratic
approximation. Confidence intervals based on the quadratic ap-
proximation, are complicated and are first 1investigated geome—
trically, which results in new insight. Next Monte Carlo experi-
ments yield estimates of the coverage and power of several vari-
ations of Johnson's test. These experiments show that the qua-

dratic approximation is superior.

1. INTRODUCTION

We investigate several confidence intervals for the mean of
an asymmetric distribution. Norman Johnson (1978, p. 537) modi-
fied Student's t statistic, explicitly accounting for skewness
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where all symbols are standard (mean p, variance 02, third cen-
tral moment Ha» sample mean x, unhlased sample variance 52, sam—
ple size N). Johnson (1978, p. 538) further stated "... the ef-
fect of the term involving (;—u)z in small order ...neglecting
the term involving (;—u)2 «ess reduces [:I} to the wvariable
ti...“. Ofr Ereliminary experiments, however, showed that neg-
lecting (x-p)~ definitely affects the coverage and power of the
test. Those experiments also demonstrated that distribution-free
alternatives like the sign and Wilcoxon's signed rank test do
not work for an asymmetric distribution (and as the sample size
N increases these statistics perform worse). Therefore we shall
compare several versions of Johnson's statistic to the classical
t statistic. First we shall present analytical results; next we

shall discuss Monte Carlo estimates of coverage and power.
2. CONFIDENCE INTERVALS REANALYZED

To analyze confidence intervals based on the quadratic term
(;-p)z, we develop a graphical representation that seems new.
For didactic reasons we first discuss Student's t test; see Fig.
1(a). The t statistic with v degrees of freedom satisfies the
following equation:
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1f we define
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u(l) =x-c (2.4)
Megy = X +c (2.5)
then eq. (2.1) implies
f](u) < e A f](u) > —c (2.6)
or
< < 2.7
Wy S B Sitlgay R
which is equivalent to the well-known result
- a2 = al?
x -ty 1-8//N € u < x4t .s//N. (2.8)

Now we consider Johnson's linear approximation ti. We have
plctured a positive My in Fig. 1(b) so that the confidence in-
terval moves to the right, when compared to Student's statistic;
the interval is not centered around the sample mean x. For nega-
tive skewness analogous results hold.

Johnson (1975, p. 538) stated: "Use of the variable t; does
not lead to a simple expression for confidence intervals for p
since the numerator of t, in nonlinear in p;" he does not elabo-
rate. We analyze possible complications, wusing the graphical
representation of Fig. 1(c). The function f3(u} equals the first
factor In eq. (l.1), i.e., f3(u) in a second degree polynomial
in p. The mathematical analysis yields

f3(u) $e# U(l) < u < U(a) (2.9)

and (A)



f3(u) >=-c+qp < u(z) Vo2 u(3) (2.10)

so that the mathematical solution (to be distinguished from the

statistical solution; see below) is
< < .
My Sy Vo) S M L

Mathematical analysis of second-degree polynomials proves that

the interval [u ] cover the sample mean x, just as the

0y Y(2)
first-order interval of Fig. 1(b) does. The interval h‘(])’
“(z,)l does not overlap the interval of Fig. 1(b). The disjunct

interval [p ] does not make sense statlstically (also see

")
the Monte Carlo results in the next section), so that we elimi-
nate this interval. If the skewness is negative, then again two
disjunct intervals result; one interval does not cover x and is
rejected.

There is an more complication, namely f3(u) may not inter—

sect the lower horizontal line, i.e.,

min [f3( w)Y] > =-c (2.12)
u

We investigate two heuristic solutions; see Fig. 2. The first
solution takes p(z) equal to u*, the wvalue where f3(u) reaches
its minimum. The second solution uses Fig. 1(a) and 1(b), where
f(u) is a straight line with tangent minus one i.e., in Fig. 2
we replace fz(u) by -u + <, where <y is a constazt and p > u*.
Obviously u<2) of the second solution exceeds p of the first
solution. Consequently the coverage (probability that p lies
within the confidence Interval) is higher for the second solu-
tion, and the power Function is smaller. The (absolute, not re-
lative) values of the coverages and power functions of the two
solutions are unknown. Therefore we shall resort to Monte Carlo
experimentation in the next section. But first we note one final

complication.



We estimate ;.|3 in eq. (1.1) through the unbiased estimator

N
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see Kenney and Keeping (1954, p.100). Especially if N 1is small,
;3 may have the wrong sign. Consequently: if f3(u) is a polyno-
mial with a minimum or '"valley", then f](u) has a Taleun or
"hill"; see Fig. 3. The confidence interval based on fa(u)ﬁstill
covers the sample mean (at y = x the slopes of f3{u) and fj(u)

equal -1). Also see the Appendix for computational details.

3. DESIGNING THE MONTE CARLO EXPERIMENT

(i) Random number generator: We use the multiplicative congruen—

tial generator which is standard on our ICL 2960 computer. This
generator was developed by NAG (Numerical Alghorithms Group) in
England. It uses the multiplier 1313 and the modulus 259. The
seeds are generated randomly by the computer itself, using the
internal clock. All Monte Carlo results are independent (differ-
ent seeds), except for the fact that each sample is analyzed
though different statistics (t, ts etc.) which yields dependent
results.

(ii) Sample size N: Johnson (1978) used N equal to 13 and 25. We
pick N equal to 10, 16, 25 and 50 in the coverage study, and N
equal to 10 and 25 in the more expensive power study.
(iii) a level: We select a is 0.10, 0.05 and 0.01 in the cove-
rage study, and a is 0.10 and 0.05 in the power study.

(iv) Type of distribution: Many asymmetric distributions could

have been selected. We choose the exponential and the lognormal
distributions. Given the random numbers r, we sample from the
exponential and the lognormal distributions, using standard pro-
cedures available on our computer. So we sample from the expo—

nential distribution using the logarithmic transformation



- (&n r)/\ where p = ¢ = 1/A. And if y has a normal distribu-
tion with mean uy and variance ai then we know that x = exp (y)

has a lognormal distribution with mean
u_ = expl(p +02!2) (3.1)
X ¥ N
and variance
2 2 2
= xp(2up + explo = ] 3a2
o = lexp( My "y)][ p( y) ] (3.2)

We sample y from the normal distribution using the standard Box-
Muller transformation. Obviously changes In the exponential pa-
rameter A do not affect the results of the various statistics.
Therefore we fix A at the value 1. For the lognormal distribu-
tion all combinations of My and . with a fixed ratio ux!ux
yield identical results so that we study only three combinati-
oms: o = uxf3, 0. = W and a_ = 3ux. The exponential might
seem to be the skewest distribution since its mode occurs as the
extreme left; actually its "excess" u3!a3 equals 2 whereas the
lognormal has excess 1, 4 and 36 for o = uxf3, o = u, and

ux = lux. Johnsﬁr (1978, p. 538) selected the x% and xfo dis-
lrlhu‘rlons. The X, is identical to the exponential; obviously
x.lg() Is more symmetric. So we cover more cxtreme forms of
asymmetry.

the

We also apply the different statistics to the normal dis-

tribution. In that situation the assumptions of Student's sta-—
tistic are satisfied, i.e., the expected coverages should equal
the prespecified nominal values l-a. We use the normal distribu-
tion not only to verify our computer program, but also to exa-
mine whether the modified t statistics with or without neglec-
tion of (;‘b—u)2 work when the distribution is actually symmetric
(namely Gaussian).

(v) Number ol Monte Carlo replicatlons R: The more often we re-

peat the Monte Carlo experiment, the more accurate our results



become. Unfortunately, Monte Carlo experimentation requires much
computer time. Obviously the number of replications R needed to

estimate the actual a—error within 10% with 90% probability, is
2
R = (1.6449)" (l-a)/a. (3.3)

Hence if a is 0.10, 0.05, 0.01 (see iii) then R is 2435, 5140,
26786 respectively. Such high R values are prohibitive, given
our computer budget, so that we use R equal to 2500 to estimate
coverage and R equal to 400 to estimate power functions. For-
tunately the experimental noise turns out to be small relative
to the systematic effects, so that we can detect certain pat-
terns (see next section).

(vi) Statistical procedures: We use the following statistics to

derive a confidence interval for the mean:

(1) Student statistic t; see Fig. 1(a).

1; see Fig. 1(b).

(3) Johnson's quadratic statistic t which yields either two

1
disjunct intervals [p(l),u<1)] and [p(3),u(b)] or one long in-

(2) Johnson's linear statistic t

terval [”(1)'”(4)]; see Fig. 1(c) and Fig. 2.

(4) Johnson's quadratic statistic t; with elimination of the
interval that does not cover the sample mean x and, If no inter-
section occurs, with "(2) equal to u*; see Fig. 2.

(5) Like (4) but He2) follows from the linearization of f3(u);
see the line with slope — 1 in Fig. 2.

4. MONTE CARLO RESULTS

We do not bother the reader with the raw data of the Monte
Carlo experiment. (These data were made available to the refe-
rees, and interested readers may write the authors for these
details). Instead we present the information we derived from

these data (see Fig. 4 to which we shall return).



4,1 Coverage: Exponential Distribution

We derive confidence intervals, using five different sta-
tistical procedures; see Section 3, sub (vi). Student's statis-
tic t and Johnson's linear statistic ti give significantly low
coverage, for all twelve combinations of a and N except one (N =
50; a = 0.10); we test this significance through the binomial
distribution with parameters a and R and significance level
0.10; no normal approximation. For Johnson's quadratic statistic
we study three procedures. Procedure (3) of Section 3 has the
highest coverage, but it may have two disjunct intervals so that
it is statistically unacceptable. Obviously the coverage of pro-
cedure (5) exceeds that of procedure (4). Procedure (5) gives
significantly low coverage In 3 out of 12 cases; these signifi-
cant values are not dramatically low (0.979 for a = 0.01; 0.941

for a = 0.05 and 0.889 for a = 0.10) The Monte Carlo experiment
2 a2

N-1

s//N) occurs. Obviously intersection occurs more often, as N

also shows how often no intersection of f3(u) and —-¢ (= -t

and a increase. "No intersection" occurs with an estimated pro-
bability of 70% if a is 0.01 and N is 10, and 3% 1if a is 0.10
and N 1is 50. The estimate 1:3 has the wrong sign, with estimated
probability of 5% if N is 10 and 0% if N is 50 (obviously a has

no effect).

4.2 Coverage: Lognormal Distributions

For y is 1 and o is 1/3 the lognormal has smaller excess
than the exponential has. Consequently the coverage of Student's
statistic improves, especially as N and a increase. Johnson's
linear statistic hardly improves the coverage. Johnson's quadra-
tic statistic with linear approximation if needed (procedure 5)
gives the highest coverage; only 3 out of 12 situations show

significantly low coverage.



For p is 1 and o is 1 the lognormal has excess 4. Student's
and Johnson's linear statistics give significantly low coverages
in all twelve situations. The quadratic statistic always impro-
ves the coverage. Sometimes (3 out of 12) the coverage is not
too low; never the coverage 1is dramatically low; for example,
estimated coverage is 0.969 instead of 0.99 (= 1-a) if N is 10.

For p is 1 and o is 3 the excess 1s extreme, namely 36.
Student's and Johnson's linear statistics (t and t;) perform
very poorly. The quadratic statistiecs do relatively better;
their coverages are significantly low, for example, if a is 0.01
and N is 10 then estimated coverage 1is 0.88 and 1If a becomes

0.10 then coverage becomes 0.77 (t and tl give 0.66 and 0.67).
4.3 Power

We estimate the power function at 21 values of p, using 400
replications per value (and 2500 replications at p = By = 1). We
investigate 13 combinations of different distributions, N values
and o values. We display only three representative examples in
Fig. 4. The estimated power functions of Student's and Johnson's
linear statistics are so close that they cannot be distinguished
in the resulting pictures. The quadratic statistic with two dis-
junct intervals shows curious behavior, i.e., the power shows a

dip in a certaln area left of p_ . We have already explained that

two disjunct intervals are stagistically unacceptable; the dip
of the power function emphasizes the statistical misbehavior of
this procedure. The quadratic statistic with linearization (pro-
cedure 5 of Section 3) has an estimated power function the
reaches its minimum at p equal to ¥ whereas the linear statis-
tics reach their minimum when p exceeds uo. The values of these
minima are roughly equal. An extremely skew lognormal distribu-
tion (o = 3u) gives an estimated power function with a shape
that differs from the other distributions. If the distributions

is actually normal, then all five statistics give nearly identi-
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cal power functions. So as Johnson (1978, p. 539) has already
noted, the modified t test also works 1f the distribution hap-

pens to be normal.
5. CONCLUSION

Although many studies claim that Student's statistic t is
robust, Johnson (1978) proposed a modified t statistic. We find
that his statistic l:'l, which neglects (;c-u)z, does not improve
the t statistic. The statistic t;, which includes the (-:'Tt—|.|)2
term, requires the solution of second-degree polynomials. This
£y gives excellent results in the exponential case while the
linear statisties (t and I:'l) then fail. In the lognormal cases
the quadratic statistic t, does not give perfect results; never-
theless its coverage is quite close to the prespecified nominal
value 1-a, and its results are better than the linear statistics
(t and t'l). 1f the distributfion is actually normal, then all
statistics give the desired coverage. So it is good practice to
modify the classical t statistic, as proposed by Johnson (1978),
provided we do include the (;-u}z term; the price we pay is a
slight increase in computation which, however, is negligible

when using a (micro) computer.
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APPENDIX. COMPUTATIONAI, DETATLS OF CONFIDENCE INTERVAL USING t,

tn the maln text we have already deflned the followling sym—
bols: x, s;", 1‘;3, c. We now detine ¢, = g /(6 52 N, ey = oy /
(354). d1=1-4c2(c1+c), d2-1—4c2 (cl—c). Next we
introduce K = x + 1/(2 cy) - (dl)* /(2 e5), L =x+ 1/(2 cy) -
@} /(2 e, M= Z+ UG ) 4o + e, N=X+ 1/l e + ¢
- &y If My > 0 and dI >0, d2 » 0 then procedure (5) yields the
confidence interval [L,K]; if d; < 0 and cl2 > 0 then [L,M]. If
Hy < 0 and dz >0, d2 > 0 then the Interval is [L,K]; if dI >0
and d, < 0 then [N,K].
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FIG. 1(a). Student statistic t.




FIG.1(b). Johnson's first-order modification t]‘




FIG. 1(c). Johnson's second-order approximation t)-
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