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Abstract

Strict gauge invariance requires that physical left-handed leptons are actually bound
states of the elementary left-handed lepton doublet and the Higgs field within the stan-
dard model. That they nonetheless behave almost like pure elementary particles is ex-
plained by the Fröhlich-Morchio-Strocchi mechanism. Using lattice gauge theory, we test
and confirm this mechanism for fermions. Though, due to the current inaccessibility of
non-Abelian gauged Weyl fermions on the lattice, a model which contains vectorial lep-
tons but which obeys all other relevant symmetries has been simulated.
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1 Introduction

The standard model of particle physics is an exceptionally successful theory [1]. Especially,
using elementary particles as physical degrees of freedom in the electroweak sector, moti-
vated by the BRST symmetry in perturbation theory, provides excellent agreement with ex-
periments. However, this is surprising on a deeper field-theoretical level. As these states
are gauge-dependent, notwithstanding the Brout-Englert-Higgs (BEH) mechanism, they are
strictly speaking unphysical [2,3]. As such, they do not correspond to observable states. This
includes even everyday particles like the electron [2,3] and the proton [4].

This troubling paradox can be resolved by the Fröhlich-Morchio-Strocchi (FMS) mecha-
nism [2,3] which is a powerful tool to investigate gauge-invariant information of gauge theo-
ries with a BEH mechanism. Physical states of the electroweak sector are necessarily described
by gauge-invariant composite objects of the elementary fields, e.g., a scalar particle can be
formed by a gauge-invariant bound state of two Higgs doublets. Using conventional gauge-
fixing conditions, it can be shown that these bound states behave almost as the elementary
particles in the electroweak sector of the standard model. Especially, the FMS mechanism
properly maps the pole structure of gauge-dependent states on those of the bound states in
a suitable setup. This will be discussed in section 2 in more detail. Furthermore, it can be
shown that deviations from the elementary behavior are loop suppressed but affect off-shell
properties [5, 6]. This mechanism has been confirmed for the W , Z , and Higgs boson using
lattice gauge theory [7,8].

Moreover, it is by now understood that the standard model is special. This can be traced
back to the custodial symmetry of the Higgs sector. The FMS mechanism manifests as a one-to-
one mapping between gauge multiplets and multiplets of an additional global SU(2) symmetry
in the standard model. Qualitative differences occur in general non-Abelian gauge theories
with a BEH mechanism already at tree-level in case global symmetries of the Higgs sector and
the local gauge group are different [9–11]. Again, this has been quantitatively confirmed for
the bosonic sector in lattice simulations [12–14], see Ref. [15] for a detailed review.

While a validation using lattice methods is encouraging, such a radical change of our no-
tion of elementary particles requires an experimental confirmation. Currently, the standard
model is the only experimentally tested gauge theory with a BEH mechanism in high-energy
physics. Therefore, this task becomes challenging: As noted, differences to usual perturbative
treatments are suppressed. Nonetheless, slight deviations exist, are calculable, and have been
confirmed again in lattice simulations [5, 6, 16]. It is therefore, at least in principle, possible
to observe them in experiment.

Unfortunately, experiments can neither directly employ electroweak bosons as initial states
nor detect them as final states, and thus these slight differences are obscured through produc-
tion and decay processes. It is thus more natural to investigate the impact on the initial states
in collider experiments, i.e., leptons [4,7] and protons [4,17]. The lepton case [2–4,15] will
be discussed in more detail in section 2.

While a direct analytical approach may be possible for leptons [4], protons can likely only
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be reverse-engineered [17]. In either cases a confirmation of the FMS mechanism in the
fermion sector using lattice methods would be a valuable first step, and could provide at least
a qualitative insight into expected effects. Unfortunately, this is currently not possible for two
reasons. On the one hand, the scales are too separated to be accessible with currently avail-
able computer resources. While this could still be controlled using extrapolations, the second
problem cannot be circumvented. The lattice regularization introduces a gauge anomaly in the
weak interactions, as it is incompatible with parity violation [18]. This problem is unresolved
despite many efforts [19–23].

Though a quantitative test is therefore not possible, a qualitative test of the FMS mecha-
nism for fermions is: Parity violation is not an important part of it, and it works in the same
way for vectorial fermions. It is thus possible to test the very same mechanism which requires
the physical electron to be actually a bound state of an elementary electron and a Higgs field
using a vectorial electron. Here, we will perform a first such test.

We do so by investigating a system containing an SU(2) Yang-Mills theory coupled to a
gauged scalar doublet mimicking the weak-Higgs subsector of the standard model as well as
one generation of vectorial leptons. The latter includes one flavor which is gauged under the
weak interaction and two fermion flavors that are ungauged. This allows us to construct a
gauge-invariant Yukawa sector which obeys the same pattern as its standard model counter-
part. This model, and how the FMS mechanism operates in it, will be introduced in section
3. Its lattice version, the so called Wilson-Yukawa model [24–27] follows in section 4. In this
first test, the simulations will be quenched. This is justified as the dynamics of the fermions
will not alter the basic principles of the FMS mechanism.

Our primary aims are twofold. On the one hand we want to determine the physical, i. e.
gauge-invariant, spectrum of the theory. Thereby, we want to show that there is a genuine
composite bound state of the elementary, gauged fermion and the Higgs field. On the other
hand we want to demonstrate that the FMS mechanism works and predicts correctly the mass
of this state. The corresponding lattice observables will be given in section 5. The results for
both items will then be presented in section 6.

We indeed find hints for a positive confirmation of both items and summarize our results
in section 7. There, we will also discuss potential next steps as well as implications for exper-
iments.

2 Leptons in the standard model

In the following, we rehearse the construction of observables for leptons in the standard
model [2–4, 15]. This is particularly useful, as this provides a perspective, especially on the
symmetries and degrees of freedom, which is non-standard compared to usual treatments [28].
For simplicity and to be as close as possible to our toy model in section 3, we will treat only
the weak interaction, the Higgs doublet, and a single generation of leptons. A generalization
to the full standard model can be found in [2, 3, 15]. The other parts of the standard model
do not have any relevant influence on the mechanism in the following.

Thus for our purposes, the relevant part of the standard-model Lagrangian is given by

L=− 1
4

W a
µνW

aµν +
1
2

tr
�

(DµX )†(DµX )
�

−
λ

4

�

tr
�

X †X
�

− v2
�2
+ ψ̄L i /DψL + χ̄R

f i/∂ χR
f

−
∑

f

y f

�

χ̄R
f

�

X †ψL
�

f +
�

ψ̄LX
�

f χ
R
f

�

. (1)
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Herein W a
µν is the usual field-strength tensor of the weak gauge bosons W and Z , and Dµ is the

covariant derivative in the fundamental representation. The matrix-valued field X contains
the components of the usual scalar doublet φ as

X =

�

φ∗2 φ1
−φ∗1 φ2

�

, (2)

and thus the standard Higgs fluctuation mode as well as the three would-be Goldstone bosons.
The single left-handed Weyl spinorψL is gauged under the weak interaction in the fundamental
representation, ψL = (νL eL)T. The two flavors of right-handed Weyl spinors eR and1 νR are
not gauged and combined into a flavor doublet χR = (νR eR)T.

If the Yukawa couplings y f vanish, the theory obeys three important symmetries.2 First,
we have the local weak gauge symmetry SU(2)w.3 Second, we have a global SU(2)Rf flavor
symmetry of the right-handed Weyl fermions for our particular case. At this point we would
like to emphasize that the components of the gauged left-handed spinor cannot be identified
with any flavor structure as they merely distinguish different gauge charges similar to the color
charge in QCD. Finally, we have a less obvious global SU(2)c symmetry which acts only on the
scalar doublet as a right-multiplication on X and leaves all other fields unchanged. Basically,
this symmetry relates the scalar doublet and its charge conjugated counterpart εi jφ

∗
j (first

column of X ) in a nonlinear way. The advantage of the X notation is the linear realization of
SU(2)c within the standard-model Higgs sector.

If degenerate Yukawa couplings are switched on (within one generation), the global SU(2)c
symmetry of the scalar field and the SU(2)Rf flavor symmetry of the ungauged fermions are bro-
ken to a diagonal flavor subgroup SU(2)df, which elements d act as X → X d and χR→ d†χR.

Ignoring for a moment the BEH effect, there are four physical fermionic states in the theory
which are grouped into two chiral doublets. The first two states are the flavor doublet of right-
handed Weyl fermions χR. One of them is the right-handed charged lepton, χR

2 = eR and the
other the right-handed neutrino χR

1 = ν
R. The other physical doublet is a gauge-invariant,

left-handed Weyl bound state, Ψ L = X †ψL , which is a singlet with respect to the non-Abelian
gauge group but carries a global SU(2)c charge. The two components of this doublet will be
identified with the left-handed electron and the left-handed neutrino below. In case non-zero
Yukawa couplings break the global SU(2)c symmetry and the flavor symmetry SU(2)Rf to the
diagonal subgroup SU(2)df, this bound state transforms in the same way as the right-handed
fermions. In this way it appears as if in the physical spectrum the diagonal subgroup acts
as an effective flavor symmetry for both the left-handed and right-handed sector. Note that
the two gauge-dependent components of the elementary left-handed Weyl fermion ψL do not
transform under SU(2)df, but can be transformed into each other via a gauge transformation
and can therefore not be associated with physically observable particles.

Likewise, in the bosonic sector the gauge-invariant bound states trX †X and trτaX †DµX
form the physical Higgs and the physical W and Z bosons, a singlet scalar and a triplet vector
with respect to SU(2)c, see [2,3,15] for details of this sector.

With the BEH effect switched on, and fixing to ’t Hooft gauge, the Higgs field can be split
into its vacuum fluctuations η and its vacuum expectation value. Using the gauge freedom, we
conventionally chose the vacuum expectation value to be in the real 2 direction. Thus, we have
〈φi〉 =

vp
2
δi2. At tree-level, this yields the customary result that the gauged and ungauged

Weyl spinors can be combined into two Dirac spinors, each with a mass given by m f = y f v/
p

2,
forming the usual leptons [28]. However, these objects are thus gauge-dependent.

1We do not consider Majorana neutrinos for simplicity.
2How electromagnetic interactions and additional generations fit into the picture can be found in Ref. [15].
3Gauge transformations act as a multiplication from the left on the field X .
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Table 1: The physical states, their quantum numbers, and their leading order contri-
bution in the FMS mechanism.

Name Spin SU(2)c SU(2)Rf Operator LO FMS expansion

Higgs 0 0 0 tr(X †X ) tr(η)

W/Z 1 1 0 tr(τaX †DµX ) W a
µ

Left-handed fermions 1
2

1
2 0 Ψ L = X †ψL ψL =

�

νL

eL

�

Right-handed fermions 1
2 0 1

2 χR χR =

�

νR

eR

�

Nonetheless, any physical state has to be unaltered by gauge-fixing. Thus only the left-
handed bound state ΨL and the right-handed χR remain in the fermionic sector. The decisive
step is now to realize the FMS mechanism [2,3] to make contact with the conventional and suc-
cessful perturbative treatment: Expand any gauge-invariant composite operator in the Higgs
vacuum expectation value of the scalar field. This yields to leading order the results shown in
table 1. As an example, consider the physical left-handed fermion [2,3],

ΨL = X †ψL =
�

v
p

2
1+η

�

ψL =
v
p

2

�

ψL
1

ψL
2

�

+O(η), (3)

where the matrix-valued η contains the usual fluctuation field identified with the elementary
Higgs boson and the Goldstone fields in the same manner as X contains φ in (2). To leading
order Ψ L thus reduces to the elementary left-handed fermions. The other physical states in
table 1 follow in the same way. Of course, only the total sum in (3) is gauge-invariant, and
the leading order alone is not.

When now forming a propagator it follows




Ψ f1(x)Ψ̄ f2(y)
�

=
v2

2

¬

ψL
f1
(x)ψ̄L

f2
(y)

¶

+O(η). (4)

Thus, to all orders in perturbation theory and to leading order in η the propagator of the
physical, composite fermion state is given by the gauge-dependent elementary ones, i.e., the
propagators of the left-handed charged lepton and neutrino. Especially, the poles and thus the
masses coincide. This was shown to all orders in perturbation theory for the Higgs bound-
state–elementary-state duality and generalizes straightforwardly to all other standard model
particles [5]. In this way, the gauge-invariant Dirac spinor (ΨL

f χ
R
f )

T describes the physical
neutrinos ( f = 1) and charged leptons ( f = 2) with the same properties as the usual gauge-
dependent ones of perturbation theory [2, 3, 15]. This can be extended to include the hyper-
charge sector as well as to quarks [4,15].

As long as the correction O(η) is small, this is an excellent approximation. Indeed, lattice
results show this to be the case in the bosonic sector [7,8], though the subleading part is not
zero [5, 16], and could in principle be accessible even in experiments [4, 16, 17]. That this is
the case is a peculiarity of some theories like the standard model [15,29]. In generic theories,
qualitative differences may already appear at leading order [10, 11], as confirmed by lattice
simulations [12–14].

The important bottom line is that the physical left-handed leptons in the standard model
are actually bound states of the elementary ones and the Higgs field [2, 3]. That they seem
to have the properties of the elementary ones is due to the FMS mechanism, as described in
equations (3-4). This could have far-reaching consequences for experiments, if confirmed [4].
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The aim here is therefore to test the underlying mechanism. As noted in the introduction, this
is not (yet) possible for the standard model (1). Thus, the next step is to create a theory which
works in the same way regarding the FMS mechanism, but is accessible to lattice simulations.

3 Vectorial leptons

3.1 The theory

The chiral nature of the weak gauge theory is the main problem to directly test the FMS mech-
anism for leptons via lattice simulations. In order to circumvent this technical problem, we
investigate a toy model that replaces the Weyl fermions by Dirac spinors. At the same time,
our model should be as close as possible to the gauged Higgs-Yukawa structure of the standard
model, e.g., via imposing similar internal symmetries. Thus, we investigate a standard-model-
like theory with vectorial leptons instead of chiral ones. This may be viewed as an extension
where a further generation with opposite helicities is effectively added to one of the standard-
model generations. See [26,27] for earlier discussions of this approach.

More precisely, we study a theory that comprises an SU(2)w gauge theory coupled to a
scalar field and a vectorial fermion ψ in the fundamental representation. Further, we have
two flavors of vectorial fermions χ which are singlets with respect to the gauge group. The
latter are coupled to the gauged scalar and fermion field via Yukawa interaction terms. This
particular setup can be used straightforwardly in lattice simulations. In particular, the gauged
fermion ψ mimics the left-handed leptons of the standard model, while the two components
of χ can be associated with the right-handed electron and neutrino. We will therefore refer
to them as vectorial leptons in the following, or just leptons in case it is clear whether the
vectorial or standard-model leptons are meant.

The Lagrangian of this theory is given by

L=− 1
4

W a
µνW

aµν +
1
2

tr
�

(DµX )†(DµX )
�

−
λ

4

�

tr(X †X )− v2
�2

+ ψ̄
�

i /D−mψ
�

ψ+
∑

f

χ̄ f

�

i /∂ −mχ f

�

χ f

−
∑

f

y f

�

(ψ̄X ) f χ f + χ̄ f (X
†ψ) f

�

. (5)

It is thus structurally similar to the reduced standard model (1), except that now tree-level
masses for the fermions are allowed for the different fermion species. This theory obeys the
same symmetries which we discussed for the standard model in Sec. 2, i.e., an SU(2)w gauge
symmetry, a global SU(2)c symmetry of the scalar field if y f = 0, as well as an SU(2)f flavor
symmetry if mχ1

= mχ2
and y f = 0. Except for the additional possibility to break the flavor

symmetry by setting mχ1
6= mχ2

, the explicit symmetry breaking patterns are the same as in
the standard model if we allow for nonvanishing Yukawa couplings or a BEH mechanism via
gauge fixing. In the limit of mψ = mχ f

= 0 an additional discrete chiral symmetry

ψ→ eiπ2 γ5ψ, χ f = eiπ2 γ5χ f , X →−X , (6)

emerges, with γ5 = iγ0γ1γ2γ3. As the tree-level masses do not interfere with the FMS mech-
anism and substantially reduce computing efforts in the lattice simulations, we will consider
only finite tree-level masses, and thus this symmetry will be explicitly broken although such
terms are forbidden within the standard model.

6

https://scipost.org
https://scipost.org/SciPostPhys.10.3.062


SciPost Phys. 10, 062 (2021)

The physical spectrum contains once more the bound state

Ψ = X †ψ (7)

rather than the gauge-dependent ψ. It is again a doublet under the global SU(2)c, and what
has been discussed in the previous section for the standard model on diagonal flavor symmetry
for y f 6= 0 applies here as well. Thus, the theory effectively contains the two vectorial neutrino-
like operators Ψ1 and χ1 as well as the two vectorial electron-like operators Ψ2 and χ2 in the
fermionic sector.

3.2 Elementary spectrum

3.2.1 Tree-level

Switching now the BEH effect on leads to a somewhat different behavior as in the standard
model. Rather than to directly obtain two Dirac particles with separate masses, a non-diagonal
mass matrix arises for four Dirac fermions due to the aforementioned doubling of degrees of
freedom. Introducing a vector (ψ χ1 χ2)T, the mass matrix reads

M =









mψ 0 vp
2

y1 0
0 mψ 0 vp

2
y2

vp
2

y1 0 mχ1
0

0 vp
2

y2 0 mχ2









. (8)

Solving the associated eigenvalue problem leads to four different mass values

M±f =
mχ f

+mψ

2
±

1
2

Ç

(mχ f
−mψ)2 + 2v2 y2

f . (9)

With the five available parameters of the fermion sector, it is possible to form all desired mass
values. That these masses do not correspond to the flavors of χ and ψ is due to the mixing of
ψ1 and χ1 as well as ψ2 and χ2 caused by the BEH mechanism and the Yukawa couplings. As
usual, the corresponding mass eigenstates can be obtained by suitable rotations in field space
where we have two different mixing angels θ f for the two flavors/components of χ f and ψ f .

�

ζ+f
ζ−f

�

=

�

cosθ f sinθ f
− sinθ f cosθ f

��

ψ f
χ f

�

,

1
sin(2θ f )

=

√

√

√

√1+
(mψ −mχ f

)2

2y2
f v2

, (10)

where ζ±f have mass M±f .
For the present purpose, we select a particular case to reduce the dimensionality of the

phase diagram. We set mχ f
= mψ = m and y f = y , and thus reduce the parameter space to

two. Then the effective flavor symmetry SU(2)df is unbroken, and the fermion fields arrange
in two doublets with masses

M± = m±
yv
p

2
. (11)

In this particular case, the mass eigenstates are obtained from the charge eigenstates via

ζ± =
1
p

2
(χ ±ψ), (12)

where χ = (χ1,χ2)T.
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3.2.2 Leading-order quantum corrections

However, beyond tree-level, the situation changes slightly. While the relations mχ1
= mχ2

≡ mχ
and y1 = y2 are protected by the diagonal flavor symmetry, the relation mψ = mχ is not. As
the gauged and ungauged fermion flavors couple in different ways to the weak gauge bosons,
this leads to a splitting of both mass terms once quantum fluctuations are considered. At the
one-loop level, we have

m(1)
ψ
= m(1+ cy y2 + cWαW),

m(1)χ = m(1+ cy y2), (13)

where cy and cW are dimensionless constants resulting from one-loop integrals with an internal

fermion line as well as an internal scalar or gauge boson line, respectively. Further, αW =
g2

4π
with g the weak gauge coupling.

Including these one-loop corrections for the mass terms, we obtain for the eigenvalues of
the fermion mass matrix

M± =
m(1)
ψ
+m(1)χ
2

±
1
2

s

�

m(1)
ψ
−m(1)χ

�2
+ 2y2v2

= m
�

1+ cy y2 +
cW

2
αW

�

±
1
2

q

c2
Wα

2
Wm2 + 2v2 y2. (14)

Here, we have neglected one-loop corrections to the Yukawa coupling. These are stronger
suppressed in the weak coupling regime as they are ∼yαW and ∼y3.

As a consequence, the mixing at leading-order (12) will also change. The mixing an-
gle θ that translates the doublets in the weak charge eigenstates into the mass eigenstates,
ζ+ =ψ cosθ +χ sinθ and ζ− = χ cosθ −ψ sinθ reads at one-loop order,

1
sin(2θ )

=

√

√

√

1+
c2
Wα

2
Wm2

2y2v2
. (15)

Thus, the maximal mixing of ψ and χ in the degenerated case mψ = mχ will be altered. In
particular, θ becomes small if either y is small or αW is large causing a larger split mψ −mχ .

3.3 FMS prediction

The FMS mechanism can be applied in this theory in the same way as in the standard model
discussed in section 2. In the bosonic sector this leads to the same results. It gets more
interesting for the hybrid Ψ. In analogy to (3), the FMS mechanism yields

Ψ = X †ψ=
v
p

2

�

ψ1
ψ2

�

+O(η).

Therefore, the Ψ bound-state can be mapped on the gauge-dependent elementary fermion ψ.
This implies that Ψ is not a mass eigenstate of the gauge-invariant spectrum as ψ is a linear
superposition of ζ± and we expect two poles at M± for 〈ΨΨ̄〉. Of course, gauge-invariant mass
eigenstates can be constructed from Ψ and χ via a suitable rotation in field space as in the
elementary case. For this purpose, a full analysis of the correlation matrix is required which
has to include cross-correlators of the form 〈Ψ χ̄〉 and 〈χ Ψ̄〉 and their corresponding FMS ex-
pansions. Treating all FMS expanded terms perturbatively, the FMS mechanism predicts that
the mixing of χ and Ψ is given by the mixing of χ and ψ. This can be most easily seen by
choosing on-shell renormalization conditions for the n-point functions containing elementary
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fields and composite operator insertions following the lines of Ref [5]. In this case it can be
shown that the poles and their residues of the gauge-invariant correlators coincide with their
gauge-dependent counter parts. Of course, this is a perturbative statement and nonperturba-
tive bound state effects might alter this behavior. However, we do not expect strong deviations
in the weak coupling regime.

4 Lattice Wilson-Yukawa setup

4.1 Dirac operator

In order to discuss the discretization4 of the theory which we described in section 3.1 we
rewrite the fermionic part of the action as [30] 5

�

ψ̄ χ̄
�

D

�

ψ

χ

�

=
�

ψ̄ χ̄
�

�

Dψ̄ψ Dψ̄χ

Dχ̄ψ Dχ̄χ

��

ψ

χ

�

, (16)

with

Dψ̄ψi j =
�

i /∂ −mψ
�

δi j − g γµAa
µT a

i j ,

Dχ̄χf f ′ = i /∂ δ f f ′ −mχ1
δ f 1δ1 f ′ −mχ2

δ f 2δ2 f ′ ,

Dψ̄χi f = −y1X i1δ1 f − y2(X
†)2iδ2 f ,

Dχ̄ψf j = (D
ψ̄χ)†j f ,

and thus in a block-diagonal form in which the interaction with the Higgs field through the
Yukawa interaction explicitly appears in the off-diagonal parts.

To obtain a lattice version, the standard discretization of the bosonic sector is used [30,
33]. For the fermionic action, we give for future reference the most general version, and only
specialize afterwards to our case of degenerate parameters. The first diagonal block has then
been implemented as a standard SU(2) Wilson-Dirac operator [34]

Dψ̄ψ(x |y)i j = 1δi jδx y −κψ
±4
∑

µ=±1

(1− γµ)Uµ(x)i j δx+µ̂,y , (17)

where Uµ(x) are the links, which satisfy U−µ(x) = Uµ(x − µ̂)† and µ̂ are unit vectors in the di-
rection µ. With this notation, we have also the relation between the parameters κψ =

1
2(mψ+4)

for the gauged fermion. For the γ matrices we used standard chiral Euclidean ones [34].
The second diagonal block has been implemented as a free Wilson-Dirac operator

Dχ̄χ(x |y) f f ′ = 1δ f f ′δx y −
�

κχ1
δ f 1δ1 f ′ +κχ2

δ f 2δ2 f ′
�

±4
∑

µ=±1

(1− γµ)δx+µ̂,y , (18)

where κχ f
= 1

2(mχ f
+4) are the two hopping parameters for the ungauged fermions.

The third and the fourth block are the Yukawa couplings between the fermions and the
Higgs. Due to the Euclidean spacetime they obtain an sign factor, but remain otherwise close

4From here on all expressions are in lattice notation.
5Note that gauge-Higgs-fermion systems without Yukawa interaction have also been investigated on the lattice

[31,32].
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Table 2: Parameters of the quenched configurations as well as their physical char-
acterization. Quantities without explicit uncertainties have a statistical error below
1%. The scale was set by fixing the mass of the physical W/Z boson, the custodial
vector triplet, to m1−3

= 80.375 GeV. m0+0
is the mass of the scalar bound state tr(X †X )

corresponding to he Higgs boson of our toy model. The running coupling, and thus
the vacuum expectation value, are in the miniMOM scheme [8,37] evaluated at 200
GeV. The results are from the largest volumes employed here, 244.

# β κ λ a−1 [GeV] m0+0
[GeV] αW(200 GeV) v(200 GeV) =

m1−3p
παW

[GeV]
1 2.7984 0.2954 1.328 384 118(9) 0.544 39
2 2.7984 0.2978 1.317 326 129(12) 0.495 64
3 3.9 0.2679 1 509 116(19) 0.140 121
4 5.082 0.249 0.7 636 123(19) 0.170 110
5 5.082 0.2552 0.7 427 131(5) 0.0794 161

to the continuum form

Dψ̄χi f ′ (x |y) = δx y1
�

Y1X i1δ1 f + Y2X †
i2δ2 f

�

,

Dχ̄ψf ′ i (x |y) = Dψ̄χ†
i f ′ (x |y). (19)

The combined lattice operator is called Wilson-Yukawa operator [24–27].
In the following, we will set κF = κψ = κχ1

= κχ2
and Y = Y1 = Y2. We will furthermore

quench the fermionic sector, as will be discussed in more detail in section 4.3. Note that
because of the rescaling of the Higgs field and the fermion fields with their own hopping
parameters the lattice Yukawa couplings obey Yf = y f

p
κκχ f

.

4.2 Inverter

The inverter used in our work is based on the BiCGstab method as discussed in [35]. In par-
ticular, our implementation is based on the application of the full operator on a vector v(x)α,i
which acts as a fermionic source. The index α is a Dirac index, while the index i indicates the
fermionic species, and runs over both the gauge components of ψ and the flavor components
of χ, and thus over the four-dimensional Dirac operator (16). The implementation has been
checked by calculating the trace of the full operator on a small volume, in the free case with a
static Higgs field, and by comparing it with the result from an algebraic computation software.
Parallelization has also been enabled for the algorithm, with the openMP API, and tested with
respect to the serial results.

For our spectroscopical purposes, we used a single point source located in the origin. This
strategy required 16 inversions, given the 4 Dirac indices and the 4 different fermionic species
included in the multifield. This point source gave sufficient statistical accuracy for our pur-
poses.

4.3 Phase diagram and simulation points

The computational costs for the full theory are, as generically for theories with dynamical
fermions, very high. This can already be gathered from simulations without the ungauged
fermions in the QCD-like domain [36]. However, as in the standard model, we do not expect a
substantial influence of the fermions on the FMS mechanism regarding the mass spectrum of
the theory. Thus, we will investigate a quenched scenario in the following for a first qualitative
check.
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We thus calculate the fermionic spectrum on configurations with dynamical gauge and
Higgs fields created using the methods of [8, 33]. This includes a subset of configurations
fixed to minimal Landau-’t Hooft gauge, for which the algorithms of [8,12] were used. These
were necessary to determine the propagator of the gauge-dependent field ψ. Note that this
propagator has much less statistical fluctuations, and we therefore needed only O(50) con-
figurations for it, while using O(1000) configurations for the gauge-invariant quantities. As
gauge-fixing is very expensive, this leads to roughly the same total computing costs for both
types of configurations. However, ultimately the computing time was dominated by the cal-
culation of the fermionic observables below. We list the parameter sets in table 2. They were
selected for being suitably similar to the standard-model case in the bosonic sector at either
weak coupling or somewhat stronger coupling at different discretizations. However, as will be
seen, all parameter sets show essentially the same behavior.

The fermionic sector of the theory described in section 3 has still 5 parameters, three
hopping parameters κψ, κχ f

, and the two Yukawa couplings Y1 and Y2. As noted these are
reduced to two by κF = κψ = κχ f

and Y = Y1 = Y2, leaving only κF and Y . It remains to
find values for these parameters such that the physics is the one expected for (heavy vectorial)
leptons, while at the same time being accessible with available computational resources.

For this purpose we investigated a wide set of κF and Y values. We found that the time
needed for inversion increased substantially for κF ¦ 1/8, and thus for negative tree-level
masses. At the same time, for 0 < κF � 1/8 the observed masses in the fermionic sector
became very heavy, above one in lattice units. Thus, as a compromise we selected κF = 0.11
and κF = 0.12 as simulation points. For the Yukawa couplings we choose Y = 0.01, Y = 0.05,
and Y = 0.1. Again, for larger Yukawa couplings the inversion time became very long. This
is to be expected, as the lower mass, according to either (11) or (14), then approaches zero,
which yields high inversion times of the Dirac operator. At smaller Yukawa couplings their
impact on the masses became too weak to be detectable within our precision. Note that the
theory is symmetric under a change of sign of the Yukawa couplings and the Higgs field X ,
and thus we can keep with positive values for the couplings.

To keep finite-volume effects under control, we did simulations for 5 different lattice vol-
umes, 84, 124, 164, 204, and 244. However, we find that even for the finest lattices the infinite-
volume behavior has been reached, within available statistical uncertainty, essentially at 204.
This is discussed in appendix A in detail, alongside other lattice artifacts. Thus, these choices
are sufficient for our purposes. Hence, in total 150 different sets of lattice parameters have
been investigated, all in all a little more than 50.000 configurations. The dominant statisti-
cal uncertainty stems from the hybrid Ψ bound state, probably due to the strongly fluctuat-
ing [8,33] Higgs field component.

5 Spectroscopic observables

Regarding spectroscopy we are interested in the two point functions, which can be accessed
from the inverted Wilson-Yukawa operator. We are interested in the bound state Ψ, the gauge-
invariant fermion χ, and the gauge-dependent fermion ψ. Strictly speaking Ψ and χ have
the same quantum numbers, and thus we are looking in principle for the ground state and the
first non-trivial excited state. As the excited state could potentially decay, this would require in
principle a Lüscher-type analysis. However, as we will see, our results show agreement with the
analytical investigation of section 3, implying that the corresponding states are almost stable.
This is confirmed in a few cases, where indeed decays and scattering states are kinematically
forbidden, and thus we have two stable fermionic states in the physical spectrum. Therefore,
a straightforward discretization of the desired propagators of ψ, χ, and Ψ turns out to be
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sufficient for the purposes at hand.
In the gauge-invariant sector, the full cross-correlation matrix for the two states Ψ and χ

for the propagator is obtained from the Dirac operator (16) and the bound state structure (7)
in a straightforward way by Wick contraction [34],

MGI(x |y) =
�

X †(x)(D−1)ψ̄ψ(x |y)X (y) (D
−1)ψ̄χ(x |y)X (y)

X †(x)(D−1)χ̄ψ(x |y) (D−1)χ̄χ(x |y)

�

. (20)

Here we used the fermionic species as subscripts to distinguish the various sections of the
inverted operator. They should not be confused with the elements of the Dirac operator in
(16). All of the elements of the propagator matrix (20) have a full Dirac matrix structure. For
spectroscopy we use the trace in the Dirac structure.

Thus, we get in the off-diagonal blocks the possibility for mixing between the bound states
and the elementary fermions, just as with left-handed and right-handed particles in the stan-
dard model [4]. Albeit a full variational analysis of (20) reveals that substantially more statis-
tics is required for quantitative precision, we will already get important insights from it. Thus
we use the diagonal two propagators individually as well as the eigenvalues from the varia-
tional analysis of the full matrix below.

In addition to the gauge-invariant observables we also consider the gauge-dependent ψ.
In order to obtain a non-zero result for it, it is necessary to invert the operator only on gauge
and scalar configurations in a fixed gauge. Conceptually, we have to investigate the cross-
correlation matrix for the elementary fermion fields, i.e.,

MGF(x |y) =
�

(D−1)ψ̄ψ(x |y) (D
−1)ψ̄χ(x |y)

(D−1)χ̄ψ(x |y) (D−1)χ̄χ(x |y)

�

, (21)

and compare the results to Eq. (20) to test the FMS mechanism. Of course, matrix (21) is only
meaningful within a gauge-fixed setting as otherwise all elements except (D−1)χ̄χ vanish. Once
more, a full variational analysis is expensive and requires more statistics as we have currently
available. Thus, we restrict ourselves again on the diagonal elements as they will contain for
our purpose all relevant information about the spectrum. As the pure χ-field propagator 〈χχ̄〉
is gauge-invariant, it does not matter if we calculate it on a gauge-fixed or non-gauge-fixed
configuration. Therefore, we use the results of the unfixed configurations for this element and
focus in the gauge fixed set up on the Dirac trace of the (D−1)ψ̄ψ component.

Note that on our gauge-fixed configurations, where the gauge symmetry and the global
symmetry are broken to a common subgroup, it is possible to also define an extended propa-
gator matrix

Mext
GF (x |y) =







X †(x)D−1
ψ̄ψ
(x |y)X (y) D−1

ψ̄χ
(x |y)X (y) D−1

ψ̄ψ
(x |y)X (y)

X †(x)D−1
χ̄ψ
(x |y) D−1

χ̄χ(x |y) D−1
ψ̄χ
(x |y)

X †(x)D−1
ψ̄ψ
(x |y) D−1

χ̄ψ
(x |y) D−1

ψ̄ψ
(x |y)






, (22)

containing the standard propagators of the bound state Ψ, the χ field, and the ψ field on the
main diagonal. The off-diagonal elements describe the (gauge-dependent) overlap of these op-
erators. In principle, one could perform a variational analysis on the matrix defined in Eq. (22)
to obtain a comprehensive understanding of the fermion sector of this model. However, we are
here interested in a first qualitative comparison of the FMS mechanism for fermions. Hence,
we will separately analyze (20) and the (D−1)ψ̄ψ component of (21) which is sufficient for our
task.

As usual, we will perform a zero-momentum projection, which is executed on the inverted
matrix elements

M(t) =
∑

~x∈Λ~x

M(0, ~0|t, ~x) . (23)
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We define the effective masses using the quantity

m(t) = −
1

t − Nt
2

arcosh
�

M(t)
M(Nt/2)

�

. (24)

In this notation, we indicate both the diagonal elements of M , so that we have

m(i)(t) = −
1

t − Nt
2

arcosh
�

Mii(t)
Mii(Nt/2)

�

, (25)

but also the masses obtained from the eigenvalues of M , which are also called the principal
correlators

mλ ,i(t) = −
1

t − Nt
2

arcosh
�

λi(t)
λi(Nt/2)

�

. (26)

The correlators M(t) and λi(t) show a sum-of-coshs behavior in our finite volumes. As will
be seen the correlators contain multiple levels, and thus fits require multiple cosh terms. As a
consequence, the effective masses (24) are not perfect straight lines. Furthermore, downward
fluctuations in M(Nt/2) yield an upward trend in the effective mass (24). Using the alternative
definition

m(t) = ln
M(t)

M(t + 1)
, (27)

which needs to be strictly monotonous decreasing, we confirmed that this is for all physical
observables just an artifact of a, probably slightly underestimated, statistical error.

6 Spectroscopic results

6.1 Impact of quenching on the FMS predictions

For the spectroscopic results, we have in principle clear predictions from the analytical investi-
gations in sections 3.2.2 and 3.3. Nonetheless, a few more comments are in order. On the one
hand, lattice simulations will definitely capture more information about the system than the
basic one-loop approximations done in Sec. 3. On the other hand, the analytical predictions
are derived for fully dynamical fermions while we use a quenched scenario for the simula-
tions in the following to gain a first qualitative investigation of the spectrum. For an actual
comparison, we have to either do the FMS analysis within a quenched setting or to perform
unquenched simulations. The latter is clearly beyond the scope of this work due to the high
computational costs. The former option is challenging as well because a direct translation of
the quenched approximation into a continuum formulation is involved.

As a first heuristic step into this direction, we redo our analytic calculation by assuming
that the mass of the fermions is much larger than any momentum scale for internal fermion
lines. This causes an effective suppression of fermion fluctuations that will properly reproduce
the quenching effects in the bosonic sector of the model. However, the situation is less clear
for fermionic observables. We find that the mixing effect which exists for dynamical fermions
is not captured by the quenched approximation. This manifests in the pole structure of the
propagators 〈χχ̄〉 and 〈ψψ̄〉. For the dynamical case, we have two distinct poles which are
present in both propagators. Within our handwaving modeling of the quenched approxima-
tion we find that each propagator contains only one pole given by the (quenched) quantum
corrected versions of mψ and mχ for 〈ψψ̄〉 and 〈χχ̄〉, respectively. In the following, we will
denote these infrared mass terms by Mψ and Mχ to avoid confusion with the bare mass pa-
rameters. We will obtain similar results from the lattice investigations in a moment. Thus, our
analysis seems to be consistent from that perspective.
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Figure 1: Example of the effective mass from the gauge-invariant propagator of the
χ fermion for system 4 on a 204 lattice at κF = 0.12 and Y = 0.01. The fit stems from
a two-cosh fit, of which the lighter is also shown alone to emphasize its dominance
at long times. Errors are smaller than the symbol size. The top-panel shows the
effective mass as defined in (24), while the lower panel shows the effective mass as
defined in (27). Note the different scale in both plots.

However, at this point we would like to mention that our modeling of the quenching has
some ambiguities when we resum the propagators. For instance, we obtain not only simple
pole terms ∼1/(p2 −m2) but also terms of the form ∼1/(p2 −m2)2 as we treat internal and
external fermion lines differently. Of course, more sophisticated methods are available to
model the quenching, e.g., via introducing additional ghost fields that precisely cancel the
fermion determinant which was used in the context of quenched chiral perturbation theory
[38–42]. However, the influence of these ghost fields will manifest only within higher loop
terms in the fermion propagators when applied to our model and also suffer from unitarity
issues.

6.2 Lattice results

In the following, we will go carefully through each of our lattice findings. We will exclusively
use the infinite-volume extrapolated results, which we obtain along the lines described in
appendix A. However, the results on the 204 lattices are already compatible with the infinite-
volume results within statistical errors, so this is of little actual concern.

The first interesting question is the gauge-invariant ground state. We find the following
pattern. Performing a variational analysis of the effective masses from the gauge-invariant
sector, i. e. (20), we find that the lowest level is the same as would be obtained directly from
investigating the lower diagonal element, i. e. the correlator of the ungauged fermion χ alone.
This ungauged fermion correlator shows very little noise, and can be very well captured by a
double-cosh fit, as shown for an example in figure 1. As discussed in Sec. 5 a very slight upward
trend is seen in the effective mass definition (24) not seen in the definition (27), indicating
that this is likely a slightly underestimated statistical error.

We therefore conclude that this operator has (essentially) perfect overlap with the ground-
state and is the physical lightest particle in this quantum number channel. Because it is a
fermionic state, it cannot decay into any of the bosonic particles, and is absolutely stable.
Note that in this, and all other channels, the correlator at t/a ® 2 is dominated by a mode
which has a mass of order π, and thus is a lattice artifact, which will not be considered further.

The next object is the gauge-fixed propagator ofψ, (21). Due to the gauge-dependency [8]
we find a (very) slight non-monotonous behavior in the correlator at short times. This is seen
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Figure 2: Example of the effective mass from the gauge-fixed propagator (21) for
system 4 on a 204 lattice at κF = 0.12 and Y = 0.01. The fit stems from a two-cosh
fit, of which the lower mass is also shown alone, to emphasis the non-monotonous
behavior at short times. Errors are smaller than the symbol size. The top-panel shows
the effective mass as defined in (24), while the lower panel shows the effective mass
as defined in (27). Note the different scale in both plots.

for the effective mass in both definitions, (24) and (27), and can therefore not be attributed
to an underestimation of the correlator at the longest time extent. It signals clearly that this
gauge-dependent particle is unphysical. The correlator nonetheless exhibits at late times a
good plateau, which is very well described by a single cosh term. This is illustrated in figure 2
for an example. We use this plateau to determine the mass of the gauged fermion. Thus, we
conclude that there is only a single state in this channel as well.

The fact that the elementary fields are only dominated by a single mass state is in contra-
diction to the results of Sec. 3 but as outlined in Sec. 6.1, we trace back this circumstance to
the quenching. We find further evidence for this conclusion by the following points. First, we
checked the mixed correlators on the diagonal terms of Eq. (21) which describe the overlap
of ψ and χ on gauge-fixed configurations. We indeed find results that are compatible with
zero at long times, see Fig. 3.6 Second, we find that the mass Mψ extracted from 〈ψψ̄〉 is
substantially larger than the mass Mχ . This also fits into the picture as the mass term for ψ
gets additional corrections from gauge boson fluctuations which are not present at one-loop
order for Mχ , cf. Eq. (13).

The results for the two masses Mψ and Mχ are listed in table 3. We find that Mχ is ef-
fectively independent of the gauge coupling and varies only with the Yukawa coupling and
indirectly with the parameters of the scalar sector. By contrast, Mψ depends on the gauge cou-
pling and the ratio Mψ/Mχ tends to be smaller with smaller gauge coupling which is expected.
The masses are described almost always within 1σ statistical error by

Mχ = am+ rχY 2, (28)

Mψ = am+ rW + rψY 2, (29)

a form motivated by the Taylor expansion at small y of (13). We provide the fit parameters
in table 4. Though in principle this can be translated into the form (13), the values should
not be identified with the parameters there, as the present ones are the quenched lattice ones.

6Such a demixing is expected if a random ungauged flavor transformation is applied. Because in the quenched
case the two global symmetries are independent at the level of the path integral, and not locked due to the inter-
action, this is a possible explanation. Conversely, the masses are not affected, and are thus faithfully reproduced.
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Table 3: The infinite-volume extrapolated results for the ground-state mass in the
gauge-invariant and gauge-dependent channel, which are identified with the masses
of the ψ and χ fermions, see text. The value of r from (30) is given for the 204

lattice, see also appendix A.

# κF Y aMχ aMψ r
1 0.11 0.01 0.421+0.001

−0.008 0.817(3) 5.7
1 0.11 0.05 0.407(6) 0.77(3) 0.5
1 0.11 0.1 0.353(9) 0.54(1) 0.3
1 0.12 0.01 0.137(1) 0.58(1) 2.1
1 0.12 0.05 0.111(1) 0.45(1) 0.2
1 0.12 0.1 0.044(5) 0.21(1) 0.2
2 0.11 0.01 0.422(3) 0.810(4) 6.1
2 0.11 0.05 0.406(3) 0.75(2) 0.8
2 0.11 0.1 0.352(2) 0.62(3) 0.6
2 0.12 0.01 0.136(1) 0.583(4) 2.6
2 0.12 0.05 0.103(1) 0.49(2) 0.4
2 0.12 0.1 0.032(2) 0.17(1) 0.3
3 0.11 0.01 0.422+0.001

−0.006 0.674(3) 9.2
3 0.11 0.05 0.407(5) 0.645(2) 0.7
3 0.11 0.1 0.357(3) 0.574(4) 0.2
3 0.12 0.01 0.136(1) 0.426(5) 20.0
3 0.12 0.05 0.112+0.004

−0.002 0.385(2) 0.4
3 0.12 0.1 0.043(1) 0.24(1) 0.1
4 0.11 0.01 0.422(1) 0.604(2) 17.9
4 0.11 0.05 0.402(2) 0.54(1) 1.2
4 0.11 0.10 0.331(7) 0.43(1) 0.3
4 0.12 0.01 0.136(3) 0.346(2) 767.0
4 0.12 0.05 0.098(1) 0.27(2) 0.8
4 0.12 0.10 0.036(9) 0.09(1) 0.2
5 0.11 0.01 0.422(5) 0.599(2) 10.0
5 0.11 0.05 0.39(1) 0.51(1) 2.0
5 0.11 0.1 0.305(5) 0.35(1) 0.6
5 0.12 0.01 0.126(4) 0.347(6) 315.9
5 0.12 0.05 0.086(2) 0.22(1) 1.3
5 0.12 0.1 0.03(2) 0.1+0.09

−0.05 0.1

Table 4: Fit parameters for Mψ/χ according to the one-loop motivated fit form (28-
29). Note that the fit is done in the lattice Yukawa coupling Y and not the continuum
y .

# κ am rW rχ rψ
1 0.11 0.423(8) 0.41(2) -6.9(7) -28.6(2)
1 0.12 0.1363(5) 0.43(2) -9.3(5) -36.1(1)
2 0.11 0.423(4) 0.38(1) -7.1(2) -19(3)
2 0.12 0.1334(9) 0.46(2) -10.3(2) -41.9(1)
3 0.11 0.423(6) 0.250(3) -6.5(3) -9.9(2)
3 0.12 0.136(2) 0.294(4) -9.3(1) -18.9(7)
4 0.11 0.424(1) 0.172(6) -9.3(7) -16.9(7)
4 0.12 0.131(2) 0.21(1) -9.7(8) -25.4(4)
5 0.11 0.421(8) 0.167(6) -11.7(2) -24.2(5)
5 0.12 0.119(2) 0.197(2) -9(2) -22(9)

16

https://scipost.org
https://scipost.org/SciPostPhys.10.3.062


SciPost Phys. 10, 062 (2021)

0 2 4 6 8 10

t/a

−1

0

1

2

3

a
3
C
(t
)

Gauge-fixed ψχ propagator

Ψ Parameter set 4, N=20, κF = 0.11, Y = 0.05

Figure 3: Example for the nonoverlap of ψ and χ for system 4 on a 204 lattice at
κF = 0.11 and Y = 0.05.

Further, the fits have been performed in the lattice Yukawa coupling. The actual Yukawa
couplings need to be rescaled by

p
κκF ≈ 0.06 on average, giving again reasonable numbers.

Finally, we have to analyze the properties of the bound state operator Ψ. This turns out
to be quite complicated, especially as it is substantially more noisy than the other two states.
However, for the smallest and largest tree-level Yukawa couplings the correlator shows a mass,
which is essentially the one of the ψ channel and the χ channel, respectively. This is also
confirmed by the variational analysis of (20), though the errors are considerably larger. This
is illustrated in figure 4. We observe again the slightly unphysical behavior of the effective
mass of the gauge-dependent ψ. Thus the agreement to the physical bound state cannot be
exact, but the dominance of the would-be mass is visible in the relevant domain. This subtle
comparison of spectral information between physical and unphysical states within the FMS
mechanism is discussed in more detail in [5]. We also observe that there is a small admixture
of a lighter state at small Yukawa coupling influencing the composite state. Thus, at very late
times this level would, of course, dominate.

The origin of this level becomes clear when looking at the intermediate Yukawa couplings,
where the situation is different. A naive analysis yields a mass in between the two other
channels, with relatively larger errors. However, close scrutiny actually yields that there is a
systematic trend of the correlator. The puzzling situation can be resolved by assuming that
the bound state correlator is determined by a combination of the two elementary propagators.
Thus, a single-parameter fit of type

C(t)
C(Nt/2)

=
1

1+ r
[cosh(Mχ(t − Nt/2)) + r cosh(Mψ(t − Nt/2))], (30)

with r to be fitted, is performed for late times. This yields a much better agreement. This is
also supported by the variational analysis, which indeed finds as second eigenvalue only the
mass value Mψ in the same channel, albeit at substantially larger errors. Reiterating the same
procedure also for the other two Yukawa couplings yields that also in that case the correlator
is well-described by (30), though extremely strongly dominated by either of the two terms.7

7In addition, we observed non-negligible matrix elements between the different flavor states of Ψ and χ, rather
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Y = 0.05, using the infinite-volume extrapolated masses from table 3.

How this is realized is shown for an example setup in figure 5, and the values for r are also
listed in table 3. Note that for many systems the mass difference of both states are less than
the mass of the scalar singlet or twice the mass of the vector triplet, and thus the heavier state
cannot decay into the ground state, and it is thus stable.

There is a subtlety with determining r. The effective mass for the bound state is substan-
tially more noisy than for the elementary fermions. However, (30) limits the upward fluctua-
tions of the effective mass to the error of the larger mass Mψ and the downward fluctuations
likewise to the error of the smaller mass Mχ . Thus, any attempt to find an error band for r
would require to allow for relative errors of the input masses in (30) that are larger, and of the
same relative size as the one from the bound state correlator itself, and thus than actually are
observed and listed in table 2. This would be artificial. The situation is further complicated
because of the closeness of the masses Mψ/χ . We therefore quote only an optimal value for
r by varying it such that the fit (30) goes best through the effective mass error range of the
bound state, as shown in figure 5.

That our results are indeed compatible with the fact that the bound state operator Ψ is a

than the same flavor states as obtained at tree-level in (10). This indicates the presence of strong mixing effects
due to the Yukawa interactions with the fluctuation mode of the Higgs.

18

https://scipost.org
https://scipost.org/SciPostPhys.10.3.062


SciPost Phys. 10, 062 (2021)

mixture of two mass states that are described by ψ and χ is consistent with the FMS picture
although the quenched analysis makes the interpretation less obvious. As discussed in Sec. 3.3,
the FMS mechanism projects the on-shell properties of Ψ onto the the on-shell properties
of ψ for a model with dynamical fermions. Thus, Ψ has overlap with two mass eigenstates
and the mixing angle of Ψ and χ is the same as the mixing angle between ψ and χ at least
in a perturbative set up. As we have accumulated evidence that the quenched calculation
does not resolve the mixing between the elementary states, one would naively conjecture that
the bound state is only described by Mψ. However, a quenched (continuum) FMS analysis
would actually be necessary to make a decisive statement. As a quenched continuum analysis
is already involved for the elementary fields, a detailed analysis for the FMS mechanism is
beyond the scope of this work. Here, we conjecture that the FMS mapping of the mixing of
states gets altered as we expect a nontrivial modification of the higher-order FMS terms due
to the quenching. In particular the higher-order terms allow for intermediate states that are
described by Mχ and Mψ causing the observed overlap with both states. The relative ratio
between both states is given by the strength of the Yukawa coupling which is confirmed by our
data.8

We can therefore conclude, that our results support that the physical spectrum is given in
terms of the χ fermion and a bound state of the ψ fermion and the scalar field X . The masses
of these states are correctly predicted by the FMS mechanism to be the ones of the elementary
fermions, both gauge-invariant and gauge-dependent.

Eventually, the physical spectra are shown as a function of the fermionic parameters in fig-
ure 6. It is consistent with the FMS prediction in all channels, both bosonic [8], and fermionic,
for all parameters. It is also visible that a suitable choice of parameters allows to have both
very heavy and very light fermions in the spectrum. In fact, by suitably tuning κF and Y , it
appears there would be no obstacle in tuning through the full range of masses from the lightest
neutrino to the top quark, and even beyond.

7 Conclusions

We have collected evidence that the FMS mechanism is also working in the fermionic sector
of gauge-Higgs theories, as anticipated already 40 years ago in [2,3]. Especially, we find that
the physical spectrum is indeed a mix of ungauged (would-be right-handed) fermions and
(would-be left-handed) fermion-Higgs bound states.

While we have yet investigated a quenched, vectorial system, there is no conceptual differ-
ence to the one in the standard model [2–4, 15], or even beyond where also gauge-invariant
fermion-Higgs bound states are expected [15,43,44]. Furthermore, even though this covered
only lepton-like states, the qualitative mechanism is the same also for hadrons [4,15,17]. Of
course, this is no guarantee that the mechanism works indeed in all these cases. Ultimate
proof will require a detailed analysis of these systems. However, there is no obvious reason
that it should not, especially given that the FMS mechanism has passed so far all (lattice)
tests [7,8,12–14] in various theories.

This results should serve as a field theoretical foundation for a treatment of fermions in
theories with BEH effect, which take fully into account the invariance of the observables under
the full gauge group. This includes the standard model. This has far-reaching consequences
for phenomenology, as this substructure could be accessible at future colliders [4], like the
proposed CLIC [45], FCC-ee [46], or ILC [47]. Identifying and measuring this substructure

8The lattice also contains nonperturbative information which might not be present within a perturbative treat-
ment of the FMS mechanism. Only an unquenched analysis could reveal as to whether such effects exists and
might further modify the mixing.
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Figure 6: Spectra for all setups. The bosonic sector is fixed, and plotted to the left,
while the two states identified in the fermion channel, each being a doublet, are
plotted for the different parameters to the right.

easily forms an experimental program in itself. Exploiting the Higgs component also allows
to increase the reach for new physics searches which couple to the Higgs component directly,
like dark matter through Higgs portals. The results here motivate strongly an experimental
program aimed at these effects. Moreover, as it is uniquely tied to the field-theoretical structure
of the standard model, it is a guaranteed discovery: Either this effect is found, or there is
something very different at work, probably new physics.

A natural next possible step, aside from the obvious but expensive unquenching and reduc-
tion of lattice artifacts, is the study of the structure of the Higgs-fermion bound state. Especially
form factors, which already illuminated the substructure and size of the vector bosons [16],
are an obvious next goal. This should give a first idea of anomalous couplings to the Z , as well
as the weak radius of the fermion-Higgs bound state9, both of which are highly interesting
questions at future lepton colliders [49].

9Note that the electromagnetic radius, which appears to be exceedingly small [48], is likely unaffected by the
bound state structure, as only the constituent elementary charged leptons carry electromagnetic charge.
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(31) is also shown.

There are several possible sources
of lattice artifacts in the present
calculation. Concerning lattice
spacing artifacts, the identifica-
tion of lines-of-constant physics in
the present high-dimensional pa-
rameter space is highly non-trivial
[33]. However, the main text cov-
ers a wide range of lattice spac-
ings for two different cases of weak
and strong gauge coupling, with-
out showing any qualitative depen-
dence, and not even a pronounced
quantitative one, within statistics.
This is consistent with other observ-
ables [8, 13, 16, 33], and appears
to be rather generic for this type
of theory. Though for a detailed
quantitative understanding an ex-
tended investigation of lines of con-
stant physics will be necessary, at
the qualitative level of this work
this is sufficient.

Of course, due to the fact
that Wilson fermions require mass
renormalization [34], it would be
necessary to change the values of
the fermion parameters to keep the
physical masses fixed when mov-
ing along such lines of constant
physics. Even in the present case,
where the unbroken global symme-
try requires some of the parameters to always coincide, this would be a further additional
logistical and computational complication. Fortunately, as for the present purpose it is suffi-
cient to have some values of the masses, this is not necessary. When in a next step a continuum
extrapolation will be attempted, this will change.

In this context the use of Wilson fermions, which break chiral symmetry explicitly [34],
could be problematic. In particular as the mass generation by the BEH effect is, as in the stan-
dard model, dynamic. Hence, similar interference as in QCD may be possible [34]. However,
in the present model theory we use an additional explicit breaking to avoid negative tree-level
masses according to (11). Since the two, quite different, tree-level masses used in the main
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text do not show substantial differences in behavior, we conclude that, as in heavy-quark QCD,
we are still in a region where we this effect is negligible.

The strongest dependence we see are the dependencies on the volumes. Depending on
the lattice parameters, these can be relevant, especially when the comparison of masses of
different states is done as needed here. We therefore use a fitting ansatz [50]

mN = m∞ +
a
N

e−bN , (31)

with the lattice extension N to determine the infinite-volume mass m∞. This is done using
the volumes of 84 to 204, on which the change is largest. The results from the 244 lattices are
then used to confirm the fit result. An example for the finest lattice, and thus most extreme
volume effects, is shown in figure 7. The results confirm that we see already on the 204 lattice
infinite-volume behavior for the masses. In the main text only these infinite-volume masses
have been used10.

The value of r seems to be more dependent on the volume. However, it is visible in figure
7 that the value is substantially dependent on whether the finite-volume masses or the ones
extrapolated to infinite volume are used in the fit (30). There is unfortunately no expected
behavior for it. However, the results slow down quicker than linear in 1/N , and a quadratic
extrapolation suggests a finite value above zero. Nonetheless, even if the value would be
close to zero, or essentially zero, this would only mean that the oscillation effect is strongly
volume-dependent, and eventually wins for the intermediate values of the Yukawa couplings.
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