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Abstract

In this paper we introduce a test for the normality assumption in the sample

selection model. The test is based on a generalization of a semi-nonparametric

maximum likelihood method. In this estimation method, the distribution of the

error terms is approximated by a Hermite series, with normality as a special

case. Because all parameters of the model are estimated both under normality

and in the more general specification, we can test for normality using the likeli-

hood ratio approach. This test has reasonable power as is shown by a simulation

study. Finally, we apply the generalized semi-nonparametric maximum likeli-

hood estimation method and the normality test to a model of car ownership

and car use. The assumption of normal distributed error terms is rejected and

we provide estimates of the sample selection model that are consistent.

Keywords: semi-nonparametric maximum likelihood, density estimation, Her-

mite series, sample selection.

JEL classification: C3, C5, D12, R41.



1 Introduction

Maximum likelihood is the most popular estimation method in micro-econome-

trics. The method yields consistent (in fact, asymptotically efficient) estimators

if the model is specified correctly. However, correct specification may not be

known beforehand. Two major sources of misspecification are incorrect spec-

ification of the functional form of the relationship under study (for example,

omitting exogenous variables or inappropriately assuming linearity) and mis-

specification of the stochastic structure of the model (for example, neglecting

heteroscedasticity or misspecification of the distribution of the random vari-

ables). The maximum likelihood estimator is generally inconsistent in these

cases. In this paper we focus on one particular form of misspecification: mis-

specification of the distribution of the disturbances. We retain the assumption

of correct specification of the functional form of the relationship.

The model we study is the sample selection model introduced by Heck-

man (1979). This type of model accounts for problems which arise because

the outcome of the endogenous variable is observed only for a selective part

of the sample. For example, sample selection models are used to study wage

equations, where the wages of employed workers are observed only. Usually, the

sample selection model is estimated by maximum likelihood, under the assump-

tion that the error term of the regression equation and the error term of the

selection equation follow a bivariate normal distribution. We introduce a formal

test for this normality assumption. The test is derived from a generalization of

the semi-nonparametric maximum likelihood estimation method of Gallant and

Nychka (1987) in which the true distribution of the error terms is approximated

by a Hermite series. Using this method the density of the disturbance terms

is estimated together with all other parameters of the model. The test thus

provides an alternative distribution of the disturbance terms in case normality

is rejected. To examine the power of the normality test we perform a simulation

study.
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An advantage of the semi-nonparametric estimation used in this paper is

that it is of general applicability: it is not specific to one particular econometric

model. The approach taken in this paper can be used to examine the sensitivity

of estimation results to the assumption of normality in other micro-econometric

models where no formal test of normality is available. We will illustrate both

the semi-nonparametric estimation method and the normality test in a model

of car ownership and car use.

The plan of this paper is as follows. Section 2 discusses the sample selec-

tion model. In Section 3 we discuss the semi-nonparametric maximum likeli-

hood method of Gallant and Nychka (1987). A generalization of this estimation

method which naturally leads to a normality test is discussed in Section 4. Sec-

tion 5 discusses an application of the estimation method and the normality test

to the model of car ownership and car use. Finally, Section 6 concludes.

2 Identification and estimation of the sample selec-

tion model

In this section we discuss some identification and estimation issues of the sample

selection model. Sample selection arises in case the outcome of the dependent

variable is only observed for a (nonrandom) part of the sample. This may for

example be caused by selective nonresponse or self-selection of individuals. An

often used application of sample selection models is the estimation of wage

equations (see for example Melenberg and Van Soest, 1993). In this case only

the wages of employed workers are observed, which is a selective subsample of

the whole population.

Let y denote the dependent variable and x a vector of exogenous variables.

The binary variable z indicates whether the outcome of y is observed. For each

individual in the sample the data reveal information on (z, x), but the realization

of y is observed only if z = 1. We are interested in the probability distribution
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of y conditional on x, given by Pr(y|x). Using this distribution function we can
compute the corresponding density function and the expectation of y given x

(if these exist).

As mentioned above the data are not fully informative on Pr(y|x). Condi-
tioning on z, we can write the distribution function as

Pr(y|x) = Pr(y|x, z = 1)Pr(z = 1|x) + Pr(y|x, z = 0)Pr(z = 0|x)

The data identify the selection probability Pr(z = 1|x), the censoring proba-
bility Pr(z = 0|x), and the distribution of outcomes conditional on observing
the outcome Pr(y|x, z = 1). But the data provide no information on the dis-

tribution of counterfactuals Pr(y|x, z = 0) (see for a more extensive overview

Manski, 1989, 1995). Without any additional assumptions it is possible to es-

tablish bounds on Pr(y|x) (see Manski, 1995). Since Pr(y|x, z = 0) lies in the

interval [0, 1] we have

Pr(y|x, z = 1)Pr(z = 1|x) ≤ Pr(y|x) ≤ Pr(y|x, z = 1)Pr(z = 1|x)+Pr(z = 0|x)

The width of this interval is Pr(z = 0|x). In general, less censoring in the data
causes smaller intervals. Note that if no censoring is observed, Pr(z = 0|x)
reduces to 0 and thus Pr(y|x) equals Pr(y|x, z = 1).

Without any prior information or additional assumptions it is not possible to

identify Pr(y|x). In economic literature, an assumption made frequently is that
at least one of the regressors affects the selection probability but not the condi-

tional probability of y (such a regressor is an instrumental variable). Without

such an exclusion restriction identification hinges entirely on the functional form

and distributional assumptions (see Manski, 1989). Exclusion restrictions have

some identifying power as the interval in which Pr(y|x) lies becomes smaller.
However, exclusion restrictions only identify Pr(y|x) in case an instrumental
variable exists that perfectly predicts whether or not y is observed.

The most common used method to ensure identification of the sample se-

lection model is by parameterization of the model. Usually linear specifications
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for both the regression equation and the selection equation are chosen, and

the error terms are supposed to follow a probability distribution that is known

except for certain parameters (see Heckman, 1979). We follow this approach

and we assume to have a random sample of N individuals. For individual i

(i = 1, . . . , N) the regression equation is given by

yi = β′
1x1i + ε1i (1)

However, the variable of interest yi is observed for a nonrandom subsample only.

The selection rule is given by

z∗i = β′
2x2i + ε2i

zi =

{
1 z∗i > 0

0 z∗i ≤ 0
(2)

If the conditional expectation of ε1i given zi = 1 does not equal 0, OLS-

estimation of (1) will not yield consistent estimates for β1.

Let f(·, ·) denote the bivariate density function of εi = (ε1i, ε2i)′. The log-

likelihood function for the sample selection model is

logL(θ) =
N∑

i=1

zi log

(∫ ∞

−β′
2x2i

f(yi − β′
1x1i, ε2)dε2

)

+(1− zi) log

(∫ −β′
2x2i

−∞

∫ ∞

−∞
f(ε1, ε2)dε1dε2

)
(3)

If one is willing to assume that f(·, ·) is the bivariate normal density function,
an alternative to maximum likelihood is using Heckman’s two-stage procedure

to estimate the parameters (see Heckman, 1979). However, the estimates are

rather sensitive to the distributional assumption (see for an overview Manski,

1989). So, one would like to test this distributional assumption or estimate the

model under a less restrictive distributional assumption.
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3 Semi-nonparametric maximum likelihood estima-

tion

As an alternative to maximum likelihood estimation of the sample selection

model, we discuss in this section semi-nonparametric estimation as introduced

by Gallant and Nychka (1987). The semi-nonparametric estimation method

is based on the approximation of the (unknown) density function f(·, ·) by a
Hermite series (see Powell, 1994; for an overview of semi-parametric estimation).

In the first part of this section we recapitulate the estimation approach of

Gallant and Nychka (1987) and in the second part of this section we consider

applying this method to the sample selection model.

Elaborating on Phillips (1983), Gallant and Nychka (1987) proposed approx-

imating the unknown density in a model by a Hermite series. Phillips (1983)

showed that an extended rational approximant (ERA) of the form

h(ε) =
P 2(ε)
Q2(ε)

φ2(ε|τ,Σ) (4)

can approximate any density function satisfying certain regularity conditions

arbitrarily well. In (4), P (ε) and Q(ε) are polynomials and φ(ε|τ,Σ) is the
multivariate normal density function with mean τ and covariance matrix Σ. Of

course, (4) is not a proper density function if the polynomials P (ε) and Q(ε)

are not restricted such that it integrates to 1.

Gallant and Nychka (1987) restrict the density h(ε) to a subclass HK which

consists of densities of the Hermite form

h(ε) = P 2
K(ε− τ)φ2(ε|τ,∆) (5)

with ∆ a diagonal matrix. PK(·) is a polynomial of degree K. Gallant and

Nychka (1987) show that, by increasing the number of terms K of the poly-

nomial, a large class H of density functions can be approximated arbitrarily

well. Conditions defining H precisely are given in Gallant and Nychka (1987).
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For our purposes it suffices to note that the fattest tails allowed are t-like tails

and the thinnest tails allowed are thinner than normal-like tails. Any sort of

skewness and kurtosis (especially in that part of the distribution where most

probability mass is observed) is allowed, only very violently oscillatory densi-

ties are excluded from H. Gallant and Nychka (1987) prove that densities in
H can be estimated consistently by increasing the number of terms K in the

approximation with the number of observations.

It is also possible to assume that the true density is a member of HK and

hence, to interpret HK as a flexible class of density functions. The latter in-

terpretation is especially appealing if one wants to examine the sensitivity of

estimation results obtained by assuming normality to this distributional as-

sumption because it allows one to use the standard framework of inference. In

(5), the normal density is used as the base class forHK but this is not necessary:

any density with a moment generating function could be used (for example, see

Cameron and Johansson, 1997).

Gallant and Nychka (1987) parameterize h(ε) as

h∗(ε) =


 K∑

i1,...,in=0

αi1···in(ε1 − τ1)i1 · · · (εn − τn)in




2

× exp
(
−

[
(ε1 − τ1)2/δ2

1 + · · ·+ (εn − τn)2/δ2
n

])

=
K∑

i1,...,in,j1,...,jn=0

αi1···inαj1···jn(ε1 − τ1)i1+j1 · · · (εn − τn)in+jn

× exp
(
−

[
(ε1 − τ1)2/δ2

1 + · · ·+ (εn − τn)2/δ2
n

])
(6)

Because of the squaring in (6), no additional restrictions on the parameters are

necessary to ensure that h∗(ε) is nonnegative. Additional restrictions on the

parameters of the density are required for identification of other parameters

in a model but these restrictions depend on the type of model at hand. The

parameters cannot be chosen freely, one restriction will be needed to ensure

integration to 1. These restrictions can take the form of explicit restrictions on
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the parameters of the density. However, for computational convenience we follow

Gabler, Laisney and Lechner (1993) who ensure integration to 1 by scaling the

density. Define S by

S =
∫

Rn

K∑
i1,...,in,j1,...,jn=0

αi1···inαj1···jn(ε1 − τ1)i1+j1 · · · (εn − τn)in+jn

× exp
(
−

[
(ε1 − τ1)2/δ2

1 + · · ·+ (εn − τn)2/δ2
n

])
dε1 · · · dεn

=
K∑

i1,...,in,j1,...,jn=0

αi1···inαj1···jn

∫
R
(ε1 − τ1)i1+j1 exp

(
−(ε1 − τ1)2/δ2

1

)
dε1

· · ·
∫

R
(εn − τn)in+jn exp

(
−(εn − τn)2/δ2

n

)
dεn

See Appendix A for the recursion formulae, which can be used to explicitly

determine S. Because of the definition of S, the following density integrates to

1:

h(ε) = h∗(ε)/S. (7)

We will refer to densities of the type (7) as snp-densities. It is clear that α in

(7) is identified up to a scale only, so a normalization is necessary. In particular

applications, additional restrictions will be needed to achieve identification. For

most applications it will be convenient to set τ to 0 which we will do from

now on. The flexibility of snp-densities is illustrated in Figures 1–3 (K = 2).

It is clear that the contour lines differ from the usual ellipsoids of the bivariate

normal density.

This estimation approach to the sample selection model has been imple-

mented by Melenberg and Van Soest (1993). Their choice of snp-density is

h(ε) = h∗(ε)/S with

h∗(ε) =
K∑

i,j,k,l=0

αijαklε
i+k
1 εj+l

2 exp(−[ε2
1/δ

2
1 + ε2

2/δ
2
2])

Identification is achived by setting δ2 =
√
2 (to ensure identification of the scale

of (2)), and α00 = 1 to normalize the α’s. For K = 0, h(ε) now reduces to
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a bivariate normal density with zero correlation between ε1 and ε2. Finally,

complex nonlinear restrictions on the parameters are needed to ensure that the

means of ε1 and ε2 are 0 in case K ≥ 0. Melenberg and Van Soest (1993)

suggest not to impose restrictions on the parameters of the density function of

ε to ensure a zero mean, but to restrict the intercepts of (1) and (2) instead.

However, these are not a useful restrictions for the purpose of this paper. We

return to this issue in the next section.

4 Testing the normality assumption

Semi-nonparametric maximum likelihood estimation as discussed in the previ-

ous section does not allow us to test for normality in the sample selection model

(unless ε1 and ε2 are independent). The bivariate normal distribution is not a

special case of the class of snp-densities (7). In this section we discuss a more

general specification. This specification allows to test for normality, even if the

error terms are correlated, by choosing another base class of density functions

in the ERA approximation in (4).

Because any density function with a finite moment generating function can

be used as the basis in approximation (4), we can consider the following family

of functions:

h̄∗(ε) =
K∑

i,j,k,l=0

αijαklε
i+k
1 εj+l

2 exp(−ε′Σ−1ε)

and define a generalized snp-density by h̄(ε) = h̄∗(ε)/S (again, S is the constant

that ensures integration to 1). Even though the use of this generalized snp-

density is not necessary to obtain consistent estimates of the parameters of the

model (the parameters are estimated consistently if the model is identified and

if the number of terms K increases with the number of observations), a clear

advantage is that bivariate normality (with unrestricted correlation) is a special

case of this family (αij = 0 for all i + j ≥ 1). This implies that it is possible

to test for normality in this model. A test for normality in the sample selection
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model has not been derived in the literature. A disadvantage of the generalized

snp-density in equation (4) is that it does not have the same computationally

attractive properties, i.e. evaluation of the relevant integrals in the loglikelihood

function 3 will involve evaluation of bivariate normal probabilities, in general.

Because of the special structure of the sample selection model, we are able to

avoid evaluations of bivariate normal integrals, so the computational cost of

this generalization is limited (see Appendix B).

As mentioned in the previous section some restrictions are necessary to en-

sure identification. First, again we fix δ2 =
√
2 and α00 = 1. Second, to ensure

that the location of the distribution function is fixed, we optimize the loglikeli-

hood function conditional to the restriction that the means of ε1 and ε2 equal

0. This allows us to test the null hypothesis that (ε1, ε2) is distributed accord-

ing to a normal distribution function against the alternative hypothesis that

(ε1, ε2) has some other bivariate distribution function in the class of distribu-

tion functions HK for any fixed K. In other words: for some fixed K we test

for joint significance of all αij with i + j ≥ 1. The additional number of pa-

rameters under the alternative hypotheses compared to the null hypotheses is

(K + 1)2 − 1. Note that there are two restrictions on these parameters to fix

the location of the distribution. Therefore, the Likelihood Ratio test statistic is

distributed according to a χ2-distribution with (K+1)2−3 degrees of freedom.
We conduct a limited simulation exercise to examine the power of this nor-

mality test. We consider the following simulation experiment:

yi = β10 + β11xi + β12wi + ε1i

z∗i = β20 + β21vi + β22wi + ε2i i = 1, . . . , N

with true parameters β10 = 1, β11 = 0.5, β12 = −0.5, β20 = 1, β21 = −1
and β22 = 1. The exogenous variables xi and vi are independently N (0, 3) dis-
tributed and wi is distributed uniformly on [−3, 3]. We perform six experiments,

where we vary the distribution of ε and the number of observations. Within each

experiment, we draw 100 samples. We draw ε from either a bivariate normal dis-

9



tribution with mean 0, a bivariate t-distribution, and a centered χ2-distribution.

The t-distribution has fatter tails than the normal distribution, and the χ2-

distribution is asymmetric so both cases are a deviation from normality. For all

three experiments we set var(ε1) = 4, var(ε2) = 1 and cov(ε1, ε2) = 1.1 The

sample size N is either 500 or 1000. The simulations were performed on Pen-

tium workstations using the CML-library (Constrained Maximum Likelihood

library) of GAUSS.

As the computer time required for optimization of the loglikelihood function

increases quickly with K, we only estimate the model for K = 1 and K = 2

and for the bivariate normal distributed disturbances. Hence, we consider the

normality test against the class of generalized snp-densities withK = 1 andK =

2 (denoted by H∗
1 and H∗

2). The case of the normal-disturbances is presented in

detail in Tables 1 and 2, the case of the t-disturbances in Tables 3 and 4, and

the case of the χ2-disturbances in Tables 5 and 6.

It is remarkable how well standard Maximum Likelihood under the assump-

tion of normally distributed disturbances performs. Even if the true distur-

bances follow a t-distribution all estimated parameters are within two standard

deviations of their true values. This is even the case when the disturbances

follow a transformed χ2-distribution which is non-symmetric. The tables also

report the number of rejections of normality for each of the simulation exper-

iments. The simulation results indicate that normality test against both the

class H∗
1 and H∗

2 performs well. The number of incorrect rejections is small

when compared to the level of significance, and the number of correct rejec-

tions very high. The simulation results indicate that the test has more power

when the true distribution is assumed to belong to H∗
2 than when it is assumed

to belong to H∗
1.

1To be precise, in case of the bivariate t-distribution ε2 = u1/
√

3 and ε1 = ε2 + u2 with u1

and u2 independent draw from a t3-distribution, and in case of the bivariate χ2-distribution

ε2 = 1
2
(v2

1 + v2
2)− 1 and ε1 = ε2 + (v2

3 + v2
4 + v2

5)/
√

2− 3/
√

2 with v2
1 to v2

5 independent χ2(1)

random variates. Hence, E[ε1] = E[ε2] = 0 and var(ε1) = 4 and var(ε2) = cov(ε1, ε2) = 1.
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The estimated parameters of the selection and the regression equations do

not differ much between the experiments. As one would expect, the price of

more flexibility in specification of the distribution of the error terms is that

the parameters of the model are estimated with less precision. However, the

increase of the variance of the parameters is small.

5 An application to a simultaneous model of car

ownership and car use

5.1 The model

In this section we apply the generalized semi-nonparametric estimation method

and the normality tests to a model describing the ownership and the use of

cars. This section consists of three parts: first, we present a structural model,

then we discuss the data and finally we present the empirical results.

The model assumes that, in a given year, households need to travel a stochas-

tic number of kilometers and that these households minimize the costs of travel-

ing. At the beginning of the year, a household makes a prediction of the number

of kilometers to be traveled, which is denoted by y∗. The actual number of kilo-

meters traveled in this year is related to the prediction by y = y∗ · ε, where ε

is a random prediction error with a positive support and a finite mean µ. The

household can choose to travel either by car or by other transport. The latter is

most likely public transport, other possibilities may be bikes, car pooling, etc.

The cost of using a car consists of fixed costs cc and variable costs vc. Fixed

costs are depreciation of the car, maintenance, insurance and taxations for car

ownership. Variable costs are the costs of fuel. The costs of other transport do

not contain any fixed costs. The variable costs, denoted by vo, are associated

with the costs of public transport. However, also opportunity costs may be im-

portant, as traveling with public transport most often takes more time than

traveling by car.
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The household decision problem now involves choosing whether or not to use

a car. Assuming that (risk-neutral) households minimize their expected costs,

the decision rule implies that a car is used if

E [cc + vcy] ≤ E [v0y] (8)

Now assume that cc, vc and vo are known by the household. This means that

the household decision simplifies to using a car if

E[y] ≥ cc

vo − vc
(9)

If we substitute the relation between the actual number of kilometers driven

and the predicted number of kilometers, this implies that a household chooses

to use a car if

y∗ ≥ cc

µ(vo − vc)

Now we parameterize the unknown components of the model as

y∗ = exp(x′β + v1)

which is the distance function and a costs function

cc

vo − vc
= exp(z′γ + v2)

We normalize µ = 1.

The model reduces to a regression equation, which has the following struc-

ture

log(y) = x′β + ε1

with ε1 = v1+ ln(ε). A selection equation indicates if the household owns a car

x′β − z′γ + ε2 ≥ 0

with the household specific term ε2 equal to v1 − v2, which is known to the

household but generally unknown to the econometrician. Because v1 is included

in both ε1 and ε2, these disturbances are not a priori independent.
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To improve the identification of the model, we should impose an exclusion

restriction, i.e. find a variable which is included in z, and excluded from x.

According to the model, the predicted number of kilometers affects both the

actual number of kilometers and the decision to buy a car, while the fixed and

variable costs of using a car and the variable costs of other transport only affect

the decision to use a car. The exclusion restriction should therefore be a variable

which affects only the costs functions. Since the Dutch government provides free

public transport passes to some students and some civil servants, we use the

dummy variable that indicates if the household has such a free public transport

pass as a variable which is included in z but not in x.

The data we use is a subset from the Dutch database on transportation

behavior of Statistics Netherlands. This database contains 34454 households.

To avoid complications of households owning more than one car, we focus on

single-person households. Furthermore, we exclude individuals who are younger

than 18 years old, as this is the legal age for obtaining a drivers license in The

Netherlands. This restrict the database to 7404 individuals. To construct our

final data set we also exclude 130 individuals, who own a car, but for which the

number of kilometers driven in the past year is unknown and 756 individuals

for which one or more explanatory variables are missing. We finally use a data

set consisting of 6518 observations.

Table 7 provides some characteristics of the data set. The data contain 3110

individuals who own a car and 3408 who do not own a car. Except for region,

all variables display differences in car-ownership rates. While 58% of the men

are car-owners, only 41% of the women have a car. Until people reach the

age of 65 the car-ownership rates increase with age, after that there is a large

drop. Furthermore, car-ownership rates increase with income and the level of

education. Finally, individuals living in areas with a low degree of urbanization,

full-time employed workers and individuals who do not have a government-

provided free public transport pass are more likely to own a car than their
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counterparts.

Using these data we estimate the structural model discussed previously. In

the first step we estimate the model under the assumption that the disturbances

ε1 and ε2 follow a bivariate normal distribution. Next we relax this assumption

by assuming that the density of the disturbances belongs either to H∗
1 or H∗

2.

For these two cases we will test whether the restriction of normality of the

disturbances can be imposed or not.

Table 8 presents the estimation results under the assumption of normality.

The most important covariates in the distance function are gender, age, income,

level of education, and the individual labor market status, while age, degree of

urbanization, and income are the main covariates determining the costs func-

tion. Although the availability of a free public transport pass provided by the

government has the expected effect on the costs function, the corresponding

parameter estimate is not significantly different from 0.

The only individual characteristics, which are important in both the dis-

tance and the costs function are age and income. Age affects both the distance

function and the costs function negatively. Young people travel more kilome-

ters than older people, while the costs of car use relative to other transport

decrease over age. By comparing the coefficients we can see that people with

age between 50 and 64 are most likely to own a car. Income has an opposite

effect on the distance and the costs function. People with a higher income travel

more kilometers, while the costs of car use relative to other transport decrease.

Considering that using public transport takes more time, this latter effect can

be explained by differences in opportunity costs. Time is more costly for indi-

viduals with a high income. The degree of urbanization only affects the costs

function. Since there is less public transport available in areas with low degree

of urbanization, the costs of using public transport are higher in these areas

(e.g. waiting times are longer). On the other hand, car use in areas with a high

degree of urbanization is more costly because individuals often have additional
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costs such as parking costs. Employed individuals, both full-time and part-time,

travel more kilometers. Since we did not distinguish between traveling for pri-

vate purposes and for professional purposes, this may be caused because they

commute or because their work requires them to travel. Finally, people with a

higher level of education travel more than lower educated individuals.

In the second estimation step we have relaxed the assumption of normality

and have estimated the model using the generalized snp-density with K = 1

and K = 2. The likelihood ratio test statistics equal 283.7 and 299.6, which

implies that we must reject that the disturbances follow a normal distribution.

The parameter estimates do not seem to be very sensitive to the normality as-

sumption, which is in line with the results from the simulation study. The main

difference with the estimates under normality is that, under the assumption of

normality, we do not find any correlation between ε1 and ε2. This suggests that

there is no unobserved selection between car ownership and car use, which would

imply that both the regression and the selection equation could be estimated

consistently separately of each other by for example OLS and Probit, respec-

tively. The generalized snp-densities show that there is correlation between both

disturbance terms, which could not be captured by a normal density. The esti-

mated covariance between ε1 and ε2 is −0.23 for K = 1 and −0.30 for K = 2.2

The Figures 4 and 5 show the marginal densities of the disturbances ε1 and ε2

estimated under the generalized snp-densities and normality. Both generalized

snp-densities have more mass close to the mode and slightly fatter tails than

the normal density. The estimated standard deviation of ε1 is 0.64 in both the

K = 1 and the K = 2 generalized snp-density specification, which is almost
2In the context of our theoretical model this would imply a positive correlation between

v1 and v2, since cov(ε1, ε2) = var(v1) − cov(v1, v2). Obviously, there are some unobserved

covariates, which increase both the costs of car use relative to other transport and the expected

number of kilometers traveled. Such a covariate thus has similar effects as for example age.

Note that we maintained the assumption that the prediction error ε is independent of the

individual specific effects v1 and v2.
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similar to the estimate under normality. For the standard deviation of ε2 we

find 0.89 and 0.90 for ε2 for the K = 1 and the K = 2 generalized snp-density,

respectively. In Figures 6 and 7 we graph the estimated densities of both the

normal model and the model estimated using an snp-density (K = 2). We see

that the estimated snp-density is a bit more spread out that the normal density

and the estimated contour lines in Figure 7 are not the ellipsoids of Figure 6.

6 Conclusion

In this paper we derived a test for normality in sample selection models. To

our knowledge, no such test has been derived previously. The test is based on

a generalization of the semi-nonparametric maximum likelihood method intro-

duced by Gallant and Nychka (1987). It assumes that the number of terms in

the series approximation is known in advance. The generalization exploits the

special structure of the sample selection model to allow for a bivariate normal

base density. The main advantage of this generalization is that the bivariate

normal distribution is a special case of the class of generalized snp-densities,

which allows us to test for normality. Also the generalized snp-density provides

an alternative density function in case normality is rejected.

Although the simulation study provided in this paper is limited, we think

that this test is promising. The test performed well in the simulations, the

percentage of incorrect rejections is below the significance level, while the power

is high. This latter is especially true for the normality test against the class

of generalized snp-densities with K = 2. However, it should be noted that

the parameter estimates do not seem to be very sensitive to the distributional

assumptions of the disturbances. Even in case the disturbances do not follow a

normal distribution, Maximum Likelihood under the assumption of normality

provides estimates close to the true values.

Finally, we have applied the normality test to a model of car ownership and

car use. The empirical results mimic those found in the simulation study: we
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reject the assumption of normality, but the parameter estimates turn out to

be not very sensitive to the normality assumption. In this case, the generalized

snp-density is capable to correct for the unobserved selectivity, which is not

captured by the normal density.
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A Recursion formulae of the snp-density

Ik(a, b) is defined as the univariate integral

Ik(a, b) =
∫ b

a
uk exp(−u2/δ2)du

Using partial integration one obtains the recursion formulae

Ik(a, b) =
δ2

2

(
ak−1 exp(−a2/δ2)− bk−1 exp(−b2/δ2)

)
+
(k − 1)δ2

2
Ik−2(a, b)

if k ≥ 2, else

I1(a, b) =
δ2

2

(
exp(−a2/δ2)− exp(−b2/δ2)

)

I0(a, b) = δ
√
π

(
Φ

(√
2b
δ

)
− Φ

(√
2a
δ

))

where Φ(·) is the standard normal distribution function. In the special case
where a = −∞ and b =∞, the recursion formulae simplify to

Ik(−∞,∞) =




δ
√
π k = 0

0 k = 1, 3, 5, . . .
(k−1)δ2

2 Ik−2(−∞,∞) k = 2, 4, 6, . . .

B Relevant integrals of the generalized snp-density

in the sample selection model

In the sample selection model where all relevant integrals are of the form∫ ∞

a
h̄∗(ε)dε2

and ∫ b

−∞

∫ ∞

−∞
h̄∗(ε)dε1dε2

Substituting for h̄ we obtain integrals of the type∫ ∞

a
εi
1ε

j
2φ(ε1, ε2)dε2
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and ∫ b

−∞

∫ ∞

−∞
εi
1ε

j
2φ(ε1, ε2)dε1dε2

where φ(ε1, ε2) is the bivariate normal density function. Because

φ(ε1, ε2) = φ(ε2|ε1)φ(ε1)

we can rewrite these integrals as

εi
1φ(ε1)

∫ ∞

a
εj
2φ(ε2|ε1)dε2

and ∫ b

−∞
εj
2φ(ε2)

∫ ∞

−∞
εi
1φ(ε1|ε2)dε1dε2 =

∫ b

−∞
εj
2φ(ε2)E(εi

1|ε2)dε2 (10)

The last integral can be solved easily because

E(εi
1|ε2) = a0 + a1ε2 + · · ·+ aiε

i
2.

The coefficients a depend on the other parameters of the density function only

and they are independent of ε2. Note that both integrals in (10) can be calcu-

lated using the recursion formulas in Appendix A.
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normal generalized snp

N = 500 K = 1 K = 2

β10 1.02 (0.13) 1.02 (0.13) 1.02 (0.13)

β11 0.50 (0.032) 0.50 (0.032) 0.50 (0.032)

β12 −0.50 (0.074) −0.50 (0.072) −0.50 (0.072)

β20 1.01 (0.11) 1.01 (0.11) 1.01 (0.11)

β21 −1.01 (0.075) −1.01 (0.075) −1.01 (0.075)

β22 1.01 (0.081) 1.01 (0.081) 1.01 (0.082)

σ1 1.98 (0.087) 1.98 (0.085) 1.97 (0.090)

σ12 1.00 (0.088) 1.00 (0.090) 1.00 (0.094)

α00 1 1

α01 0 −0.0036 (0.030)

α02 −0.0042 (0.024)

α10 0 −0.0014 (0.015)

α11 −0.0012 (0.0092) 0.0067 (0.030)

α12 0.0023 (0.028)

α20 −0.0004 (0.0084)

α21 −0.0006 (0.011)

α22 −0.0022 (0.0066)

σ̂1 1.98 (0.091) 1.96 (0.11)

σ̂2 1.00 (0.018) 0.99 (0.030)

σ̂12 0.99 (0.15) 0.98 (0.16)

loglikelihood -689.38 -689.12 -687.80

rejections 1 0

The standard errors are given in parentheses.

Table 1: Results of the simulation experiment with bivariate normal distributed

disturbances, 100 replications, N = 500.
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normal generalized snp

N = 1000 K = 1 K = 2

β10 1.00 (0.072) 1.00 (0.073) 1.00 (0.074)

β11 0.50 (0.025) 0.50 (0.024) 0.50 (0.025)

β12 −0.51 (0.051) −0.51 (0.049) −0.51 (0.049)

β20 1.00 (0.060) 1.00 (0.062) 1.00 (0.061)

β21 −0.99 (0.045) −0.99 (0.043) −0.99 (0.043)

β22 0.99 (0.054) 0.99 (0.054) 0.99 (0.054)

σ1 2.00 (0.060) 2.00 (0.059) 2.00 (0.059)

σ12 1.00 (0.034) 1.00 (0.036) 1.00 (0.036)

α00 1 1

α01 0 0.0001 (0.019)

α02 0.0026 (0.012)

α10 0 0.0003 (0.010)

α11 −0.0002 (0.0064) 0.0034 (0.017)

α12 0.0006 (0.017)

α20 −0.0004 (0.0051)

α21 −0.0005 (0.0067)

α22 −0.0014 (0.0050)

σ̂1 2.00 (0.061) 2.00 (0.070)

σ̂2 1.00 (0.013) 1.00 (0.020)

σ̂12 1.00 (0.087) 1.01 (0.10)

loglikelihood -1412.71 -1412.35 -1411.18

rejections 0 1

The standard errors are given in parentheses.

Table 2: Results of the simulation experiment with bivariate normal distributed

disturbances, 100 replications, N = 1000.
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normal generalized snp

N = 500 K = 1 K = 2

β10 0.98 (0.11) 0.98 (0.11) 0.98 (0.11)

β11 0.50 (0.039) 0.50 (0.038) 0.50 (0.035)

β12 −0.51 (0.074) −0.51 (0.072) −0.51 (0.067)

β20 1.06 (0.20) 1.06 (0.20) 1.07 (0.20)

β21 −1.06 (0.18) −1.06 (0.18) −1.08 (0.18)

β22 1.07 (0.18) 1.07 (0.18) 1.08 (0.18)

σ1 1.97 (0.33) 1.98 (0.34) 2.01 (0.34)

σ12 0.97 (0.23) 1.02 (0.29) 0.97 (0.27)

α00 1 1

α01 0 0.0099 (0.030)

α02 −0.051 (0.14)

α10 0 0.0056 (0.032)

α11 −0.016 (0.048) −0.031 (0.062)

α12 0.0085 (0.041)

α20 −0.040 (0.026)

α21 −0.0062 (0.020)

α22 0.011 (0.014)

σ̂1 1.96 (0.32) 1.98 (0.36)

σ̂2 0.99 (0.042) 1.00 (0.050)

σ̂12 0.94 (0.28) 0.98 (0.31)

loglikelihood -678.87 -675.64 -652.50

rejections 11 89

The standard errors are given in parentheses.

Table 3: Results of the simulation experiment with bivariate t distributed dis-

turbances, 100 replications, N = 500.
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normal generalized snp

N = 1000 K = 1 K = 2

β10 0.99 (0.076) 1.03 (0.064) 0.98 (0.040)

β11 0.50 (0.028) 0.50 (0.029) 0.50 (0.019)

β12 −0.51 (0.055) −0.51 (0.044) −0.51 (0.026)

β20 1.06 (0.11) 1.05 (0.071) 1.08 (0.055)

β21 −1.05 (0.096) −1.02 (0.065) −1.08 (0.059)

β22 1.07 (0.11) 1.04 (0.076) 1.09 (0.065)

σ1 1.92 (0.22) 2.03 (0.19) 2.05 (0.096)

σ12 0.95 (0.22) 1.18 (0.22) 0.97 (0.053)

α00 1 1

α01 0 0.012 (0.019)

α02 −0.078 (0.062)

α10 0 0.0025 (0.018)

α11 −0.12 (0.082) −0.014 (0.037)

α12 0.0099 (0.028)

α20 −0.047 (0.012)

α21 −0.0068 (0.013)

α22 0.013 (0.0049)

σ̂1 1.88 (0.18) 2.00 (0.098)

σ̂2 0.93 (0.059) 1.00 (0.030)

σ̂12 0.72 (0.32) 0.94 (0.16)

loglikelihood -1371.30 -1348.14 -1331.18

rejections 69 97

The standard errors are given in parentheses.

Table 4: Results of the simulation experiment with bivariate t distributed dis-

turbances, 100 replications, N = 1000.
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normal generalized snp

N = 500 K = 1 K = 2

β10 0.99 (0.14) 0.96 (0.16) 0.97 (0.15)

β11 0.49 (0.040) 0.50 (0.039) 0.50 (0.035)

β12 −0.49 (0.081) −0.50 (0.077) −0.49 (0.071)

β20 1.04 (0.12) 1.03 (0.11) 1.09 (0.15)

β21 −1.03 (0.14) −1.04 (0.14) −1.06 (0.15)

β22 1.03 (0.13) 1.04 (0.13) 1.06 (0.14)

σ1 2.06 (0.13) 2.03 (0.12) 1.93 (0.23)

σ12 1.20 (0.27) 1.24 (0.27) 1.17 (0.33)

α00 1 1

α01 0 −0.074 (0.10)

α02 −0.044 (0.12)

α10 0 −0.060 (0.059)

α11 −0.031 (0.058) 0.021 (0.10)

α12 −0.034 (0.075)

α20 −0.022 (0.060)

α21 0.032 (0.043)

α22 −0.0010 (0.012)

σ̂1 1.97 (0.12) 1.78 (0.27)

σ̂2 0.97 (0.045) 0.86 (0.092)

σ̂12 1.08 (0.33) 0.82 (0.38)

loglikelihood -693.32 -684.63 -665.48

rejections 73 100

The standard errors are given in parentheses.

Table 5: Results of the simulation experiment with bivariate χ2 distributed

disturbances, 100 replications, N = 500.
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normal generalized snp

N = 1000 K = 1 K = 2

β10 0.94 (0.089) 0.93 (0.047) 0.95 (0.061)

β11 0.50 (0.029) 0.50 (0.027) 0.50 (0.018)

β12 −0.50 (0.054) −0.50 (0.036) −0.49 (0.021)

β20 1.09 (0.075) 1.05 (0.039) 1.12 (0.041)

β21 −1.04 (0.076) −1.04 (0.037) −1.06 (0.028)

β22 1.03 (0.083) 1.04 (0.037) 1.06 (0.024)

σ1 2.03 (0.084) 2.01 (0.053) 1.89 (0.045)

σ12 1.28 (0.15) 1.27 (0.053) 1.19 (0.020)

α00 1 1

α01 0 −0.11 (0.021)

α02 −0.039 (0.030)

α10 0 −0.088 (0.014)

α11 −0.018 (0.032) 0.066 (0.031)

α12 −0.0067 (0.032)

α20 −0.046 (0.019)

α21 0.037 (0.017)

α22 0.0034 (0.0037)

σ̂1 1.94 (0.074) 1.61 (0.042)

σ̂2 0.97 (0.038) 0.85 (0.012)

σ̂12 1.12 (0.17) 0.56 (0.066)

loglikelihood -1403.24 -1391.81 -1345.13

rejections 89 100

The standard errors are given in parentheses.

Table 6: Results of the simulation experiment with bivariate χ2 distributed

disturbances, 100 replications, N = 1000.
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Car owner yes no

Gender

Male 1523 1102

Female 1587 2306

Age

18–24 106 518

25–29 416 415

30–39 746 485

40–49 467 296

50–64 692 451

65+ 683 1243

Region

West 1588 1881

North 211 207

East 895 959

South 416 361

Degree of urbanization

Very high 764 1329

High 786 970

Average 694 497

Low 563 397

Very low 303 215

Car owner yes no

Net income (in guilders)

0–15000 158 999

15000–23000 411 1046

23000–30000 539 574

30000–38000 695 402

38000–52000 773 278

52000+ 534 109

Level of education

Primary 237 688

Lower secondary 712 856

Higher secondary 1022 1075

University 1139 789

Labor market status

Full-time work 1626 771

Part-time work 178 245

Student 37 406

Unemployed 105 250

Nonparticipant 1164 1736

Free public transport pass

no 3074 2965

yes 36 443

Average number of kilometers

15093

Observations 3110 3408

Table 7: Some characteristics of the data set.
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Distance Costs

function function

β γ

Intercept 9.41 (0.32) 10.81 (0.35)

Gender

Female −0.29 (0.038) 0.046 (0.053)

Age

25–29 −0.13 (0.088) −0.49 (0.13)

30–39 −0.24 (0.084) −0.56 (0.13)

40–49 −0.28 (0.089) −0.65 (0.13)

50–64 −0.33 (0.10) −1.00 (0.15)

65+ −0.59 (0.086) −0.76 (0.14)

Region

North 0.0027 (0.050) −0.11 (0.092)

East −0.0007 (0.031) 0.049 (0.058)

South −0.054 (0.040) −0.16 (0.072)

Degree of urbanization

High 0.025 (0.042) −0.18 (0.068)

Average 0.064 (0.066) −0.51 (0.086)

Low 0.077 (0.073) −0.57 (0.096)

Very low 0.064 (0.082) −0.65 (0.11)

Net income (in guilders)

15000–23000 0.086 (0.075) −0.21 (0.10)

23000–30000 0.23 (0.11) −0.48 (0.14)

30000–38000 0.30 (0.14) −0.72 (0.16)

38000–52000 0.37 (0.16) −0.90 (0.18)

52000+ 0.50 (0.18) −1.04 (0.20)

Table 8: Estimation results for the model with normal distributed disturbance

terms (continued).
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Distance Costs

function function

β γ

Level of education

Lower secondary 0.10 (0.051) −0.16 (0.079)

Higher secondary 0.17 (0.062) −0.26 (0.089)

University 0.28 (0.064) −0.15 (0.095)

Labor market status

Part-time work 0.017 (0.058) 0.15 (0.095)

Student −0.28 (0.11) 0.14 (0.19)

Unemployed −0.29 (0.069) 0.058 (0.11)

Nonparticipant −0.25 (0.046) −0.023 (0.082)

Free public transport pass

yes 0.21 (0.16)

σ1 0.63 (0.0088)

σ12 0.041 (0.17)

loglikelihood -6386.34

Table 8: Estimation results for the model with normal distributed disturbance

terms.
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Distance Costs

function function

β γ

Intercept 9.77 (0.11) 10.86 (0.14)

Gender

Female −0.24 (0.022) 0.017 (0.038)

Age

25–29 −0.14 (0.061) −0.41 (0.10)

30–39 −0.23 (0.059) −0.46 (0.10)

40–49 −0.30 (0.062) −0.58 (0.11)

50–64 −0.35 (0.064) −0.85 (0.11)

65+ −0.50 (0.067) −0.61 (0.12)

Region

North 0.0066 (0.045) −0.075 (0.079)

East 0.013 (0.027) 0.060 (0.050)

South −0.057 (0.034) −0.13 (0.062)

Degree of urbanization

High −0.0070 (0.032) −0.18 (0.056)

Average −0.0088 (0.035) −0.47 (0.057)

Low −0.0043 (0.038) −0.53 (0.064)

Very low −0.011 (0.044) −0.59 (0.078)

Net income (in guilders)

15000–23000 −0.012 (0.061) −0.26 (0.085)

23000–30000 0.089 (0.065) −0.48 (0.089)

30000–38000 0.12 (0.066) −0.68 (0.090)

38000–52000 0.17 (0.069) −0.83 (0.093)

52000+ 0.30 (0.072) −0.90 (0.10)

Standard errors in parentheses.

Table 9: Estimation results for the model with generalized snp-distributed dis-

turbances (K = 1) (continued).
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Distance Costs

function function

β γ

Level of education

Lower secondary 0.043 (0.040) −0.16 (0.066)

Higher secondary 0.097 (0.041) −0.24 (0.068)

University 0.21 (0.043) −0.12 (0.075)

Labor market status

Part-time work 0.023 (0.050) 0.13 (0.080)

Student −0.19 (0.10) 0.13 (0.16)

Unemployed −0.18 (0.059) 0.11 (0.095)

Nonparticipant −0.23 (0.037) −0.054 (0.068)

Free public transport pass

yes 0.14 (0.12)

σ1 0.71 (0.018)

σ12 −0.45 (0.034)

α00 1

α01 0

α10 0

α11 0.49 (0.031)

loglikelihood -6244.49

Standard errors in parentheses.

Table 9: Estimation results for the model with generalized snp-distributed dis-

turbances (K = 1).
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Distance Costs

function function

β γ

Intercept 9.87 (0.15) 10.91 (0.29)

Gender

Female −0.23 (0.026) 0.047 (0.095)

Age

25–29 −0.15 (0.066) −0.40 (0.13)

30–39 −0.23 (0.064) −0.46 (0.12)

40–49 −0.30 (0.067) −0.58 (0.13)

50–64 −0.36 (0.071) −0.86 (0.18)

65+ −0.50 (0.073) −0.59 (0.13)

Region

North 0.0010 (0.047) −0.077 (0.088)

East 0.016 (0.028) 0.065 (0.055)

South −0.061 (0.034) −0.13 (0.070)

Degree of urbanization

High −0.012 (0.033) −0.18 (0.076)

Average −0.035 (0.039) −0.49 (0.15)

Low −0.033 (0.043) −0.56 (0.17)

Very low −0.037 (0.050) −0.61 (0.19)

Net income (in guilders)

15000–23000 0.022 (0.067) −0.20 (0.11)

23000–30000 0.093 (0.075) −0.46 (0.17)

30000–38000 0.11 (0.081) −0.69 (0.24)

38000–52000 0.15 (0.086) −0.86 (0.30)

52000+ 0.27 (0.090) −0.95 (0.37)

Standard errors in parentheses.

Table 10: Estimation results for the model with generalized snp-distributed

disturbances (K = 2) (continued).
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Distance Costs

function function

β γ

Intercept 9.87 (0.15) 10.91 (0.29)

Level of education

Lower secondary 0.035 (0.044) −0.16 (0.089)

Higher secondary 0.085 (0.046) −0.25 (0.12)

University 0.20 (0.047) −0.13 (0.12)

Labor market status

Part-time work 0.035 (0.052) 0.15 (0.094)

Student −0.16 (0.12) 0.16 (0.19)

Unemployed −0.17 (0.063) 0.13 (0.14)

Nonparticipant −0.22 (0.039) −0.040 (0.094)

Free public transport pass

yes 0.15 (0.13)

σ1 0.76 (0.23)

σ12 −0.54 (0.31)

α00 1

α01 −0.0035 (0.049)

α02 0.038 (0.12)

α10 −0.012 (0.045)

α11 0.38 (0.41)

α12 0.15 (0.12)

α20 −0.052 (0.14)

α21 0.16 (0.079)

α22 0.0005 (0.098)

loglikelihood -6236.54

Standard errors in parentheses.

Table 10: Estimation results for the model with generalized snp-distributed

disturbances (K = 2).
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Figure 1: Bivariate snp-density, α01 = 0.1, α10 = −0.1 and α11 = −0.2
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Figure 2: Bivariate snp-density, α01 = 0.1, α10 = 0.1 and α11 = 0
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Figure 3: Bivariate snp-density, α01 = 0.1, α10 = −0.1 and α11 = 0.2
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Figure 4: The estimated marginal density function of ε1.

36



Figure 5: The estimated marginal density function of ε2.
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Figure 6: Estimated density under normality assumption (Table 8).
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Figure 7: Estimated density K = 2 (Table 10).
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