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Introduction 

 

Network management techniques have long been of 

interest to the networking research community. Networks 

can be viewed as a distributed system in which coordinated 

and informed decision making is crucial for optimal 

resource allocation.  In this paper we study the problem of 

finding an optimal policy for  Network resource allocation 

as a Partially Observable Markov Decision Process 

(POMDP). Testing the stationarity of Network traffic is 

one of the keystone problem. Partially Observable Markov 

Decision Process (POMDP) is a basic framework for 

Multi-Agent planning, when the traffic model is not 

perfectly known and may change over time and is a well-

studied framework for sequential decision-making in 

partially observable domains.  This paper restricts itself to 

two network management techniques: admission control 

and the partitioning of transmission and buffer resources 

among two or more classes of traffic using a common 

transmission path. The Decision Policy Agent (DPA) 

model and  Network model are presented in fig.1. For 

Network resource allocation, we are interested in the 

performance of a queue which represents the bottleneck of 

a network. In this paper we will use a simple hierarchical 

MMPP traffic model from [1] and queue model 

MMPP/GI/1/m. The aim of  this paper is to estimate the 

various stationarity testing procedures for  intergation into 

Network resource allocation agents. 

 

Problem statement 

 

The problem of the testing of the stationarity 

hypothesis for real traffic measurements is caused by the 

fact the mean of traffic with LRD does not exist. But, 

statistical analyses of measured traffic traces often contain 

non-stationary effects like level shifts or polynomial 

trends. The testing of the stationarity hypothesis is 

particularly difficult in the presence of LRD, where many 

classical statistical approaches cease to hold [2]. In these 

cases several popular tests for long-range dependence can 

result in wrong conclusions and unreliable estimate of the 

Hurst parameter. On the other hand for decision making in 

CP MDP it is significant to detect the level shifts and/or 

polynomial trends with reasonable computational 

complexity. On longer time scales we can observe also a 

regular character of the traffic due to daily or weekly 

variations. Three types of trend models are used in our 

experiments, e.g. linear trend, parabolic trend,  and level 

shift model. Level shift model can be observed when 

during our traffic measurements suddenly a new source 

starts to generate the  traffic to the network nodes and the 

linear and parabolic trends, which can be observed in 

daily traffic variations. For example, when people start to 

work in their office between 8 and 10 am a monotonic 

increase of the total load of the aggregated traffic can be 

observed. These traffic trends should be identified  by 

Decision Policy Agent.  

 

MMPP traffic model 

 

In this paper for traffic generation we will use a 

MMPP traffic model proposed by [1]. This is hierarchical 

MMPP traffic model, capable of generating traffic that 

accurately emulates the aggregate Network traffic 

measured at an edge router. The model is based on a 

layered architecture of sessions, that generate flows, that 

finally generate packets.  

MMPP model is completely described by these five 

parameters: 

 s  –  the arrival rate of new sessions, 

 f  – the flow arrival rate per active session,  

 p – packet arrival rate per active flow, 

 fN  –average numbers of flow per session, 

  pN – average numbers of packets per flow. 

Then: 

 fN/11  – probability that a flow is not a 

last of session, 

 )1/(  ppf N – the average duration of a 

flow, 

 pfn  –global packet generation rate, 
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 sfsn   – flow generation rate ( fn – number of 

active flows and sn – number of active sessions). 

For network planning and dimensioning, we are 

typically interested in the performance of a queue which 

represents the bottleneck of a network. Besides the 

advantages of being simple to implement and efficient, a 

synthetic Markovian source as the one we propose has the 

additional advantage of allowing a Markovian model of a 

queue. In general, the buffer model can be described by a 

MMPP/GI/1/m queue, where the service time represents 

the transmission time of a packet, and can be easily derived 

from the capacity of the link and the distribution of the 

packet length. The general service time distribution can be 

approximated by a phase type distribution. By adopting an 

exponential service time distribution, we obtain an 

MMPP/M/1/m queuing system. [1]  

The infinitesimal generator (IG) of such a 

(Continuos-Time Markov Chain) CTMC is   matrix A 
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where  QA00 , 0A ,  nIQA 1 , 

nmm IQA   , nIA  2  and  is the rate matrix 

nnR  , nn
nmm RIAAAAAA

,,,,,, 2101000 , and In is 

the identity matrix. More detailed description of this IG 

can find in [1].  

  

Decision Policy Agent model 

 

Decision policy agent (DPA) and Network model are 

presented in Figure 1. 

 

AN :
NON :

NOv :

SNS 


ONAA 




 SAST :




ASR :

)(: OASZ 

Ao :
 sV :

  )),({ ttO }),({ ttA

 

Fig. 1. Decision policy agent (DPA) and Network model    

 
DPA model consists of three objects: Partially 

Observable Markov Decision Process (POMDP), Finite 

state Controller (FSC) and Cross Product Markov Decision 

Process (CP MDP).  For POMDP we use the following 

notations. A POMDP is a tuple  ZORTAS ,,,,, , where: 

 a set of states   },...,{ ||21 ssssS  , 

 a set of actions },...,{ ||21 AaaaA  , 

 a observation space  O, 

 a set of transition probabilities

),|(),,( asspsasT ijji  , 

 a observation function )(: OASZ   , 

 a rewards function ASR : , 

 a set of system trajectories or histories H,  

 a decision policy Ao : ,  

 a value function sHV : , 

 a time steps 
t . 

We use a following definition: policies that do not 

dependent on stages are called stationary policies. We are 

study over the infinite horizon policies and agent`s goal is 

to find a policy π by exacuting at each step (state) the 

actions that would maximize value function (cumulative 

reward over the horizon).  

Finding the optimal policies traditionally needs significant 

computational resources and is limited in time.  Our idea is 

to reduce these resources by computing a new decision 

policy only when traffic stationarity has changed. For this 

we needed proportionate stationarity testing procedure of 

incoming traffic.  Fully observable part of the system is 

process }),({ ttO , where   O(t) is number of packets in 

queue. In this paper we are testing several known 

stationarity test and to look for an appropriate policy π are 

not resesrch object of this paper. 

FSC: Finite state controller model as a deterministic 

policy graph π is a triple  ,,N , where:  

 N  is set of controller nodes n , 

 AN :  - action selection function, 

 NON :  is the internal node transition 

function. 

We can define the following FSC controller nodes:  

 n1 – state with stationary observations in POMDP, 

 n2 – state of testing of stationarity in POMDP, 

 n3 – state of finding  (learning) new decision policy 

in POMDP. 

Cross Product MDP: POMDP with ZORTAS ,,,,,  

and policy graph with the node set N cross-product MDP 

RTAS ,,,  can be described [7]: 

 SNS  – state space as the Cartesian product of 

external system states and internal memory nodes, 

which consists of pairs SsNnsn  ,,, , 

 NOv :  – conditional observation strategy  for 

each state pairs,  

 ONAA   – common action space as the cross 

product between A and space of observation 

mappings ON , 
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Statistical analysis was performed using the R 

statistics software with tseries package used for stationarity 

tests. The test results are listed in Table 1.  
 

Table 1. Test of stationarity using three different kinds of tests by 

three different traffic models (Accepted = stationary) 

Linear 

trend 

Stationarity test 

KPSS.test PP.test adf.test 
Model_1 Accepted  Accepted  Accepted  

Model_2 Accepted  Accepted  Accepted  

Model_3 Accepted  Accepted  Accepted  

Model_4 Accepted  Accepted  Accepted  

Level-shift 
Stationarity test 

KPSS.test PP.test adf.test 
Model_1 Accepted Accepted Accepted 

Model_2 Rejected Accepted  Accepted 

Model_3 Rejected Accepted  Rejected 

Model_4 Rejected Accepted  Rejected 

Parabolic 

trend 

Stationarity test

KPSS.test PP.test adf.test 

Model_1 Rejected Accepted  Accepted  

Model_2 Rejected Accepted  Accepted  

Model_3 Rejected Accepted  Accepted  

Model_4 Rejected Accepted  Accepted  

Model_5 Rejected Accepted  Rejected 

Note: Level of significance in all cases are chosen 1% (α=0.01) 

 

Conclusions 

 

The tests used in our experiments does not enable to 

decide between non-stationarities and LRD. We have 

shown that the presence of different non-stationarities such 

as level shifts, linear and polynomial trends (parabolic in 

such case) in the observations can deceive classical LRD 

methods. These simulation results confirm that short-range 

dependent (SRD) process with non-stationarities can 

produce the same variance-time plot as LRD processes. In 

the case of LRD processes trends can significantly destroy 

the accuracy of the estimation of the H parameter. These 

results show that granular computing methods could be 

more acceptable for selection of conditional observation 

strategy.  
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