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In this paper, we address the problem of testing hypotheses using the

likelihood ratio test statistic in nonidentifiable models, with application to
model selection in situations where the parametrization for the larger
model leads to nonidentifiability in the smaller model. We give two major
applications: the case where the number of populations has to be tested in

Ž .a mixture and the case of stationary ARMA p, q processes where the
Ž .order p, q has to be tested. We give the asymptotic distribution for

the likelihood ratio test statistic when testing the order of the model. In
the case of order selection for ARMAs, the asymptotic distribution is
invariant with respect to the parameters generating the process. A locally
conic parametrization is a key tool in deriving the limiting distributions; it
allows one to discover the deep similarity between the two problems.

1. Introduction. In this paper, we propose a general theory for the
Ž .derivation of the limiting distribution of likelihood ratio test LRT statistics

in testing problems in which some of the parameters of the alternative
hypothesis are no longer identifiable in the null hypothesis. Two famous
examples of such situation are the test of the number of components in a
mixture and the test of the order of an ARMA process. The segmented

� Ž .�regression model see Feder 1975 is another example of such a situation.
In such problems, if the model is a regular parametric model, then lack of

identifiability leads, in general, to a non-full-rank Fisher information matrix,
and so standard proofs of the asymptotic chi-squared distribution fail. A
simple derivation of the chi-squared theory can be based on an expansion of
the likelihood up to order 2, followed by a maximization of this expansion.
The major questions that arise in the nonidentifiable context are the follow-
ing:

QUESTION 1. Since the parameter is not identifiable, around which point
can an expansion be made?

QUESTION 2. In the optimization procedure, the inverse of the Fisher
information appears. Since it is not invertible, what should be done?
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Our solution to this problem arises by creating a special ‘‘conic’’ parametriza-
tion in which asymptotic expansions can be more readily established. It

Ž .extends the results given in Dacunha-Castelle and Gassiat 1997 for testing
one population against two populations in a mixture.

We start with a discussion of the nonidentifiability in these two main
Ž .examples so as to illustrate the nature of the difficulty. Let FF � f be a� � � �

family of probability densities with respect to � . Let � be a compact subset of
Rk for some integer k. Let GG be the set of all p mixtures of densities of FF:p

p
1 p

iGG � g � � � f : � � � , . . . , � , � � � , . . . , � ,Ž . Ž .Ýp � , � i � 1 p½
i�1

p
i� i � 1, . . . , p , � � � , 0 � � � 1, � � 1 .Ýi i 5

i�1

1Ž .

Ž .Obviously, the model is not identifiable for the parameters � � � , . . . , �1 p
Ž 1 p.and � � � , . . . , � . There exist mixtures g in GG which have differentp

representations g with different parameters � and � . For instance, we� , �

� 4have for any permutation 	 of the set 1, . . . , p ,
p p

i 	 Ž i.� � f � � � f .Ý Ýi � 	 Ž i. �
i�1 i�1

Another example which may not be avoided by taking some quotient with
respect to permutations is

p

0 0f � � � fÝ� i �
i�1

Ž . pfor any � such that � � 0 and Ý � � 1.i i i�1 i
ARMA processes are given by the recurrence equation

2 X � a X � ��� �a X � 
 � b 
 � ��� �b 
 .Ž . n 1 n�1 p n�p n 1 n�1 q n�q

Ž . Ž .X is a stationary process with 
 as an innovation process whenn n� N n n� N
Ž . p j Ž . q jthe complex polynomials P z � 1 � Ý a z and Q z � 1 � Ý b z doj�1 j j�1 j

Ž .not have roots inside the complex unit disc and 
 is a white noisen n� N
Ž . Ž .process. If 
 is Gaussian, then X is a Gaussian ARMA process.n n� N n n� N

The spectral density f of such a process is given by
22	 Q

i x3 f x � e ,Ž . Ž . Ž .
2� P

where 	 2 is the variance of the noise. Assume now that the true spectral
density is

22	 Q0 0 i x4 f x � eŽ . Ž . Ž .0 2� P0

Ž .with Q of degree q and P of degree p , and we want to test p , q0 0 0 0 0 0
Ž . Ž . Ž .against p, q , where p � p and q � q , p, q � p , q . The general0 0 0 0
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model is that of stationary processes with spectral densities which have the
Ž .form 3 , where the degree of P is not larger than p and the degree of Q is

not larger than q. As soon as p � p and q � q , f has in this model0 0 0
infinitely many representations obtained, for instance, by multiplying the

Ž .representation 4 by the constant 1 written as the quotient of two identical
polynomials. With this parametrization of the model, the information matrix

� 4for any parameter leading to f has a kernel of dimension inf p � p , q � q ;0 0 0
Ž .see Theorem 3.3 in Azencott and Dacunha-Castelle 1986 .

The mixture problem has received extensive consideration in the litera-
ture. A complete discussion of previous results may be found in the mono-

Ž .graph by Lindsay 1995 together with results covering the multinomial
models. As Lindsay himself says, ‘‘The nature of the limiting distribution for

Ž .this likelihood ratio test is a long-standing mystery.’’ Ghosh and Sen 1985
Žgave the asymptotic distribution of the LRT statistic under a strong and

.unsatisfactory separation condition of the parameters of the mixture. Harti-
Ž .gan 1985 proved that when testing a standard centered Gaussian distribu-

tion against a mixture of a standard centered Gaussian and a standard
Gaussian distribution with mean m, with no upper or lower bound on m, the
LRT statistic tends to infinity in probability under the null hypothesis, and

Ž .Bickel and Chernoff 1993 gave the precise asymptotics. More recently, the
asymptotic distribution of the LRT statistic for testing various mixtures of

Ž .binomials has been given; see Chernoff and Lander 1995 and Lemdani and
Ž .Pons 1997 .

Testing the dimension of the model for ARMA time series has also received
Ž .considerable interest in the literature. Concerning the LRT or pseudo LRT

statistic, the computation of the asymptotic distribution was made by Han-
Ž .nan 1980 for the particular case p � q � 0 and p � q � 1, introducing a0 0

reparametrization of the model adapted to the particular situation. Veres
Ž .1987 used this reparametrization to find the asymptotic distribution of the

Ž . Ž .LRT statistic for testing p , q against p � 1, q � 1 , but this particular0 0 0 0
reparametrization does not seem to be easily generalised to handle the
general case.

In this paper, we give the asymptotic distribution of the maximum likeli-
hood statistic for any mixture model selection and for any ARMA model
selection problem, so that this allows the construction of a test for the order
at a known asymptotic level. To find this asymptotic distribution, we intro-
duce a reparametrization of the model which we call locally conic. The
general idea is that a first positive and real parameter � contains some
‘‘distance’’ to the true model; this is the perturbation parameter. A second
parameter � is some direction of approach to the true model; in other words,
the direction of the perturbation. A normalization of the directional vector
imposes the directional Fisher information to be uniformly equal to 1. This
gives an answer to Question 2. � contains all the nonidentifiable parts of the
model. � contains all the model order information and is identifiable. � may
be consistently estimated: this gives an answer to Question 1: the expansion
will be done for � near 0. The limiting distribution will be obtained as a
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supremum of a function of a continuous Gaussian process on a set DD of
directional scores. These directional scores may be obtained as normalized
limits of likelihood ratio functions as one approaches the null from the
alternative. The simple idea of such a set was already contained in Lindsay
Ž .1995 for the mixture testing problem. The main difference between mix-
tures and ARMA model selection is that the limiting distribution, when
testing the number of components of a mixture, depends on the null distribu-
tion, whereas, when testing the order of an ARMA, it is invariant with
respect to the null hypothesis.

This paper is organized as follows: In Section 2, we give the definition of a
locally conic parametrization. Section 3 is devoted to the problem of testing q
against p populations, and Section 4 is devoted to the problem of testing an

Ž . Ž .ARMA p , q against an ARMA p, q . All technical proofs that are not0 0
essential for a comprehensive reading are given in Section 5.

Žn. Ž .2. Locally conic models. Let X � X , . . . , X be an n-dimensional1 n
real observation with distribution P Žn. in a set PP , which is assumed to be0 n
dominated by some positive measure � Žn.. We assume there exists a

Ž . � �parametrization of all PP through two parameters � and � : � , � � 0, Mn
� BB, where M is a positive real number, BB is a compact Polish space and

� �there exists a subset TT, of 0, M � BB such that

�n � N, PP � P Žn. , � , � � TT .Ž .� 4n Ž� , � .

� �Here 0, M � BB is endowed with the product topology of R and BB, and TT

has compact closure TT.
The parametrization is assumed to be nonidentifiable in the parameter �

for � � 0, but identifiable in the parameter � at � � 0; that is,

LC1 P Žn. � P Žn. � � � 0,Ž . Ž� , � . 0

which, in particular, implies

�� � BB, P Žn. � P Žn. .Ž0, � . 0

For any � in BB, define

� � � 4� � sup t : 0, t � � 	 TT .� 4�

Assume moreover:

Ž . � � � 4LC2 �� � BB, either � � 0 or there exists c � 0 such that 0, c � � 
�

TT is empty.

Define now

B̃B � � � BB : � � 0 .� 4�
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Ž .Assumption LC2 means that for any accumulation sequence of parameters
Ž . Ž Žn. .� , � leading to � � 0, the submodels P are defined in a rightk k Ž� , � . �k˜neighborhood of 0. Moreover, BB is then the set of all directions � for which
the submodel approaches 0.

Such parametrization is called a locally conic parametrization. Models for
which there exists a locally conic parametrization are called locally conic
models.

3. Testing the number of populations in a mixture. In this section,
X Žn. is an n sample of a mixture of q populations; that is,

�nŽn.P � g � ,Ž .0 0

Ž .where g is a mixture of q populations in the parametric family f ,0 � � � �

� 	 Rk:
q

0
l , 0g � � f .Ý0 l �

l�1

Ž .The general model is that of p mixtures GG given by 1 . We assume that GGp p
is identifiable in the weak sense

p p p p
0 1 0 1

l , 0 l , 1 0 1� f � � f �-a.e. � � �  � � � Ý Ý Ý Ýl � l � i � i �i i
l�1 l�1 i�1 i�1

as probability distributions on �. In other words, GG is identifiable if thep
Ž .parameter is the discrete mixing probability distribution on �. Teicher 1965

Ž .or Yakowitz and Spragins 1968 give sufficient conditions for such weak
identifiability, which hold, for instance, for finite mixtures of Gaussian or
gamma distributions.

The aim of this section is to derive the limiting distribution of the LRT
statistic. Define for any g in GG ,p

n

l g � log g XŽ . Ž .Ýn i
i�1

and the statistic

T p � sup l g � l g .Ž . Ž . Ž .n n n 0
g�GGp

The LRT statistic for testing H : ‘‘q populations’’ against H : ‘‘p popula-0 1
tions’’ is

V � T p � T q .Ž . Ž .n n n

Since we shall use partial derivatives of f with respect to � , we introduce�

some notation: Dh will be the hth partial derivative operator withi � � � i1 h

respect to � ��� � , so that Dh f will be the value of this partiali i i � � � i �1 h 1 h

derivative of f at point � .
We introduce the following locally conic parametrization, previously pro-

Ž .posed by the authors in Dacunha-Castelle and Gassiat 1997 . The idea is to
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define a perturbation of g in the following way: perturb the q mixture g0 0
through a perturbation of the parameters � l, 0 and the weights � 0, and add al
perturbation as a p � q mixture with weights tending to 0. This leads to

p�q q
0˜ ˜i l , 0 lg � � � f � � � � � f .Ž .˜ ˜Ý ÝŽ� , � . i � l l � ��

i�1 l�1

Here

� � � , . . . , � , � 1, . . . , � p�q ,  1, . . . ,  q , � , . . . , � .Ž .1 p�q 1 q

˜ 2�Ž . �Now, the directional Fisher information is � g ��� �g , where H is theH0, � 0
2Ž .Hilbert space L g � , and does not equal 1 uniformly. A normalizing factor0

Ž .N � is introduced so as to set all directional Fisher information to 1. This
leads to the definition

p�q q� �
0

i l , 0 l5 g � � f � � � � fŽ . Ý ÝŽ� , � . i � l l � �� �ŽN Ž � ..ž /N � N �Ž . Ž .i�1 l�1

with
1q p�q qk l , 0 i l , 0D f f fi � � �0 lN � � �  � � � � .Ž . Ý Ý Ý Ýl i i lg g g0 0 0l�1 i�1 i�1 l�1 H

Ž .Equation 5 does not completely define a locally conic parametrization.
Ž .Indeed, it does not define unambiguously � , � for a given mixture. For

instance, different sets of parameters may give g . First, restrictions are0
imposed on the � ’s:

� � 0, � i � � , i � 1, . . . , p � q ,i
6Ž .

 l � Rk , � � R, l � 1, . . . , q ,l
p�q q p�q q q

22 2 l� �7 � � � � 0 and � � � �  � 1.Ž . Ý Ý Ý Ý Ýi l i l
i�1 l�1 i�1 l�1 l�1

Ž .However, this is not sufficient. Without further restrictions on �, LC1 does
not hold. It is essential to define the set BB of possible � such that g �Ž� , � .
g � � � 0. We shall do it now.0

Let g be any p mixture:
p

ig � � � f .Ý i �
i�1

Ž .To describe it through 5 , we have to associate the parameters of g to those
of g , that is, to give a special order to the parameters. In other words, for0

� �any permutation 	 of 1, . . . , p , we define the parameters � and � such	 	

that g � g. This leads toŽ� , � .	 	

� � � , . . . , � , � 1, 	 , . . . , � p�q , 	 ,  1, 	 , . . . ,  q , 	 , � , . . . , �Ž .	 1, 	 p�q , 	 1, 	 q , 	
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with
� i � 1, . . . , p � q , � � � � � � N � ,Ž .i , 	 	 	 Ž i. 	

� i � 1, . . . , p � q , � i , 	 � � 	 Ž i. ,

� i � 1, . . . , q ,  i , 	 � � � � 	 Ž p�q�i. � � i , 0 � N � ,Ž .Ž .	 	

� i � 1, . . . , q , � � � � � � � 0 � N � .Ž .Ž .i , 	 	 	 Ž p�q�i. i 	

It is easily seen that � equals	

1q p�qk l , 0 	 Ž i.D f fi � �	 Ž p�q�l . l , 0� � � � �Ž .Ý Ý Ýi i 	 Ž i.g g0 0l�1 i�1 i�1

q
l , 0f�0� � � � .Ž .Ý 	 Ž p�q�l . l g0l�1 H

The system is not ambiguous on the scale of � because of the normalizing	

Ž .condition 7 . The problem is then to choose between the permutations. The
idea is to associate step by step the nearest points � i involved in g to the set
of points � l, 0 involved in g . Look for0

� l , 0 i �min � � � .
l�1, . . . , q
i�1, . . . , p

Ž .It is attained for l and i . Define then 	 p � q � l � i . Look then for1 1 1 1

� l , 0 i �min � � � .
l�1 , . . . ,q , l�l1
i�1 , . . . , p , i�i1

Ž .It is attained for l and i . Set the 	 p � q � l � i . By induction, define2 2 2 2
Ž .in the same way 	 p � q � l � i for j � 1, . . . , q. In this algorithm, con-j j

Ž .sider only points truly involved in g eventually less than p points . Then
complete the permutation 	 in some ordered way. You then have defined a

Ž .permutation 	 g . Define now

BB � � , g � GG� 4	 Ž g . p

and also

TT � � , � : � � � , g � GG .� 4Ž .	 Ž g . 	 Ž g .

˜This induces the set BB as the intersection of all directions approaching 0 in
Ž . Ž .TT. By construction, LC1 and LC2 hold and the parametrization is locally

Ž .conic. An important point to notice, coming from the normalizing condition 7
is that

� 2� �8 � � , � � TT , � p � 2 q sup � .Ž . Ž .
N �Ž . ���

Ž .The upper bound in 8 is not tight: for fixed �, some � satisfying the upper
bound will not give a mixture density. However, for any �, any � less than an

Ž .appropriate constant multiple of N � will yield a mixture density. Inequal-
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Ž .ity 8 is mentioned to point out that � is bounded and tends to 0 as soon as
Ž .N � tends to 0.
We now need some more assumptions. Define DD as the subset of the unit

sphere of H of functions of form

q 1 p�q qk l , 0 i l , 01 D f f fi � � �0 l9 �  � � � �Ž . Ý Ý Ý Ýl i i lž /N � g g gŽ . 0 0 0l�1 i�1 i�1 l�1

˜with � in BB. Define also � as the Gaussian process indexed by DD withd
covariance that is the usual hilbertian product in H.

We use the following assumptions.

Ž . Ž . � �P0 There exists a function h in L g � such that �� � �, log f � h1 0 �

�-a.e. Moreover, f possesses partial derivatives up to order 5. For all h � 5�

and all i ��� i ,1 h

Dh f 0i � � � i �1 h 3� L g � .Ž .0g0

Moreover, there exists a function m and a positive 
 such that5

5D fi � � � i �1 5 3sup � m , E m � ��.5 g � 50g0 0� ���� �


Ž .P1 For any integer p , p , such that p � p � p � q, for any set of1 2 1 2
distinct points � l, l � 1, . . . , p , distinct from any � l, 0, any permutation 	 of1
� �1, . . . , q , no linear combination of the functions

f l f l , 0 D1 f l , 0� � i �
, , ,ž / ž / ž /ž g g g0 0 0l�1, . . . , p l�1, . . . , q l�1, . . . , q , i�1, . . . , k1

D2 f l , 0i j �ž / /g0 Ž . Ž .l�	 1 , . . . , 	 p , i , j�1, . . . , k2

is null in H.

Ž .Notice that P0 implies the existence of functions m , j � 1, . . . , 4, such thatj
for all j,

jD fi � � � i �1 j 3sup � m , E m � ��.j g � j0g0 0� ���� �


Ž .Another important consequence of P0 is the following proposition.

Ž . �PROPOSITION 3.1. Under assumption P0 , DD is a Donsker class see Van
Ž .�der Vaart and Wellner 1996 and � has continuous sample paths.d
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The proof of Proposition 3.1 is given in Section 5. It involves the identification
Ž .of DD, the compact closure of DD in H, which is found by letting some of the

l l, 0 Ž .� tend to some of the � in 3.9 . DD is the subset of the unit sphere of H of
functions of the form

p 1g q k1 l l , 0 l , 0f f D f� � i �
� � � � �˜Ý Ý Ý Ýl l l , ig g g0 0 0l�1 l�1 l�1 i�1

k 2
l , 0D fi j �u u� � a aÝ Ý Ýu i j g0Ž . Ž . i , j�1l�L p u�J l1

10Ž .

p1 q Ž .with p � p � q, � � 0, Ý � � Ý � � 0, � � 0, and where L p is a˜1 l l�1 l l�1 l u 1
� 4subset of 1, . . . , q of cardinality less than or equal to p � q � p , and1

Ž Ž .. � 4J l is a partition of 1, . . . , p � q .l � LŽ p .1
Ž .The following theorem states the asymptotic distribution of T p .n

Ž . Ž . Ž .THEOREM 3.2. Under the assumptions P0 and P1 , T p converges inn
distribution to the variable

1 2sup � 1 .d � � 02 d
d�DD

We just give a sketch of the proof; the complete proof is given in Section 5.
Ž .The difficult point is to define a random partition of the parameter space so

that on each partitioning set, the converging parameter converges uniformly
to 0. Indeed, this is needed to be able to expand the likelihood and to compute
the limiting distribution of the statistic.

ˆ Ž .First of all, define � as a maximizer of l � , � for the fixed value of �.� n
Ž . Ž .Here, l � , � � l g . The following result, which was proved in Da-n n Ž� , � .

Ž . Ž .cunha-Castelle and Gassiat 1997 , follows from P0 and the fact that the
parametrization is locally conic:

ˆPROPOSITION 3.3. Define � � sup � . Then � converges to 0 in proba-˜n � � BB � n
bility as n tends to infinity.

Define now the partition
� l �sup  1l

A � � : �n �2½ 5�N �Ž . n

for some � � 3�4 and
� l � 1

B � � : �l � 1, . . . , q , � .n �2½ 5�N �Ž . n

We have the following two lemmas.

ˆŽ . Ž .LEMMA 3.4. Define LL � sup l � , � � l 0 . Under the assumptionsn � � A n � nn

of Theorem 3.2, LL converges in distribution ton
2111 sup � � 1 .Ž . Ž .d � � 02 d

d�DD
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ˆŽ .LEMMA 3.5. Under the assumptions of Theorem 3.2, sup l � , � �� � B n �n
Ž . Ž .l 0 is bounded above by LL � o 1 .n n P

Theorem 3.2 is now a consequence of Lemmas 3.4 and 3.5.
The distribution of the LRT statistic may now be given. Indeed, the

Ž Ž . Ž ..limiting distribution of T p , T q isn n

1 12 2sup � 1 , sup � 1 ,d � � 0 d � � 02 2ž /d 0 d0d�DD d �DD0 0

where DD is the set of directional scores for the identifiable model of q0
mixtures GG . That is, DD is the set of functions of formq 0

q 1 qk l , 0 l , 01 D f fi � �0 l12 �  � � ,Ž . Ý Ý Ýl i lž /N � g gŽ . 0 0l�1 i�1 l�1

and DD is, of course, a subset of DD. Define EE as the positive cone spanned by0 0
DD , which is here a linear space. Define P EE 

0 as the linear orthogonal0
projector onto EE  , the orthogonal space of EE . Let UU be the set of normalized0 0

EE 
0 Ž .vectors of P DD ; that is,

u EE0UU � : u � P d , d � DD .Ž .½ 5� �u H

We have the next theorem:

Ž . Ž .THEOREM 3.6. Under the assumptions P0 and P1 , V converges inn
distribution to the variable

1 2sup � 1 .u � � 02 u
u�UU

COMMENTS. The compactness restriction on � is essential as shown by
Ž .Hartigan 1985 . It is not sufficient though to have a tight limit for the LRT:
Ž .Ciuperca 1998 proved that for translation mixtures of exponential distribu-

tions, the LRT converges to �� with probability 1�2. This is due to the
noncompactness of the set of scores DD.

Ž .The limiting distribution depends on the null parameter. Lindsay 1995
gave an approximation theory of the limiting distribution based on Hotelling’s
tubes. Analytic derivations of the distributions of the supremum of the
Gaussian process as involved in the theorems are difficult problems. In

Ž .similar contexts, Beran and Millar 1987 proposed stochastic procedures
using bootstrapping to find the estimated level of confidence sets when the
asymptotic distribution is too intractable. Similar ideas could be used here.

Ž . Ž . Ž .Verification of assumptions P0 and P1 , was done in Keribin 1997 for´
Gaussian and Poisson mixtures.

Ž .Assumption P0 is probably not optimal. It should be possible to prove the
result using only derivatives up to order 3. However, one has to be careful to
ensure uniformity of convergence of the converging parameter and in the
expansions.
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In the particular case where q � 1, p � 2 and k � 1, the limiting distribu-
tion takes a particular simple form. Define

1
0 0D f D f1 � �

e � .1
0 0f f� � H

� 4The set DD reduces to the set e , �e , and the set DD is the set of functions0 1 1
of the form

�e � � h �Ž .1

such that � � 0, �2 � � 2 � 1,

f � f 0� �
a � � , eŽ . 1¦ ;

0f� H

and
f � f 0 �f 0 � a � eŽ .Ž .� � � 1

h � � .Ž .
� �0 0f � f �f � a � eŽ .Ž . H� � � 1

COROLLARY 3.7. In the case q � 1, p � 2 and k � 1, under the assump-
Ž . Ž .tions P0 and P1 , V converges in distribution ton

1 2sup � 1 .hŽ� . � � 02 hŽ� .
���

Ž .PROOF OF THEOREM 3.6. Let CC DD be the positive cone spanned by DD�
Ž .and let CC UU be the positive cone spanned by UU. We have�


CC DD � CC UU EE .Ž . Ž . �� � 0

Thus, we easily have

sup � 21 � sup sup � 2 1 .d � � 0 �d �� u � � 0d 0 �d �� u0
��0d�DD u�UU

2 2d �DD0 0 � �� �1

Ž .However, � is a linear process so thatd

� � �� � �� .�d �� u d u0 0

Now direct computation leads to
2 2 2sup �� � �� 1 � � � � 1 .Ž .d u �� ��� � 0 d u � � 00 d u 0 u0

��0
2 2� �� �1

DD is a symmetrical set, so that0

sup � 2 1 � sup � 2
d � � 0 d0 d 00d �DD d �DD0 00 0

and thus
1 1 12 2 2sup � 1 � sup � 1 � sup � 1 . �d � � 0 d � � 0 u � � 02 2 2d 0 d u0d�DD d �DD u�UU0 0
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4. Testing the order of an ARMA process. In this section, X Žn. is an
n realization of a strictly stationary process with spectral density f given by0
Ž . Ž .4 . Recall that if X is an ARMA p, q process with spectral density f , the
Fejer�Riesz canonical representation is

22 2	 Q 	
i x i x i xf e � � e � � g e ,Ž . Ž . Ž .

2� P 2�

where P is a polynomial with p roots of modulus strictly greater than 1 and
Q is a polynomial with q roots of modulus greater than or equal to 1,
Ž . Ž .P 0 � Q 0 � 1, and P and Q have real coefficients. We then define the

Ž .parameter space F p, q; �, u as the space of all spectral densities of the
previous form with all poles and zeros greater than or equal to 1 � �, and
0 � u � 	 2 � 1�u.

For any integrable function h on the torus, define the Fourier coefficient
� dx

�i k x i xĥ � e h e .Ž .Hk 2���

Define also the Toeplitz operator of order n, T , as the operator that associ-n
ates to each integrable function h on the torus the n � n Toeplitz matrix

Ž .T h :n

ˆT h � h , i , j � 1, . . . , n.Ž .Ž . i , jn i�j

Define for any continuous function v the periodogram
2n� dx

T Žn. Žn. i x ik xI v � X � T v � X � v e X e .Ž . Ž . Ž . ÝHn n k 2��� 1

Ž .In case the process is Gaussian, the logarithm of the likelihood is L f withn

�1T Žn. Žn.�2 L f � n log 2� � log det T f � X T f X .Ž . Ž . Ž .n n n

� Ž .�It is well known see, e.g., Azencott and Dacunha 1986 that it is well
approximated by the Whittle contrast function C , or pseudo likelihood, givenn
by

1
T Žn. Žn. 213 C f � n log 2� � X � T � X � n log 	Ž . Ž .n n ž /f

1
214 � n log 2� � n log 	 � I ,Ž . n ž /f

which is a contrast function for the estimation of the parameters even if the
process is not Gaussian. Define the statistic

U p , q � inf C f � C f .Ž . Ž . Ž .n n n 0
Ž .f�F p , q ; � , u

Ž . Ž .The LRT or pseudo LRT for testing H : ‘‘ARMA p , q ’’ against0 0 0
Ž .H : ‘‘ARMA p, q ’’ is1

W � U p , q � U p , q .Ž . Ž .n n n 0 0
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We now define a locally conic parametrization. Let f have zeros 1�u ,0 i
i � 1, . . . , q , and poles 1�t , i � 1, . . . , p . We assume for the moment that0 i 0

Ž .all poles are distinct and all zeros are distinct. Define r � min p � p , q � q .0 0
Suppose that r � p � p . The case where r � q � q can be handled in the0 0
same manner. Let s � q � q � r. As for mixtures, the locally conic0
parametrization is defined as a perturbation of the spectral density f ,0

Ž . Ž .followed by a choice of BB such that LC1 and LC2 hold. For any nonnega-
tive � , define

f ei xŽ .Ž� , � .

22 q0	 � �� N �  Ł 1 � u � �� N � � zŽ . Ž .Ž . Ž .Ž .Ž .0 i�1 i i� p0ž /2� Ł 1 � t � �� N � � zŽ .Ž .Ž .Ž .i�1 i i

2r 1 � c � 
 �� N � � zŽ .Ž .Ž .Ž .Ž i i i
� Ł 1 � c � 1 � 
 �� N � � zŽ . Ž .Ž .Ž .Ž .i�1 i i i

15Ž .

2s�
i� 1 � � zÝ iž /N �Ž . i�1

i x � � � �with z � e , and where, for i � 1, . . . , r, 
 � 1 if inf c � t � inf c � ui j i j j i j
� � � �and 
 � 0 if inf c � t � inf c � u . Herei j i j j i j

� �  , � , � , c, � , �Ž .

Ž . q0 Ž . q0 Ž .with  � R, � � � � C , � � � � C , c � c �j j�1, . . . , q j j�1, . . . , p j j�1, . . . , r0 0r � � Ž . Ž . r Ž . sC , c � 1� 1 � � , � � � C , � � � � C and such thatj j j�1, . . . , r j j�1, . . . , s

� � 2 � � 2 � � 2 � � 2� � � � � � � � 1.

The normalizing factor to set the directional Fisher information to 1 is given
by

p q0 0 � z � � z �i i i i
N � � � � � �Ž . Ý Ý2 ž / ž /1 � t z z � t 1 � u z z � u	 i i i i0 i�1 i�1

2r s1 � 2
 � z 1 � 2
 � �Ž . Ž .i i i i ii� � � � z � ,Ý Ý i iž /ž /1 � c z z � c zi ii�1 i�1 H

2Ž� � .where H is the Hilbert space L 0, 2� ; dx�2� .
Ž .Let us now define BB. Let f be any function in F p, q; �, u and let it have

zeros 1�v , j � 1, . . . , q�, q � q� � q, and poles w , j � 1, . . . , p�, p � p� � p.j 0 j 0
� �Let � be any permutation of 1, . . . , q� and � be any permutation of1 2

� � Ž . p� Ž . Ž . q � Ž .1, . . . , p� . Define then P z � Ł 1 � w z , Q z � Ł 1 � v . Thej�1 � Ž j. j�1 � Ž j.2 1

right choice of the permutations � and � will lead to the desired local1 2
identifiability without losing infinite differentiability. For this choice, use the
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Ž .following rule: choose first � j such that1 1

� � � �v � v � inf v � u .� Ž j . j l j1 1 1 l , j

Then iterate the rule for the q � 1 remaining zeros of f . Do the same for0 0
Ž .the p poles of f , so that � is defined for p points, and the �� �N � and0 0 2 0 i

Ž .�� �N � are defined. Then p� � p poles and q� � q zeros remain. Do thei 0 0
same coupling for r points relating r remaining poles to the r remaining

Ž . �poles. This defines the �� �N � and the 
 eventually some � are null ifi i i
Ž . �inf p� � p , q� � q � r . To end, complete � in some way, so that it0 0 2

Ž .defines the �� �N � . Recall that the AR and MA polynomials have reali
coefficients if and only if the conjugate of each zero is a zero. The number of
real parameters is then p � q � 1. The set TT is then the set of all obtained
Ž . Ž . Ž . Ž .� , � when f runs over F p, q; �, u . By construction, LC1 and LC2 hold.

Notice that at least for small enough � , the perturbation direction � may
˜take any direction. In other words, the set of real parameters involved in BB

p�q�1 Ž .spans R . As for mixtures, we have for all � , � the upper bound

�
� 2 p � q � r � s .Ž .0 0N �Ž .

We now define the derivative space DD to be the subset of the unit sphere of
H of functions of the form

p q0 01  � z � � z �i i i i� � � �Ý Ý2 ž / ž /žN � 1 � t z z � t 1 � u z z � u	Ž . i i i i0 i�1 i�1
16Ž .

r s1 � 2
 � z 1 � 2
 � �Ž . Ž .i i i i ii� � � � z �Ý Ý i iž /ž / /1 � c z z � c zi ii�1 i�1

i x ˜with z � e and with � in BB. Define also � as the Gaussian processd
indexed by DD with the usual hilbertian product in H as covariance.

Ž .The following theorem states the asymptotic distribution of U p, q :n

Ž .THEOREM 4.1. U p, q converges in distribution to the variablen

� sup � 2 .d
d�DD

The complete proof is given in Section 5. As for mixtures, it relies on
partitioning the parameter space, so that on each set, the converging parame-
ter converges uniformly to 0 and the limiting distribution may be computed.

ˆ Ž .We have first, if � is a minimizer of C f for the fixed value of �, the� n Ž� , � .
following proposition.

ˆPROPOSITION 4.2. Define � � sup � . Then � converges to 0 in proba-˜n � � BB � n
bility as n tends to infinity.
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Let
�

�A � � , � � TT : � � , � � 2� ,Ž .n n n2½ 5N �Ž .
�

�B � � , � � TT : � � , � � 2�Ž .n n n2½ 5N �Ž .
� �for some � � 0, 1 . We have the following lemmas:

Ž . Ž .LEMMA 4.3. MM � inf C f � C f converges in distributionn Ž� , � .� A n Ž� , � . n 0n

to the variable

17 � sup � 21 .Ž . d � � 0d
d�DD

Ž . Ž . Ž .LEMMA 4.4. inf C f � C f is bounded below by MM � o 1 .Ž� , � .� B n Ž� , � . n 0 nn

Lemmas 4.3 and 4.4, and the fact that DD is a symmetrical set, lead to
Theorem 4.1.

COMMENTS. In case p � q � 0 and p � q � 1, we recover the result of0 0
Ž .Hannan 1980 , and in case p � 1 � p and q � 1 � q, we recover the0 0

�Ž . �asymptotic result of Veres 1987 , Lemma 1 .
An important point is the identification of DD; that is, the study of the limit

Ž . Ž .points in DD when N � tends to 0. This is why the 
 appear in 15 , so thati
Ž .when N � tends to 0, f tends to f . This happens when some c tend toŽ� , � . 0 i

some t with corresponding � tending to the corresponding � and�or somei i i
c tend to some u with corresponding � tending to the corresponding � . DDi i i i
is the subset of the unit sphere of H of functions of the form

aa ip a i0 i z 1
� � � �Ý Ý i , k i , k2 ž / ž /ž /1 � t z z � t	 i i0 i�1 k�1

bbq b ii0 i z 1
� � � �Ý Ý i , k i , kž / ž /ž /1 � u z z � ui ii�1 k�1

r s1 1 � 2
 � z 1 � 2
 � �Ž . Ž .i i i i ii� � � � z �Ý Ý i iž /ž /1 � c z z � c zi ii�1 i�1

p0 q0 Ž .with 1 � a , i � 1, . . . , p , 1 � b , i � 1, . . . , q , Ý a � Ý b � p � q � ri 0 i 0 1 i 1 i 0 0
� p0 q0 Ž .�and r � r � Ý a � Ý b � p � q .1 1 i 1 i 0 0

Define DD as the subset of the unit sphere of H of functions of form0

p q0 01  � z � � z �i i i i
18 � � � � .Ž . Ý Ý2 ž / ž /ž /N � 1 � t z z � t 1 � u z z � u	Ž . i i i i0 i�1 i�1

The limiting distribution of the LRT statistic may now be derived in the same
way as for mixtures.
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THEOREM 4.5. The asymptotic distribution of W is that ofn

19 � sup � 2 ,Ž . v
v�VV

where VV is the set of normalized vectors of the orthogonal projection of DD onto
the orthogonal of the space spanned by DD . This distribution is that of0

2 2� sup Z � � ��� �Z � � W ,Ž . Ž .Ž .1 r
rŽ . � �� , . . . , � � �T , T1 r � �

1 ŽŽ . . Ž Ž ..where T � log � � 2 �� , Z � is the centered Gaussian process with� 2

covariance function

C s, t � 1�ch t � sŽ . Ž .
2Ž . Ž Ž ..and W has distribution � s and is independent Z � .

Ž . Ž .PROOF. In case p, q � p � 1, q � 1 , the set DD reduces to the subset0 0
DD of the unit sphere of H of functions of the form1, 1

p q0 01  � z � � z �i i i i� � � �Ý Ý2 ž / ž /žN � 1 � t z z � t 1 � u z z � u	Ž . i i i i0 i�1 i�1

1 � 2
 � z 1 � 2 �Ž . Ž .
� � .ž / /1 � cz z � c

Let VV be the set of normalized vectors of the orthogonal projection of1
DD onto the orthogonal of the space spanned by DD . By the result of1, 1 0

�Ž . � 2Veres 1987 , Theorem 1 , the distribution of sup � is that ofv � VV v1
Ž .2sup Z � . Now, in the case r � 0 and s � 0, the set DD reduces to the� ���T , T �� �

subset DD of the unit sphere of H of functions of the forms

p q0 01  � z � � z �i i i i� � � �Ý Ý2 ž / ž /žN � 1 � t z z � t 1 � u z z � u	Ž . i i i i0 i�1 i�1

s � ii� � z � .Ý i iž / /zi�1

Let VV be the set of normalized vectors of the orthogonal projection of DDs s
onto the orthogonal of the space spanned by DD . With r � 0, the over-0
parametrized model is identifiable, the chi-square theory applies and the

2 2Ž .asymptotic distribution of sup � is � s . Now looking at the linearv � VV vs

form of DD, VV is the set of normalized sums of r vectors in VV , to which s1
vectors in VV are added, that can be decomposed also by orthogonal projec-s
tion. Considering the linearity of the process � , Theorem 4.5 follows. �v
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5. Proofs.

Ž .5.1 PROOF OF PROPOSITION 3.1. Using P0 , g is differentiable withŽ� , � .
respect to � up to order 5, and we have for all 2 � h � 5, if g Žh. is the hthŽ� , � .

Ž .derivative of g with respect to � at point � , � ,

qkh
Žh. l l h�1

l , 0 lg � �  ���  D fÝ ÝŽ� , � . l i i i � � � i � �� �ŽN Ž � ..h 1 h�1 1 h�1N �Ž . i ��� i �1 l�11 h�1

qk1 �
0 l l h

l , 0 l� � � �  ���  D fÝ Ý l l i i i � � � i � �� �ŽN Ž � ..h 1 h 1 hž /N �Ž .N �Ž . i ��� i �1 l�11 h

and also g� equalsŽ� , � .

p�q q1
l l , 0 l� f � � fÝ Ýl � l � �� �ŽN Ž � ..žN �Ž . l�1 l�1

qk �
0 l 1

l , 0 l� � � �  D f .Ý Ý l l i i � �� �ŽN Ž � ..ž / /N �Ž .i�1 l�1

The proof of the theorem follows the same lines as that of Theorems 4.2 and
Ž .4.3 in Dacunha-Castelle and Gassiat 1997 . However, the parametrization is

not exactly the same, and has more terms, so that we detail the proof. It will
rely on the following lemma.

Ž .LEMMA 5.1. Under P1 , there exists a constant number a such that for �
˜in BB,

� l � 2sup l � a.
N �Ž .

Ž .PROOF OF LEMMA 5.1. First of all, using assumption P1 , the hermitian
matrix of all hilbertian scalar products involving functions in the free system
is positive, so that it has a positive smallest eigenvalue 	 , and the associated
hermitian product is larger than 	 multiplied by the usual scalar product in

s Ž 2 .� , s � p � kq � p k � 1 .2
� l � 2 Ž Ž ..If  � N � is unbounded, there exists a sequence � such thatn

� l , n �
lim � ��.

N �n��� Ž .n

l, n � Ž .� Ž .Since  is bounded see 7 , this implies that N � tends to 0. Usingn
Ž . l, nassumption P1 , this implies that  tends to 0. Let now J be the set ofl

i, n l, 0 � l, n � 2 Ž Ž ..indices i such that � tends to � . We have that  � N � isn
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bounded above by

� l , n � 21 
.1�22	 2 21j , n l , 0 l j , n l , 0� � � �Ý � � �� � � Ý � � �� 1�o 1Ž .Ž .Ž . Ž .ž /j� J j j� J j4ž /l l

� Ž j, n l, 0.� Ž� l, n �. � l, n � Ž� Ž j, nNow, whether Ý � � � � � o  or  � o Ý � �j� J j j� J jl ll, 0.�. Ž j, n l, 0. l, nŽ Ž ..� � or Ý � � � � � � 1 � o 1 , one can see thatj� J jl
� l, n � Ž . �N � is bounded and the lemma follows. �

Ž .PROOF OF PROPOSITION 3.1. Let d � be the function in DD,

q 1 p�q qk l , 0 i l , 01 D f f fi � � �0 ld � � �  � � � � .Ž . Ý Ý Ý Ýl i i lž /N � g g gŽ . 0 0 0l�1 i�1 i�1 l�1

Ž Ž ..Let d � be a sequence of DD and let us search all possible accumulationn
Ž . Ž .points in H. If N � stays bounded below by a fixed positive number, P0n

˜Ž .implies that the accumulation points have the form d � ; else, there exists
Ž .an integer p � p � q � 1 such that for the indices eventually reordered1

l l, 0 Ž .l � p , the � do not converge to any of the � . By P1 , for the other1
l l, 0 Ž .p � q � p indices, the � converge to some � . Let L p be the set of1 1

l, 0 Ž Ž ..indices of the limit points � and let J l be the partition such thatl � LŽ p .1
Ž . u l, 0for u in J l , � converges to � . Writing a Taylor expansion and keeping

only the leading terms, we have

p q1 l l , 01 f f� �
d � � � � � � �Ž . Ý Ý Ýl u lž /žN � g gž Ž . 0 0l�1 l�1 Ž .u�J l

q 1k l , 0D Fj �u l , 0 0 l� � � � � � � Ž .Ý Ý Ý u j j l jž / g0l�1 j�1 Ž .u�J l

k 1
u l , 0� � � � �Ž .Ý Ý Ý u j jž2Ž . j , j��1 Ž .l�L p u�J l1

20Ž .

D2 f l , 0j j� �u l , 0� � � � 1 � o 1 .Ž .Ž .Ž .j� j� / /g /0

Ž .N � has the same expansion. The sequences of coefficients

Ý � � � u l , 0 0 l� Ý � � � � � � Ž .u� J u ll u� J Ž l . u j j l jl, , ,
N � N � N �Ž . Ž . Ž .

Ý � � u � � l , 0 � u � � l , 0Ž . Ž .u� J Ž l . u j j j� j�

N �Ž .
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are bounded. Let the accumulation points be, respectively, � , � , � and˜l l l, i
u u Ž .� a a . The accumulation points thus have the form 10 . Now, expansionu i j

Ž . Ž .20 and assumption P0 allow us to prove that DD has a g � square0
Ž .integrable cover function. Let NN 
 be the bracketing number, that is, the

� �number of 
-brackets needed to cover DD. An 
-bracket f , g is the set of
Ž . Ž . Ž . � �functions d such that for all x, f x � d x � g x , and with f � g � 
H

� Ž .� Ž .see Van der Vaart and Wellner 1996 . Again expansion 20 and assump-
Ž . Ž . Ktion P0 allow us to prove that NN 
 is at most of order 1�
 with
Ž . �Ž . �K � k � 1 p. Using Van der Vaart and Wellner 1996 , page 129 leads to

the conclusion. �

PROOF OF LEMMA 3.4. First, the expansion

l � , � � l 0Ž . Ž .n n

2n ng � g 1 g � gŽ� , � . 0 Ž� , � . 0� X � XŽ . Ž .Ý Ýi iž /g 2 g0 0i�1 i�121Ž .
3n1 g � gŽ� , � . 0� U XŽ .Ý i iž /3 g0i�1

� �holds for � tending to 0, where U � 1. Let us now write an expansion ofi
g up to order 2,Ž� , � .

� 2
� 	g x � g x � � � g x � � g x ,Ž . Ž . Ž . Ž .Ž� , � . 0 Ž0 , � . Ž� * , � .2

for a � * � � and depending on x. Now as � tends to 0,

g	 xŽ .Ž� * , � .

q k2
l 1

l , 0� �  D f xŽ .Ý Ý l i i �2N �Ž . l�1 i�1

q k1
0 l l 2

l , 0� �   D f xŽ .Ý Ý l i j i j �2N �Ž . l�1 i , j�1

� l � 2
�O sup � m x � m x g xŽ . Ž . Ž .Ž .2 3 03ž /ž /N �Ž .l

l Ž . � Ž .since  is bounded and using P0 . If g � ���� g , writeŽ0, � . Ž0, � .
n �gŽ0, � .

D � � X ,Ž . Ž .Ýn ig0i�1

q 1n k l , 0D fi �lF � � �  X ,Ž . Ž .Ý Ý Ýn l i ig0i�1 l�1 i�1

q 2n k l , 0D fi j �0 l lG � � �   X .Ž . Ž .Ý Ý Ýn l i i ig0i�1 l�1 i , j�1
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Now, for any l � 1, . . . , q,

� l �
1��� � �n2N �Ž .

'Ž Ž . Ž . Ž ..and since D � , F � , G � � n converges uniformly in distributionn n n
using Proposition 3.1, we have easily

� 2

F � � o � D �Ž . Ž .Ž .n n2N �Ž .
and

� 2

G � � o � D � ,Ž . Ž .Ž .n n2N �Ž .

Ž .where the o � are uniform in probability over � in A . Also, by applyingn
Lemma 5.1, we obtain for any l � 1, . . . , q,

� l � 2
1�4� �3� � � ,n3N �Ž .

Ž .which goes to 0 since � � 3�4. We finally get, looking at all terms in 21 , for
� in A and for � � 2� ,n n

� 2

l � , � � l 0 � �D � � n 1 � o 1 ,Ž . Ž . Ž . Ž .Ž .n n nž /2

ˆŽ .where again the o � is uniform in probability over � in A . Since � � � ,n � n
Ž . Ž 2 .this obviously leads, by maximizing � D � � � �2 n, ton

21 D �Ž .nˆl � , � � l 0 � 1 1 � o 1Ž . Ž .Ž .ž /n � n D Ž � .� 0n2 n

Ž .for � in A and where the o � is uniform in probability over � in A . Definen n

g�
Ž0 , � .

DD � , � � A .n n½ 5g0

We have � DD � DD, and using Proposition 3.1,n n

2n1 1
n22 LL � sup d X 1 1 � o 1 .Ž . Ž . Ž .Ž .Ý Ž .n i 1� n Ý d X �0' i� 1 iž /'2 nd�DD i�1

The conclusion of Lemma 3.4 follows using again Proposition 3.1. �
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Let us now study what happens on B . First of all, notice that on B ,n n
Ž . Ž . lN � tends to 0, and using P1 , all  tend to 0. We have the following

lemma as an immediate consequence of Lemma 5.1:

LEMMA 5.2. There exists a constant number M such that for � in B ,n

N � � M� 2 � �3,Ž . n
Ž .and for any i, l ,

� l � ��3 � M� .i n

l Ž Ž .2 .PROOF OF LEMMA 5.2. Define � �  � N � . We first have, usingi, l i
Lemma 5.1,

a1�3

N � � .Ž . 2�3� ��i , l

Ž . � � �Now, on B , there exists i, l such that � � 1�k� , and the first inequal-n i, l n
Ž .ity of the lemma follows. Now, using Lemma 5.1 we have for all i, l ,

l� � ' � aN �Ž .i

and the second inequality follows. �

Ž . � l �In other words, on B , N � and all  tend uniformly to 0.n i

Ž .PROOF OF LEMMA 3.5. We shall use expansion 21 again, but the expan-
sion for g now has to be done up to order 5,Ž� , � .

4 i 5� �
� Ž i. Ž5.g x � g x � � � g x � � g x � � g xŽ . Ž . Ž . Ž . Ž .ÝŽ� , � . 0 Ž0 , � . Ž0 , � . Ž� * , � .i! 5!i�2

for a � * � � and depending on x.
Define

q 1k l , 0D fi �ld � � �  ,Ž . Ý Ý1 l i g0l�1 i�1

q �k gŽ0, � .lU � � �  u � , i , l � d � , ,Ž . Ž . Ž .Ý Ý l i 1¦ ;g0l�1 i�1 H

� � 2S � � d � .Ž . Ž . H1

Ž .Define also P � , � the polynomial of degree 4 in the variable � :n

n� 2 � 2

P � , � � � D � � � F �Ž . Ž . Ž .n n n22 N �Ž .
n� 3 n� 4

� U � � S �Ž . Ž .2 4N � 2 N �Ž . Ž .
23Ž .

4
j� p n , � � .Ž .Ý j

j�1
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The aim is now to prove that for � � 2� and for � � B we haven n

24 l � , � � l 0 � P � , � 1 � o 1 ,Ž . Ž . Ž . Ž . Ž .Ž .n n n

Ž .where all the o � are uniform in probability over � in B . From now on, anyn
Ž . � l �o 1 will be uniform over B . Since  tends uniformly to 0, we haven i

 l ���  l  l ���  l
i i i i1 h 1 h�1� o ,h hž /N � N �Ž . Ž .

so we can write for h � 4,
qkh

Žh. l l h�1
l , 0 lg � �  ���  D fÝ ÝŽ� , � . l i i i � � � i � �� �ŽN Ž � ..h 1 h�1 1 h�1ž /N �Ž . i ��� i �1 l�11 h�1

� 1 � o 1 .Ž .Ž .
We obtain

l � , � � l 0 � P � , � � R ,Ž . Ž . Ž .n n n n

Ž � Ž . j �.where R is a sum of terms that are o sup p n, � � plus terms thatn 1� j� 4 j
may be bounded with one of the following forms:

h l l n h�1
l , 0�  ���  D fi i i � � � i �1 h�1 1 h�1 X , h � 3;Ž .Ý ih gN �Ž . 0i�1

5 � l � 5 h�1 l l h�l l l l l�  ���  �  ���   ��� �  i i i i j j1 h�1 1 h�1 1 l�1n , n , n5 h h�lN � N � N �Ž . Ž . Ž .
with h , l � 3;

� h�2 l ���  l � h� l�1 l ���  l  l ���  l
i i i i j j1 h�1 1 h�1 1 l�13� n , n , n ,h h�lN � N �Ž . Ž .

� h� l�m l ���  l  l ���  l  l ���  l
i i j j k k1 h�1 1 l�1 1 m�1 n with h , l , m � 2.h� l�mN �Ž .
Ž . lNow, since ��N � and the  are bounded, and using Lemmas 5.1 and 5.2i

Ž 2 .and the fact that � is in B , each term can be bounded by o n� orn
Ž 4 � l � 2 4Ž .. n Ž Ž ..o n�  �N � . So every term of R is o Q � , � uniformly in �. It isn

Ž . Ž Ž ..not possible now to conclude that 23 holds since we need o P � , � insteadn
Ž Ž .. Ž .of o Q � , � and it could be that Q � , � will be much larger thann n

Ž .P � , � . First, we prove thatn

25 sup P � , � � LL 1 � o 1 .Ž . Ž . Ž .Ž .n n
��2�n
��Bn

Ž Ž .2 . ŽLet � � 1� N � . Considering � and � as different variables in fact � is
.a function of � , define

Y � , � , �Ž .n

n � 4
2 2 3 2� � D � � � � � F � � � nU � � � � nS � � � .Ž . Ž . Ž . Ž .Ž .n n2 2
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Ž . Ž .We have P � , � � Y �, �, � , so thatn n

sup P � , � � sup Z � ,Ž . Ž .n n
��2� ��Bn n
��Bn

Ž . Ž .where Z � � sup Y �, �, � . Optimizing in � and then in � givesn � , � � 0 n

1 F � 1 U �Ž . Ž .n
� � � ,2 S � � S �n� Ž . Ž .

1 D � � F � U � � S �Ž . Ž . Ž . Ž .Ž .Ž .n n
� � 1D Ž � .�ŽF Ž � .UŽ � ..�ŽSŽ � ..� 02 n nž /n 1 � U � � S �Ž . Ž .Ž .Ž .

and

2
1 D � � F � U � � S �Ž . Ž . Ž . Ž .Ž .Ž .Ž .n n

Z � �Ž .n 22n ž /1 � U � � S �Ž . Ž .Ž . Ž .
�1D Ž � .�ŽF Ž � .UŽ � ..�ŽSŽ � ..� 0n n

21 F �Ž .Ž .n� .ž /2n S �Ž .

For any real number � and any � � 0 such that �2 � �2 � 1, the function

g� �g � d � U � � S �Ž . Ž . Ž .Ž . Ž .Ž0, � . 0 1
d �, � , � � �d � � �Ž . Ž .1 2ž /1 � U � � S �Ž . Ž .Ž .Ž .

is in DD, and

2n1 1
nZ � � sup d �, � , � X 1Ž . Ž . Ž .Ý . Ž .Ž .n i Ž1� n Ý d � , � , � X �0' i� 1 iž /'2 n��0 i�1

2 2� �� �1

by a straightforward computation of the last supremum. Thus

2n1 1
nsup P � , � � sup d X 1Ž . Ž .Ý . Ž .n i Ž1� n Ý d X �0' i� 1 iž /'2 n��2� d�DD i�1n

��Bn

Ž . Ž .so that, applying 22 , 25 follows. Let us now prove that when at least one
Ž . j Ž .term p n, � � of P tends to ��, then this implies that P � , � tends toj n n

ˆ ˆŽ .��, and that at the optimizing value � , � , all terms in P have the samen
ˆ ˆŽ Ž ..order and R � o P � , � . We shall conclude that, in the neighborhoodn n

ˆ ˆŽ . Ž . Ž .of � , � , 24 will hold and, applying 25 , Lemma 3.5 will follow.
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Ž .We shall need one technical lemma, which is a simple consequence of P1 .

l Ž Ž .2 .LEMMA 5.3. There exists � � 0 such that, with � �  � N � ,i, l i

q qk k
2 2� � � � nv i , l ; i�, l� � � � � nv i , l ; i , l .Ž . Ž .Ý Ý Ý Ýl l� i , l i� , l� l i , l

l , l��1 i , i��1 l�1 i�1

Ž . 2a If n� � ��, notice that

D � n D � � F �Ž . Ž . Ž .n n n2'P � , � � n � � � Var �Ž .n 2' ' '2n n N � nŽ .

so that P � ��.n
Ž . 2 Ž .b If n� � O 1 ,

Ž . � l � Ž .2i either there exists l such that �  �N � � ��, in which case
4 Ž .Lemma 5.3 proves that the larger term in P is �� p n, � andn 4

P � ��n
Ž . � l � Ž .2 Ž . Ž 2 .ii or sup �  �N � � O 1 , in which case R � o n� , so thatl n

Ž . Ž . Ž .R � o 1 . In case the maximum value of P is o 1 , it is o LL , andn n n
Ž . Ž .in case it is not o 1 , 24 holds in the neighborhood of the maximiz-

ing value. �

Ž .5.2. PROOF OF THEOREM 4.1. We shall study derivatives of C f withn Ž� , � .
respect to � for fixed �. Define

1 
e �Ž� , � . 2žN � 	 � �� N �Ž . Ž .Ž .0

p0 � z �i i� �Ý ž /1� t ��� N � � z z� t ��� N � �Ž . Ž .Ž . Ž .Ž . Ž .i i i ii�1

q0 � z �i i� �Ý ž /1� u ��� N � � z z� u ��� N � �Ž . Ž .Ž . Ž .Ž . Ž .i i i ii�1

r � z �i i� �Ý ž /1� c ��� N � � z z� c ��� N � �Ž . Ž .Ž . Ž .Ž . Ž .i i i ii�1

s � ii� � z �Ý i iž / /zi�1

and eŽk . to be the partial derivative of e with respect to � . e is anŽ� , � . Ž� , � . Ž� , � .
� Ž . Ž .element of DD. Let C � , � be the partial derivative of C f with respectn n Ž� , � .

Žk .Ž . Ž .to � and let C � , � be the kth partial derivative of C f with respectn n Ž� , � .
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to � . We have for k � 1,
k Žk .�1 eŽ . Ž� , � .

k�1p0k! � zi� Ýk�1 ž /ž 1 � t � �� N � � zŽ .Ž .Ž .N �Ž . i ii�1

k�1
� i� ž / /z � t � �� N � �Ž .Ž .Ž .i i

k�1q0 � zi� Ý ž /ž 1 � u � �� N � � zŽ .Ž .Ž .i ii�1

k�1
�i� ž / /z � u � �� N � �Ž .Ž .Ž .i i

r � zi� Ý k�1ž /ž 1 � c � �� N � � zŽ .Ž .Ž .i�1 .i i

k�1
�i� ž /z � c � �� N � �Ž .Ž . /Ž .i i

k�1k! � N �Ž .Ž .Ž .
� k�12	 � �� N �Ž .Ž .Ž .0

and also

� N � eŽ .Ž . Ž� , � .�C � , � � n � I ,Ž .n n2 ž /f	 � � � N �Ž .Ž .Ž . Ž� , � .0

2 �2� N � e � eŽ .Ž .Ž . Ž� , � . Ž� , � .	C � , � � �n � I ,Ž .n n22 ž /fŽ� , � .	 � �� N �Ž .Ž .Ž .0

32 � N � 1Ž .Ž .Ž .Ž3.C � , � � n � I K ,Ž . Ž .n n Ž� , � .3 22 N �Ž .	 � �� N �Ž .Ž .Ž .0

46 � N � 1Ž .Ž .Ž .Ž4.C � , � � �n � I S ,Ž . Ž .n n Ž� , � .4 42 N �Ž .	 � � � N �Ž .Ž .Ž .Ž 0

524 � N � 1Ž .Ž .Ž .Ž5.C � , � � n � I T .Ž . Ž .n n Ž� , � .5 52 N �Ž .	 � � � N �Ž .Ž .Ž .Ž 0

We shall make use of a lemma that is a consequence of Theorem 2.5 of
Ž .Dahlhaus 1988 . We prove it below.
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Let GG be the subset of H defined by

2 � 2e N � e eŽ .Ž0, � . Ž0 , � . Ž0 , � . ˜GG � , , , K : � � BBŽ0, � .½ 5f f f0 0 0

� T , S : � , � � TT .Ž .� 4Ž� , � . Ž� , � .

Define also for any function g in GG,

1 2�
I g � g � f � d�.Ž . Ž . Ž .H2� 0

Let XX be the set of bounded real functions on GG, equipped with the metric
� � � Ž . �generated by the uniform norm x � sup x g .

' 'Ž . Ž . Ž . Ž .LEMMA 5.4. Let E g � 1� n I g � n I g , where g is in GG. Letn n
Ž Ž ..W g be the centered Gaussian process with the Hilbert product in H asg � GG

Ž Ž ..the covariance. Then the empirical spectral process E g convergesn g � GG

Ž Ž ..weakly on XX to W g .g � GG

PROOF OF LEMMA 4.3. A Taylor expansion up to order 4 with integral
remaining term, together with Lemma 5.4, leads to

e 1Ž0, � . 2'C � , � � C 0 � �� n E 1 � o 1 � n� 1 � o 1Ž . Ž . Ž . Ž .Ž . Ž .n n n ž /f 20

2 �2� N � eŽ . Ž0, � .'� n E 1 � o 1Ž .Ž .n2 ž /f2 N �Ž . 0

� 3 � 4

� na 1 � o 1 � nb 1 � o 1 ,Ž . Ž .Ž . Ž .2 46N � 24N �Ž . Ž .

where
32 � N �Ž .Ž .Ž .

a � I K �Ž .Ž0, � . 6	0

and
46 � N �Ž .Ž .Ž .

b � I S � ,Ž .Ž0, � . 8	0

Ž .and the o 1 are uniform in probability over A . Now, on A we haven n

2 2� �2� N � e N � eŽ . Ž .Ž0, � . Ž0 , � . �' 'n E � O � n E � � o 1Ž .n n n2 ž / ž /ž /f f2 N �Ž . 0 0
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using Lemma 5.4, and

� 3
2 2 � 2na � O n� � � o n� ,Ž .Ž .n26N �Ž .

Ž .where the o � are uniform in probability, so that we have
e 1Ž0, � . 2'C � , � � C 0 � �� n E 1 � o 1 � n� 1 � o 1 .Ž . Ž . Ž . Ž .Ž . Ž .n n n ž /f 20

When minimizing over � , this leads to
2

1 E e �fŽ .n Ž0 , � . 0� 1 1 � o 1 .Ž .Ž .E Že � f .� 0n Ž0 , � . 02 n
The set of functions e �f is exactly DD, so that Lemma 4.3 holds. �Ž0, � . 0

Let us now study what happens on B . As for the mixtures, a key point ofn
the proof will be a control lemma that enables us to stop the Taylor expansion

Ž .and to have uniform o 1 remaining terms. We provide it now.

LEMMA 5.5. On B we haven

N � � 2� Ž1�� .�2Ž . n

and
�

Ž1�� .�2 r� M�nN �Ž .
for some constant number M.

PROOF OF LEMMA 5.5. First of all, since on B , � � 2� , we haven n

2 Ž1�� .N � � 2�Ž . n

Ž .and the first inequality follows. Now, let us study what happens when N �
tends to 0. There must be at least one c tending to some u with correspond-i i

Ž .ing � tending to corresponding � , or and some c tending to some t withi i i i
corresponding � tending to corresponding � . In each case, we have, due toi i

Ž .the locally conic structure coming from the choice of permutation
�

� � � �� 1 � o 1 � c � uŽ .Ž . Ž .i i iN �Ž .
Ž .or and

�
� � � �� 1 � o 1 � c � t .Ž .Ž . Ž .i i iN �Ž .

Ž .Now, looking at the expansion of N � near 0, it appears that the leading
Ž � � r � � r .term is at least of order min c � u , c � t , so thati i i i i

� 1�r� O N � ,Ž .Ž .N �Ž .
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which, when combined with the first inequality, leads to the second inequal-
ity. �

PROOF OF LEMMA 4.4. On B , we write Taylor expansion up to order 5,n
again with an integral remaining term, so that, when using Lemma 5.4, we
obtain

C � , � � C 0Ž . Ž .n n

e 1Ž0, � . 2'� �� n E 1 � o 1 � n� 1 � o 1Ž . Ž .Ž . Ž .n ž /f 20

2 �2� N � eŽ . Ž0, � .'� n E 1 � o 1Ž .Ž .n2 ž /f2 N �Ž . 0

� 3 � 4

� na 1 � o 1 � nb 1 � o 1Ž . Ž .Ž . Ž .2 46N � 24N �Ž . Ž .
� 5

� O n 1 � o 1 ,Ž .Ž .5ž /N �Ž .
Ž . Ž .where the o 1 are in probability uniform over B . All o 1 now will ben

uniform over B using Lemma 5.5. We haven

� 5 � 4

n � o n .5 4ž /N � N �Ž . Ž .
�Notice that the functions e �f , after normalization, are in DD.Ž0, � . 0

Ž .2Define for � � 1�N � the polynomial
2 3 41 � � �

n 2 n 2' 'P � , � � �� n W � n� � � n W � n�C � n� CŽ .n 1 2 12 222 2 2 8
with

2 �e N � eŽ .Ž0, � . Ž0 , � .n nW � E , W � E1 n 2 nž / ž /f f0 0

Ž . n nand, up to a factor 1 � o 1 , C is the covariance of W and W , and C is12 1 2 22
the variance of W n, W n being of unit variance.2 1

For mixtures, we obtain on B ,n

C � , � � P � , � 1 � o 1 .Ž . Ž . Ž .Ž .n n

Minimizing P over �, then over � leads ton

1 2W n 2C2 12
� � � ,2ž /'C �n �22

1 W n � W n C �CŽ .1 2 12 22
n n� � 1W �W ŽC � C .� 02 2 1 2 12 22' 1 � C �Cn Ž .12 22
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with minimum value
22n n n1 W W � W C �CŽ .Ž . Ž .2 1 2 12 22

n n� � 1 1 � o 1 .Ž .Ž .W �W ŽC � C .� 02 2 1 2 12 22ž /2 C 1 � C �CŽ .22 12 22

The end of the proof proceeds as in Lemma 3.5 and will be omitted. �

PROOF OF LEMMA 5.4. The proof proceeds by a verification of the assump-
Ž .tions used in Theorem 2.5 of Dahlhaus 1988 ; that is, his assumption 2.1.

Ž .Assumption a is verified since the process is an ARMA process and the
Ž .spectral density has infinitely many derivatives, all bounded. b is verified

since the tapering is the constant 1.
Ž . �Let us now verify c . GG is a permissible subset of H in the sense of

Ž . �Pollard 1984 , Appendix C since it is a parametric class of functions that is
pointwise continuous in the interior and may be approached by sequences of
parameters on the boundary.

Let us recall that for all x,
2q01 1 � 1� 1 � �Ž .Ž .

m �0 p0ž /2� u 2

� �� f xŽ .0

2q0u 2
� p0ž /2� 1 � 1� 1 � �Ž .Ž .
� M .0

It is then enough to prove that the functions in GG are uniformly pointwise
bounded and to verify the entropy condition.

Ž Ž .2 � .Moreover, since the functions S , T , and N � e �f areŽ� , � . Ž� , � . Ž0, � . 0
bounded functions of bounded parameters, which are continuous both point-
wise and in H, with the square of the norm that is a quadratic function of
some of the parameters, so that the entropy condition is verified, it is enough
to verify the conditions for the set of functions

2 2 2� 	3N � e N � e e N � eŽ . Ž . Ž .Ž0, � . Ž0 , � . Ž0 , � . Ž0 , � .
, , .

f f f0 0 0

It is again enough to verify that the functions
2 	e N � eŽ .Ž0, � . Ž0 , � .

,
f f0 0

are uniformly pointwise bounded and that the set of such functions satisfy
the entropy condition. This in turn implies the entropy condition for the
whole set of functions.

To see that they are bounded, let us look at a precise expansion when
Ž . Ž .N � tends to 0. For any i � 1, . . . , q , let U i be the set of indices j such0
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Ž . Ž .that c tends to u , and c � u � � u , and for any i � 1, . . . , p , let T i bej i j i j i 0
Ž .the set of indices j such that c tends to t , and c � t � � t . Also let J bej i j i j i

Ž . Ž . � 4the complementary set of the union of all U i and T i in 1, . . . , r . We then
have

1
e �Ž0, � . N �Ž .

p0 � � Ý � z � � Ý �Ž .i j� T Ž i. j i j� T Ž i. j
� � �Ý2 ž /1 � t z z � t	 Ž .i i0 i�1

h�1p h�1 h0 � z �j j� � � �Ý Ý Ý Ýj jh hž /1 � t zŽ . z � ti�1 Ž . h�2 h�2 Ž .j�T i i i

q0 � � Ý � z � � Ý �Ž .i j�UŽ i. j i j�UŽ i. j� �Ý ž /1 � u z z � ui ii�1

h�1p h�1 h0 � z �j j� � � �Ý Ý Ý Ýj jh hž /ž /1 � u zŽ . z � ui�1 Ž . h�2 h�2 Ž .j�U i i i

� z �i i� �Ý ž /1 � c � �� N � � z z � c � �� N � �Ž . Ž .Ž . Ž .Ž . Ž .i i i ii�J

s � ii� � z �Ý i iž /zi�1

and also

2 	N � eŽ . Ž0, � .

p3 3 3 3 301 2 � z � zi j� � �Ý Ý6 3 3ž /N � 	Ž . 1 � t z 1 � t zŽ . Ž .0 i�1 Ž .j�T ii i

33 3� z � zj i
� �Ý h 3ž /� 1 � t zŽ . 1 � t zh�0 Ž .i i

3h3 3� z �j j� Ý Ý3 ž /ž /z � tŽ . 0z � t iŽ . h�0Ž .j�T i i

3hq 3 3 3 30 � z � z � zi j j� �Ý Ý Ý3 3 ž /ž /1�u zŽ .� 1�u z 1�u zŽ . Ž . ii�1 Ž . h�0j�U ii i
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3h3 33 3� z � z �i j j� � Ý Ý3 3 ž /ž /z�uŽ . 01�u z z�u iŽ . h�0Ž . Ž .j�U ii i

33 3� z �i i� � .Ý 3 3ž /1 � c zŽ . z � ci�J Ž .i i

Looking at the leading terms in the expansions, we obtain that for all �,
re 1 1Ž0, � . � u � 1 � 2 r � p � q � 2 s ,Ž .0 0ž /ž /f m �0 f

2 3r	N � e 1 1Ž . Ž0, � . 3� 2u � 1 � 2 r � p � q .Ž .0 0ž /ž /f m �0 f

Ž .The entropy condition is the following. Let NN 
 be the number of balls of
diameter 
 in H necessary for covering the set of functions. We have to verify
that

22
NN 
Ž .1

log d
 � ��.H

0

The previous expansions allow us to find that for the set
2 	e N � eŽ .Ž0, � . Ž0 , � . ˜, : � � BB ,½ 5f f0 0

the norm square is a quadratic function of at most K bounded parameters,
Ž .with K � r 1 � 2 s � 2 p � 2 q , so that we have0 0

1
NN 
 � OŽ . Kž /


and the condition holds. �
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