
The University of Maine
DigitalCommons@UMaine

Publications Senator George J. Mitchell Center for Sustainability
Solutions

12-2012

Testing the Predictive Performance of Distribution
Models
Volker Bahn
Wright State University, volker.bahn@wright.edu

Brian McGill
University of Maine, brian.mcgill@maine.edu

Follow this and additional works at: https://digitalcommons.library.umaine.edu/
mitchellcenter_pubs

Part of the Statistical Models Commons

This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Publications by an
authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

Repository Citation
Bahn, Volker and McGill, Brian, "Testing the Predictive Performance of Distribution Models" (2012). Publications. 117.
https://digitalcommons.library.umaine.edu/mitchellcenter_pubs/117

https://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter_pubs?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter_pubs?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter_pubs?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter_pubs/117?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu


Testing the predictive performance of distribution models 

 

Volker Bahn and Brian J. McGill 

 

V. Bahn (volker.bahn@wright.edu), Dept of Biological Sciences, Wright State Univ., 3640 

Colonel Glenn Highway, Dayton, OH 45435, USA.  

B. J. McGill, School Biology and Ecology and Sustainability Solutions Initiative, Univ. of 

Maine, Orono, ME 04469, USA. 

  



Abstract 

 

Distribution models are used to predict the likelihood of occurrence or abundance of a species at 

locations where census data are not available. An integral part of modelling is the testing of 

model performance. We compared different schemes and measures for testing model 

performance using 79 species from the North American Breeding Bird Survey. The four testing 

schemes we compared featured increasing independence between test and training data: 

resubstitution, random data hold-out and two spatially segregated data hold-out designs. The 

different testing measures also addressed different levels of information content in the dependent 

variable: regression R2 for absolute abundance, squared correlation coefficient r2 for relative 

abundance and AUC/Somer’s D for presence/absence. We found that higher levels of 

independence between test and training data lead to lower assessments of prediction accuracy. 

Even for data collected independently, spatial autocorrelation leads to dependence between 

random hold-out test data and training data, and thus to inflated measures of model performance. 

While there is a general awareness of the importance of autocorrelation to model building and 

hypothesis testing, its consequences via violation of independence between training and testing 

data have not been addressed systematically and comprehensively before. Furthermore, 

increasing information content (from correctly classifying presence/absence, to predicting 

relative abundance, to predicting absolute abundance) leads to decreasing predictive 

performance. The current tests for presence/absence distribution models are typically overly 

optimistic because a) the test and training data are not independent and b) the correct 

classification of presence/absence has a relatively low information content and thus capability to 

address ecological and conservation questions compared to a prediction of abundance. 



Meaningful evaluation of model performance requires testing on spatially independent data, if 

the intended application of the model is to predict into new geographic or climatic space, which 

arguably is the case for most applications of distribution models. 

 

Distribution models are used to predict the occurrence or abundance of a species at locations that 

have not been censused. Known occurrences or abundances are used as dependent variables to be 

explained by various environmental variables (e.g. climate, land cover). Unlike information 

about the distribution of species, we have extensive environmental data that has been 

interpolated to cover the entire globe. This allows distribution models to make predictions about 

the occurrence or abundance of a species at uncensused locations. More recently, distribution 

models built on present day environmental data have been used to predict future species 

distributions based on projections of future climates from global circulation models (Iverson and 

Prasad 1998, Skov and Svenning 2004). Distribution modelling has seen an unprecedented 

amount of attention in recent years (e.g. two special sections in journals in 2006: J. Appl. Ecol. 

43 and J. Biogeogr. 33). It is a vital tool in species conservation and land management (Scott and 

Csuti 1997, Ferrier 2002) and relates to the most fundamental questions of ecology: the 

abundance and distribution of species (Krebs 1972, Andrewartha and Birch 1984). 

 

Many authors have noted that distribution models omit ecological processes that are known to be 

important, such as species interactions and dispersal (Davis et al. 1998, Araújo et al. 2005a, 

Randin et al. 2006). But as Box (1976) noted ‘All models are wrong, but some are useful’, which 

underscores the crucial importance of an objective, quantitative test of model performance rather 

than merely noting their many shortcomings. Objective tests of predictions 100 years in the 



future are clearly impossible. However, even tests of the predictive success of distribution 

models in the present day suffer from a confusing array of different approaches and an unclear 

relationship of performance to complicating factors such as presence/absence (P/A) versus 

abundance (Ab) modelling and spatial autocorrelation. The goal of our paper is to clarify how the 

testing of distribution models is influenced by 1) the information content of the dependent 

variable (in increasing order: presence/absence (P/A) versus, relative abundance (rel.Ab) versus, 

absolute abundance (Ab)); and 2) the relative independence of the testing data used (in 

increasing order: resubstitution versus, random hold-out versus, and truly independent (spatially 

segregated split)). 

 

Several aspects of input data and testing scheme potentially influence the outcome of a model 

test. For example, the baseline probability for guessing correctly is very different for P/A versus 

Ab data. If a species has a prevalence of 50% of the cells of a study area then the probability to 

guess P/A correctly without any further knowledge is 50%. In contrast, the probability of 

guessing the abundance of a species in a cell correctly would be nearly 0%, if abundance was a 

truly continuous variable. This ease of prediction is related to the information content of the 

measure that is to be predicted. Ecologically, knowing the presence or absence of an organism 

tells us relatively little about the suitability of a location, as a presence could be from a sink 

population or equally as well a critically important source population (Pulliam 1988, 2000). 

Relative abundance can at least provide information on the relative suitability of different 

habitats, while abundance, the most information rich and difficult to predict measure, is linked to 

survival probability (Dennis et al. 1991). 

 



Different schemes for model testing exist. The most basic scheme, resubstitution, is to judge the 

goodness-of-fit of a model using the same data the model was fit for (Fielding and Bell 1997). 

This scheme can inform the researcher about the ability of the chosen model to describe the 

given data, but it says little about the generality or transferability of the model (Phillips 2008), 

i.e. if the model can successfully predict onto new, independent data. This scheme is used in 

basic regression analyses, when a straight line or low-polynomial equation hardly permits 

overfitting and is often used when scarce data do not allow for a better testing scheme. A more 

advanced scheme is to randomly hold-out data from the model building process and to test the 

predictions of the fitted model on this held-out test data (Fig. 1) that was not used in the model 

building and parameterizing process. This scheme can consist of holding out a fixed percentage 

of data only once, or holding out a small percentage of the data for testing but rotating the 

random selection and thus repeating the testing process several times, until each data point was 

in a test set once, and then averaging over the multiple test results (cross-validation). Splitting 

the data into training and test data not only gives an impression of the goodness-of-fit of the 

model to the data but also of its capability to predict onto new data and therefore its generality 

and transferability. Finally, one can use a hold-out that is spatially segregated. In contrast to the 

random hold-out, a spatially segregated hold-out prevents spatial intermingling of training and 

test datasets and thus makes it more likely that the two datasets are truly independent (Peterson et 

al. 2007). 

 

If the data have no spatial autocorrelation across the modelling extent then there is no difference 

between the last two approaches (random holdout versus spatially segregated holdout). However, 

environmental data and distribution data are virtually always autocorrelated in space, which adds 



a further complication to the model testing process. Spatial autocorrelation means that, on 

average, things closer together are more similar than things further apart, resulting in a 

dependence among locations that decays with distance. Autocorrelation is found in both the 

independent variables (here the environmental variables) and the dependent variable (the species 

distribution). 

 

Spatial autocorrelation in dependent and independent variables may not only be a potential 

violation of many models’ assumption that input data and/or error terms be independent 

(Legendre and Fortin 1989), but may also lead to inflated test measures (Segurado et al. 2006). 

Consequences of spatial autocorrelation, such as an overestimation of degrees of freedom, a 

resulting underestimation of variance and overestimation of significance, as well as an influence 

on variable selection, have been investigated in detail (Legendre 1993, Lennon 2000, Dale and 

Fortin 2002). However, the consequence of autocorrelation to a test of the predictive power of a 

model based on data hold-out techniques has received less attention. Several authors have 

identified this problem (Hampe 2004, Araújo and Guisan 2006, Araújo and Rahbek 2006) and 

consequently many studies have been conducted testing models on allegedly independent data. 

 

Three categories of ‘independent’ testing data are typically employed: 1) independently collected 

data (Elith et al. 2006), 2) temporally independent data (Martinez-Meyer et al. 2004), and 3) 

spatially independent data (Peterson et al. 2007). We will focus on spatially independent testing 

data (3), because independently collected data (1) introduce additional variability by potentially 

using different methods and/or censusing the organism during a different time with different 

population levels while still not guaranteeing spatial independence. And using temporally 



segregated testing data (2) suffers from the same drawbacks as using independently collected 

data: temporal autocorrelation potentially leads to dependence between training and test data 

leading to overly optimistic model evaluations, while natural population fluctuations may lead to 

an overly pessimistic model evaluation. 

 

Searching the literature, we identified 32 studies using spatially independent data for model 

evaluation. This compilation represents all such studies we could find, but we do not claim it is 

exhaustive. Given that most authors did not test for spatial independence, we inferred such 

independence when training and test data were reasonably (dependent on the focal organism) 

spatially separated. The results of the studies were varied, but more importantly, the 

interpretation of the studies was varied. For example, Graf et al. (2006) interpreted AUC values 

between 0.83–0.94 achieved when predicting occurrence in a new area as poor to moderate 

performance, while (Murray et al. 2011) labelled models challenged with the same task and 

achieving AUC values of 0.77–0.90 as having excellent discriminative abilities. All but one of 

the identified studies (Whittingham et al. 2003), used presence/absence or presence only, leaving 

the effect of autocorrelation on the evaluation of abundance-based models virtually unexplored 

in the literature. Twenty-three of the 32 studies used fewer than 10 species, with only one based 

on abundance data (Whittingham et al. 2003), using only one species. The biggest challenge in 

synthesizing this literature is that studies typically only reported a measure of performance for 

prediction into a new area. As such, it is hard to say whether the distribution models predicting to 

the new area performed well or not. For example, is an R2 of 0.50 or an AUC of 0.7 when 

predicting into a new area good or bad? Addressing these questions requires a more inferentially 

systematic way that allows for attributing drops in performance to different contributing factors. 



Thus, we believe it is important to implement an evaluation scheme spanning the typically used 

evaluation methods (resubstitution, random hold-out or CV, or spatial split) in a single study, so 

that a decrease in the determined performance can be seen relative to the original, goodness-of-

fit based estimate of model performance. Equally, we think it is important to run such 

comparisons across many species and in spatially different areas. None of the investigated 

studies provides such a complete comparison. 

 

In this paper we systematically and comprehensively investigate the influence of input data (P/A 

versus Ab), and model testing scheme (resubstitution versus random reserved data design versus 

spatially segregated data design) on performance tests of distribution models, and show how the 

testing scheme needs to be matched to the intended purpose of the model to prevent overly 

optimistic results. 

 

Material and methods 

 

Data sources 

 

We used data from the North American Breeding Bird Survey. This survey was initiated in 1966 

and has been conducted yearly since by skilled volunteers under the auspice of the Canadian 

Wildlife Service and the US Geological Survey’s (USGS) Patuxent Wildlife Research Center. 

Surveys are conducted during the breeding season (mid-May through the first week of July, 

depending on the latitude of the route) at stops along routes placed on secondary roads. Each of 

the over 4100 survey routes in the USA and southern Canada is approximately 40 km (exactly 



24.5 miles) long and contains fifty regularly spaced (every 0.8 km/0.5 miles) stops. At the stops 

observers conduct 3 min audio-visual point counts covering a circle with 0.4 km radius. The 

routes provide a fairly good and random coverage of the study area, albeit with varying density 

depending on population and road density (Bystrak 1981). Variation among skills of observers 

introduces noise in the data (Sauer et al. 1994) but there is no indication or reason why this 

should systematically bias our results. Similarly, the road-side location of the stops and different 

detectability among species likely introduces more error for some species than for others, but 

given the large coverage of very different species in our research, there is no reason why this 

should have generally biased our results. 

 

We averaged counts of 79 selected bird species at 1293 routes which were sampled each of five 

years (1996–2000) and designated as high quality (good weather and observers) each of those 

five years. By averaging over several years, we excluded year-to-year population fluctuations for 

example introduced by winter survival or disease (Sauer et al. 1997) letting us focus on long-

term habitat associations rather than dynamics and temporal variation. Fine scale temporal 

variation and coarse scale temporal trends are not investigated further in this study. The counts 

were pooled from stop to route level and square root transformed for abundance-based models or 

turned into binomial presence/absence (non-zero/zero abundance) for P/A models. The resulting 

coarse spatio-temporal scale aims to exclude much fine scaled variability and fluctuations of bird 

abundances and environmental variability that do not lend themselves well to modelling with 

high priority on generality. 

 



The species had to fulfil the following criteria for inclusion in the study: 1) at least 400 occupied 

locations; 2) land bird; 3) taxonomically stable. We selected the cut-off at a minimum of 400 

occupied locations because at this level the positive correlation between model performance and 

sample size disappeared. All models were restricted to the birds’ ranges. Ranges were estimated 

with the Ripley-Rasson estimator (Ripley and Rasson 1977) based on occupied locations. 

Consequently, the resulting sample size varied among the 79 bird species and was on average 

1041±218 locations (range 492–1365). 

 

We used 27 environmental variables as independent predictors representing land cover (n=11), 

temperature and precipitation means (n=6), temperature and precipitation extremes (n=2), 

seasonality in temperature and precipitation (n=4), year to year variation in temperature and 

precipitation (n=3), and the normalized difference vegetation index (NDVI), which is a measure 

of vegetation productivity. We used climate data from the CRU CL 1.0 dataset (New et al. 1999) 

available at < https://crudata.uea.ac.uk/~timm/grid/CRU_CL_1_0.html> and calculated weather 

variability variables from the United States Historical Climatology Network (HCN) Serial 

Temperature and Precipitation Data available at <www.ncdc.noaa.gov/ol/climate/research/ 

ushcn/ushcn.html>. Furthermore, we used vegetation land cover data from the USGS Land 

Cover/Land Use categories available at <http://edcsns17.cr.usgs.gov/glcc/ 

glcc_version1.html#NorthAmerica>. We collapsed the 24 land use categories into 11 and 

calculated the percentage cover of each category in a 20 km radius circle around the BBS route 

midpoint. Finally, NDVI came from a NOAA/NASA Pathfinder AVHRR 8 km resolution 

composite averaged over 1982–1992 for the month June. Given that the average distance 

between route midpoints in the BBS is 42.4±30.9 km (SD) and that we averaged environmental 



variables over 20 km circles to meet the resolution of the routes, the resolution of the 

environmental data was sufficient. 

 

Statistical techniques 

 

We used random forests (RF) as a very robust and objective method for building the P/A and Ab 

models (Breiman 2001, Garzon et al. 2006, Prasad et al. 2006). RF are a resampling and 

subsampling extension of regression trees (RT). We grew 500 trees based on bootstrap samples 

of the original data and subsamples of the independent variables. RF are not as easily interpreted 

as RT or multiple regressions, because the final prediction is the model average over 500 

individual trees, but this drawback was inconsequential for our study – we were examining the 

usefulness of predictions from distribution models, not their ability to explain distributions. RF 

are recognized as one of the best distribution modelling techniques as measured by predictive 

power (Garzon et al. 2006, Prasad et al. 2006) including specifically in the context of niche 

modelling (Elith et al. 2006). 

 

Depending on the data, situation, and circumstances, different statistical techniques can perform 

differently and can come to very different predictions (Pearson et al. 2006, Araújo and New 

2007, Thuiller et al. 2009). Therefore, we implemented additional statistical techniques to make 

sure that our results were not contingent on the use of RF. Our goal was to conduct our 

comparisons on both, presence/absence and abundance data. Therefore, the included techniques 

had to be able to handle both types of data, which some popular approaches such as MaxEnt 

(Phillipset al. 2006) and GARP (Peterson 2001) cannot. In addition to RF we used boosted 



regression trees (BRT implemented in the R package gbm), general additive models (GAM 

implemented in the R package mda), and multivariate adaptive regression splines (MARS 

implemented in the R package mda). We closely followed the methodology described in Elith et 

al. (2006) for all techniques. Note that explanatory variables were reduced to eight climatic 

variables and NDVI for GAM and MARS, because the full set of 27 variables caused 

convergence problems and deteriorated the performance of GAM and MARS due to 

intercorrelation among predictors. BRT performed statistically indistinguishably from RF. All 

other techniques performed worse than RF, especially in the geographically split dataset 

approaches. Therefore, we will focus results and discussion on RF because statistical model 

comparisons abound in the literature (Elith et al. 2006) and were not a goal of our work. 

 

For all 79 bird species we built distribution models on P/A and Ab data, using the full dataset (no 

split), a dataset randomly split in half, a dataset split into quarters along three longitudinal lines, 

and a dataset split in half along a longitudinal line (Fig. 1). We placed the splits in the 

longitudinal approaches so that each resulting part contained the same number of occupied 

locations within the range of a given bird species. While the full dataset approach was tested on 

the same data that were used for building the models, the split designs built the models using one 

half of the data and tested it using the other half. 

 

In the random selection we first randomly split all occupied locations and then all unoccupied 

locations. For splitting the range in half we found the median longitude of all occupied locations 

and split the dataset along this longitude. We then used one of the halves to build the models and 

the other to evaluate it and then switched the roles of the halves and averaged over the two sets 



of results. The quarter splits (longitudinal) strips worked similarly. We first found the 25th, 50th 

and 75th percentile longitude of all occupied locations and then split the dataset into four parts 

along these lines, numbered 1–4 from west to east. We then used part 1 and 3 combined to build 

the models and part 2 and 4 to evaluated them. Next we switched the roles of the 4 parts and 

finally averaged over the two sets of results. 

 

The four different approaches represented a progression from no segregation of training and test 

data (no split) to a more and more spatially segregated split between training and test datasets. 

Longitudinal splits were chosen because north–south splits would have led to more severe 

climatic differences between training and test data. 

 

Statistics calculated 

 

P/A and Ab models necessitate different statistics for testing given the difference in variable 

structure. For P/A models, we reported the widely used area under the curve (AUC) of a receiver 

operating characteristic curve (ROC) (Fielding and Bell 1997), the square of the point-biserial 

correlation ሺrୠ୧୬୭୫
ଶ ሻ calculated simply as a Pearson’s product moment correlation between 

predicted probability of occurrence and observed P/A squared, and Somer’s D (also known as 

Gini coefficient (Engler et al. 2004)), which can be derived from AUC as D = 2 ൈ (AUC - 0.5), 

representing a simple standardization of AUC to the more intuitive range of 0 to1. (Note, 

however, that AUC can be below 0.5 if the model prediction is worse than random chance and 

thus Somer’s D can go below 0.) For the Ab models, we used the familiar coefficient of 

determination (R2), based on proportion of variance explained, and the square of the Pearson 



correlation coefficient (r2) between predicted and observed abundances, somewhat analogous to 

the squared biserial correlation in P/A models. Note that for OLS linear models with only one 

predictor R2= r2 but this does not have to hold in the nonlinear random forest models. R2 

describes the fit between predicted and observed in an absolute way (accuracy), while r2 

describes fit in a relative way (relative abundance, precision). All models were fit in and 

statistics calculated in R ver. 2.2.1 (R Development Core Team) with the extensions 

randomForest 4.5-18 and ROCR (1.0-2). 

 

Results 

 

Random forests (RF) led to near perfect discrimination in the presence/absence (P/A) models 

when tested on the same data they were trained on (Fig. 2): the average AUC scores of the 79 

bird species were indistinguishable from 1. Even the squared point-biserial correlation reached 

very high values (0.95 ± 0.001), showing that while a point-biserial correlation reaching a value 

of 1 is close to impossible (the continuous variable would have to be distributed perfectly 

bimodally to match the binary one), it can reach very high values. 

When we split the data randomly into halves of equal sample size and trained the RFs on one 

half and tested predictions on the other (which is spatially interleaved with the training data), the 

discrimination rate dropped (AUC = 0.90 ± 0.006, r2 = 0.43 ± 0.015; Fig. 2). 

 

Introducing geographically segregated data splits led to much lower performance measures (Fig. 

2). For a complete split into east and west halves, average AUC and r2 dropped to 0.73 ± 0.012 



and 0.12 ± 0.016, respectively. When training and test data were interspersed in four longitudinal 

strips, the models’ tests led to slightly better results (0.79 ± 0.009 and 0.2 ± 0.016, respectively). 

 

Tests of abundance (Ab) models followed similar patterns through the different types of data 

splits (Fig. 2). The squared correlation coefficients (r2) were very similar for P/A and Ab models 

throughout the four testing schemes, indicating that the performances of these two types of 

models were actually quite similar when tested using a comparable measure. However, the 

coefficient of determination, R2, or as colloquially known ‘the percentage of variance explained’ 

deviated from the r2s: it was substantially lower for the schemes with geographically segregated 

training and test data (Fig. 2). For the quarter split the R2 remained barely above zero 

(0.07 ± 0.032), while it dipped below zero when the dataset was split into longitudinal halves  

(–0.09 ± 0.051). An R2 below zero indicates that using the average abundance from the training 

data as prediction over all test locations (analogously to an intercept-only null model in 

regression models) would have been closer to the truly observed abundances than the model 

predictions. This means while models retained some capability to predict relative abundance or 

the relative suitability of locations in spatially segregated test areas, their ability to predict the 

absolute abundance at new locations was virtually non-existent. 

 

In our tests, boosted regression trees (BRT) performed virtually identical to RF while general 

additive models (GAM) and multivariate adaptive regression splines (MARS) were clearly 

outperformed (Fig. 3). Note that these results are for abundance-based modelling only. R2 values 

in resubstitution evaluation closer to R2 in random splits for GAM and MARS versus RF and 

BRT suggest that MARS and particularly GAM were not as overfit as RF and BRT. Going by 



the random split evaluation, we might have concluded that only a small performance gap exists 

between RF/BRT and GAM/MARS. However, the poor performance of GAM and MARS in the 

geographic split evaluations (Fig. 3) suggests that these techniques have much more trouble 

predicting into new areas than do RF and BRT. 

 

Discussion 

 

Our results illustrate how important the selection of a testing scheme is when judging the 

predictive performance of a distribution model. Resubstitution – i.e. using the same data for 

model building as for testing – provides unrealistic estimates of performance of modern, flexible 

models that are prone to overfitting and should be avoided. Doubtlessly, the extremely high 

measures of performance of RF as judged by resubstitution indicate overfitting. Nobody in the 

machine learning community would ever suggest judging the fit of a model by resubstitution and 

RF are typically tested on ‘out-of-bag’ data that were randomly excluded during bootstrap. This 

default measure of RFs is analogous to a random-hold out testing scheme and supplies very 

similar estimates of performance. However, even if RF seem to overfit as judged by 

resubstitution they have been shown to generalize well (Breiman 2001) and compare very 

favourably to other methods in prediction on held out data (Garzon et al. 2006, Prasad et al. 

2006, Cutler et al. 2007). We verified this in our data by comparing the results of RF to BRT, 

GAM and MARS models, which we will discuss below in the context of non-analog climate. 

 

The currently most widespread, advanced method in the literature for testing distribution models 

is either a random hold-out of data, or data collected independently in the same area for testing 



purposes (Brotons et al. 2004, Elith et al. 2006, Maggini et al. 2006). This is often described as 

testing the models on ‘independent’ data. However, species distribution data typically exhibit 

spatial autocorrelation. When testing data are randomly held-out, the locations of these data 

points will be interspersed with the training data locations, in our case leading to average 

proximity of 42.4±30.9 km (SD) between training and test locations. However, spatial 

autocorrelation may range much further than this average distance (in our case over several 

hundred kilometres; Bahn unpubl.), leading to dependence between training and test data (Araújo 

et al. 2005a). The consequence is that models are already optimised to fit test data during 

parameterization because of the dependence between training and test data. Therefore, the test 

data fit the model deceptively well – better than it would if test data were truly independent. This 

argument is unaltered if the test data were collected by different people at different times by 

different methods but in the same area (interspersed) with the training data (Edwards et al. 2006, 

Guisan et al. 2007). Just because collection of the data was independent does not automatically 

lead to independence in data values. 

 

The overly optimistic testing results of models with randomly held-out but not fully independent 

test data is illustrated well by the large drop in performance measures we observed when we 

tested our models on truly independent, spatially segregated data. The models fared slightly 

better in the interspersed four-split approach than in the halves approach, which could either be 

an indication of a remaining effect of autocorrelation along the segregation lines (only one 

segregation line in the halves approach but three in the strips approach) or a reduced problem of 

models predicting into new climatic and biotic space which may include extrapolation to 

climates not encountered at the training locations or a violation of the assumption of stationarity 



of environmental associations of the species (i.e. that the same functional relationships with the 

environment govern the abundance of species anywhere in the range, which is expected if a 

single model is built for the whole range) (Whittingham et al. 2007). 

 

What causes our results? One explanation for our results could be that generic land cover and 

climate variables at coarse scales have little predictive power for species distributions. If true, it 

would be a gloomy assessment of our state of understanding and ability to predict the effects of 

global change at such a scale partly supported by Bahn and McGill (2007). 

  

Two other causes for the drop of predictive power of distribution models when training and test 

datasets are split geographically include: 1) the effects of extrapolation to non-analog climates 

(Williams and Jackson 2007), 2) non-stationarity which occurs when the relationship between 

climate and species presence changes across space (e.g. hot is good in the north but bad in the 

south) (Whittingham et al. 2007). These three factors are all confounded. To reach truly 

independent testing data we had to introduce a rather dramatic geographical segregation which 

effectively broke the dependence via spatial autocorrelation but at the same time presented other 

problems to distribution models. For distribution models to be successfully applied for prediction 

into new regions one has to assume stationarity and that the range of combinations of biotic and 

abiotic factors in the test region were covered in the training regions. 

 

As for the possibility that non-stationarity caused our low success to predict to spatially 

independent areas, there are a number of threads of evidence for variables and relationships that 

determine abundance changing across the range of a species. Whittingham et al. (2007) showed 



that this was true at the landscape scale within Britain for birds. Similarly, in the few cases where 

the causes of species range boundaries have been worked out around the entire range (i.e. north, 

south, east and west) the limiting factors often change. For the Saguaro cactus Carnegia gigantii, 

the eastern and northern limits are set by frost tolerance, the western limit is set by the 

availability of summer precipitation (the main water source for this shallow rooted plant) and the 

southern limit is presumably set by being outcompeted by larger columnar cacti (Niering et al. 

1963). In another well worked out case along an elevational gradient (Randall 1982), the upper 

limit of a moth species is set by food availability (the host plant cannot tolerate the colder 

temperatures) while the lower limit is set by the increasing presence of a particular parasite at 

warmer temperatures. Finally, Jarema et al. (2009) have shown that climate provides a good 

predictor of the maximal achievable abundance (90th percentile in quantile regression). 

However, abundances below that maximum right down to zero were also observed for any given 

value of any given environmental factor, suggesting that any particular environmental factor is 

the limiting factor on abundance in a few of locations, while other factors are constraining 

elsewhere. On one level this non-stationarity makes good sense – ecology has been well known 

to be a discipline in which many factors are important with their relative importance changing 

frequently (Quinn and Dunham 1983). Taking non-stationarity into account holds great promise 

for future improvements in distribution modelling but requires tremendous amounts of training 

data, as the effects of environmental variables on the distribution of a species will have to be 

determined for every combination of circumstances individually. 

 

Another possibility is that prediction into non-analog climate caused our low performance 

measures. Supporting circumstantial evidence for this is the poor performance of GAM and 



MARS in split range evaluations. When confronted with climate values out of the range of 

training data, RF and BRT will apply the prediction from the closest value within the range of 

training data, also known as ‘clamping’. All predictions made by RF and BRT are derived from 

an average of actual observations and thus will never be completely off the charts. In contrast, 

extrapolation from training data climatic values can lead to extreme predictions in GAM and 

MARS, as values are not clamped to the last value contained in the training range but are free to 

rise or fall strongly from there on. Therefore, a likely cause for the abysmal performance of 

GAM and MARS in our tests are regular occurring completely ‘off-the-charts’ predictions, 

strongly negatively influencing the R2 values. Despite this circumstantial evidence for climatic 

extrapolation happening, our evaluation is reasonable from a practical standpoint. Every location 

is climatically non-analog to any other location if one only looks closely enough (uses enough 

variables and their interactions). The question thus is not whether prediction into non-analog 

conditions happened (it certainly has), but how far the models had to extrapolate in climate space 

and whether our tests are reasonable from a practical stand point of what these models are 

typically used for. 

 

However, whether spatially segregated holdouts lead to such low predictive power due to the 

elimination of the effects of spatial autocorrelation on testing (i.e. a more rigorous evaluation) or 

the unintended effects of non-stationarity and predicting into non-analog climate (or a mixture of 

all), the conclusion of our research remains similar: coarse-scale environment-based distribution 

models predict weakly when they are forced to predict upon truly spatially independent (and thus 

segregated) locations and/or into new climates, which is often the goal of these models. Such 

predictions simply always carry the risk of predicting into non-analog climates or areas where 



climatic effects on a species differ from the training region. Therefore, testing them on data that 

is interspersed with training data within the range of autocorrelation is misleading when the 

performance of prediction into a new area or into new conditions (e.g. climate change) is to be 

judged. Bahn and McGill (2007) showed for North American Breeding Bird Survey data that if 

new locations to be predicted upon are not truly independent in space (i.e. they are closely 

interspersed with surveyed locations), simple spatial interpolation from surveyed locations is as 

powerful for prediction as an environment-based modelling approach. And here we showed that 

if locations are truly independent, as in our geographically segregated split approaches, the 

environment-based models are not consistently useful. This conclusion may well be different at 

finer scales and using more direct resource gradients as explanatory variables (Vanreusel et al. 

2007). 

 

Our results require careful interpretation. First of all, the goal of our study needs to be clear. Our 

intention was to determine the influence of a gradient in dependence between training and test 

data on the outcome of model tests that are used to determine the models’ predictive power (R2 

and other measures). There are many other current and important methodological questions for 

distribution models which we do not address. We did not investigate the effects of 

autocorrelation on model building, parameter estimates, estimates of degrees of freedom, 

variance or hypothesis test statistics. This has all been covered in detail elsewhere (Legendre 

1993, Lennon 2000, Dale and Fortin 2002, Dormann 2007). Also not the subject of our study and 

covered elsewhere are detailed comparisons of different  modelling techniques (Elith et al. 2006, 

Garzon et al. 2006, Prasad et al. 2006, Cutler et al. 2007), influence of ecology/life-history on 

models (Austin 2007, McPherson and Jetz 2007), scale (Storch and Gaston 2004, Araújo et al. 



2005b, Betts et al. 2006), and spatio-temporal variability/population dynamics/equilibrium 

(Johnson et al.1992, Maurer and Taper 2002, Svenning and Skov 2007), to name the most 

prominent distribution modelling issues. Instead, we focused on a top performing, robust 

modelling technique, averaged out spatio-temporal dynamics, and tried to match the scale of 

dependent and independent variables to the best of their availabilities. Moreover, to gain as much 

generality as possible, we included as many species as possible and used general environmental 

variables, doubtlessly sacrificing some explanatory power that could have been achieved by 

building individual models for each of the 79 bird species based on a detailed review of their 

ecology (Austin 2002). 

 

P/A models and Ab models performed very similarly in the different testing schemes according 

to a comparable test statistic: the squared correlation between predicted and observed values. 

However, why did the Ab models show a much worse performance when the coefficient of 

determination R2 was the test measure and the P/A models a seemingly better performance when 

the test measure was AUC or the equivalent but scaled to 0 to 1 Somer’s D (Fig. 2)? First, the 

difference between the squared correlation coefficient r2 and R2 is that the former relies on 

relative abundance (i.e. areas of higher abundance must be predicted to have a relatively higher 

abundance than areas of low abundance, but the absolute value of abundance need not be right – 

it could be strongly biased high or low), while R2 describes the absolute accuracy and precision 

of the predictions. Thus, the probability of occurrence generated by P/A models was an equally 

successful predictor of relative abundance as the abundance estimates generated by the Ab 

models – a result which concurs with Pearce and Ferrier (2001). However, relative abundance 

cannot be translated into absolute abundance without additional information. Second, AUC and 



Somer’s D take us even one step below r2 in terms of information content of the dependent 

variable, namely, to the predicted classification into presence and absence. Therefore, they give 

seemingly better test results. This is further amplified in the case of AUC by being scaled to 0.5 

to 1 rather than 0 to 1 as most other statistics used for model testing. Thus, the higher values of 

AUC and Somer’s D than r2 and of r2 than R2 have to be seen in the light of the differences in 

information content in the dependent variable. From an ecological and conservation point of 

view, knowledge on the absence or presence of an organism at a location is less useful than an 

estimate of its relative abundance which is in turn less useful than an estimate of absolute 

abundance (or density). After all, a presence could stem from an extinction prone sink population 

just as well as from a very high density population of core importance to the species (Pulliam 

1988, 2000). 

 

We reached these conclusions using a dataset that is of outstanding quality and quantity, and a 

selection of species with high quality and quantity of data. Our test of P/A models on 

independent data was well in line with other studies (Manel et al. 1999, Betts et al. 2006, Elith et 

al. 2006). In addition, using the longitudinal split, we tried to avoid extrapolating in 

environmental space (e.g. predicting for a high-temperature region based on a model derived 

from a low-temperature region), although some applications of these models, such as global 

warming scenarios, try to do exactly that. Given that the BBS data has a good spatial coverage 

and that we had true absences and did not have to generate absences from background 

conditions, we also had a low danger of sample selection bias (Phillips 2008). 

 



Our results corroborate and extend the results of previous work. Several studies tested 

predictions from distribution models on spatially segregated data (Fielding and Haworth 1995, 

Peterson 2003, Randin et al. 2006, Segurado et al.2006, Peterson et al. 2007, Phillips 2008) or 

temporarily segregated data (Martinez-Meyer et al. 2004, Araújo et al. 2005a). All but one 

(Whittingham et al. 2003) of these studies exclusively dealt with presence–absence or presence 

only data and most were only based on a few species. Although there was some variation in 

results and the difference in methods and criteria makes a rigorous comparison difficult, we 

concluded that within this segment of our study (presence–absence tested on segregated data) our 

results were similar (AUCs in the range of 0.7–0.8) to other studies. Interpretation of these 

results varied wildly, though, with some researchers concluding that species distributions are 

rather complex and unpredictable and others enthusiastically declaring an excellent predictive 

capability. For example Graf et al. (2006) predicted distributions of Tetrao urogallus based on 

models using training data from one region in other, spatially segregated regions in Switzerland, 

achieving AUC (area under the curve of a receiver operating curve) values of 0.83–0.94. 

However, they concluded that ‘[t]he regional models performed well in the region where they 

had been calibrated, but poorly to moderately well in the other regions’. In contrast, Murray et al. 

(2011) interpreted a discriminative ability of 0.77–0.90 across a few different models used for 

predicting Petrogale penicillatato occurrence to adjacent areas as ‘excellent’. We hope that our 

comprehensive study puts these results into a better perspective, on the one hand putting them 

into the full gradient of independence from resubstitution to spatial segregation, and on the other 

hand comparing them to the ecologically more interesting and statistically easier to interpret 

results from abundance models all well replicated on a large number of species covering 

different areas. 



 

In general, we encourage a greater distinction between interpolation and extrapolation (see also 

Peterson et al. 2007). Interpolation uses distribution models to fill in holes within the geographic 

and environmental space of the original data (unsampled sites surrounded by sites which were 

sampled) which actually benefit from the autocorrelation in the data (Bahn and McGill 2007). 

Extrapolation uses distribution models to make predictions about a time or place geographically 

or environmentally distinct from where the measurements (training data) were taken. This is 

commonly done both for predicting the new ranges of invasive species (Higgins et al. 1999, 

Thuiller et al. 2005) and for predicting the ranges of species in the future under global warming 

(Peterson et al. 2002, Oberhauser and Peterson 2003, Thomas et al. 2004). When extrapolation is 

the intended goal for a model, model testing on resubstituted or randomly held-out data will 

make the model appear more successful at prediction than it will be under the new conditions. 

 

How widespread are these extrapolation types of applications of SDM’s for which our results are 

relevant? Araújo and Peterson (2012) recently reviewed applications of bioclimatic envelope 

models and ‘suggest that criticism has often been misplaced, resulting from confusion between 

what the models actually deliver and what users wish that they would express’. A first 

differentiation they make is between models that aim to explain relationships between 

environmental conditions and an organism and models that aim at predicting the potential 

distribution of an organism. However, a failure to evaluate a model rigorously on independent 

data can lead to overfitting. An overfit model may give misleading conclusions on the 

importance of explanatory variables and thus fail to achieve the goal of understanding 

relationships between an organism and the environment. Further, Araújo and Peterson (2012) list 



six common applications for climate envelope models: 1) discovery of new populations or 

species; 2) reserve selection and design; 3) restoration, translocation, or reintroductions; 4) 

evaluating risk of species invasions and disease transmission; 5) climate change impacts on 

biodiversity; and 6) niche evolution. Four out of six of these common applications explicitly 

have prediction into new geographic or climatic space as a goal (1, 3, 4, 5), while 2 and 6 could 

at least include such cases. We believe that it is fair to say that most applications of SDM’s or 

bioclimatic envelope models are used to predict into new geographic and/or environmental space 

and thus are subject to the findings we present in this paper. 

 

Conclusion 

 

We showed that the currently most widely used and accepted method for testing 

presence/absence distribution models, namely randomly holding out test data, led to estimates of 

performance (average AUC >0.9 in our models) that were inflated in comparison to a more 

rigorous test that accounted for two additional factors not commonly considered. Incorporating 

these two factors drastically reduced the apparent performance of the model (relative abundance 

mean r2 <0.15 and absolute abundance mean R2<0). These two factors were: 1) the presence of 

strong autocorrelation in the data, which prevents random hold-out data from being truly 

independent (even if it was collected independently) and creates a false sense of predictive power 

in model tests, and 2) the assessment of prediction of presence/absence classification (as 

measured by AUC) rather than prediction of relative or absolute abundance – the more 

ecologically meaningful information (as measured by r2 and R2, respectively). 

 



The absence of these more rigorous methods in currently widely used model evaluation practices 

has far reaching consequences. Evaluation is used in two critical ways: model selection and 

judging our confidence in the model. In the former, using a testing scheme that leads to overly 

optimistic evaluations, as is the case with any test on not fully independent test data, will lead to 

the selection of overfit models that can both lead to false insights in which factors are important 

to the distribution of a species and also lead to false predictions of which conditions are generally 

suitable to a species. The second problem, a misjudgement of our confidence in the models, 

seems to have less severe consequences, unless an overly optimistic model evaluation suggests 

that we are able to predict potential species occurrences or abundances with moderate accuracy 

when in reality, we are doing no better than random (i.e. AUC≤0.5 or R2≤0). 

 

For many urgent questions, distribution modelling is currently the only tool available and we do 

not suggest discarding it. However, our results suggest that current opinion about how well 

distribution models perform may be overly optimistic when extrapolating into new areas or new 

climate regimes for either prediction or understanding and when testing is done with interspersed 

(spatially autocorrelated) test data. Distribution modellers should exercise caution when using 

such models in a predictive fashion, especially under radically changed conditions such as 

exploring the effects of future climate change. The testing scheme used to judge the usefulness of 

a model needs to match the intended purpose. A model that is intended to predict into new areas 

or conditions needs to be tested using truly independent, spatially segregated data. 
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Figure 1. Schematic representation of data splitting approaches. Black symbols indicate locations 

at which the species is present, grey symbols indicate locations at which it is absent, circles 

indicate locations used in the training dataset, and ×’s locations that were used for testing of the 

model. Splits for strips and halves were selected so that an equal number of occupied (black) 

locations fell into each part. 

 

  



 

 

Figure 2. Influence of model testing scheme and choice of performance measure on perception of 

performance of distribution models. The average over models for 79 bird species is shown. 

Dependent variables were either bird presence/absence (P/A; solid lines and open symbols) or 

abundance (Ab; dashed lines and closed symbols). The statistics for the P/A models were area 

under the curve (AUC) of a receiver operating characteristic curve, Somer’s D (2(AUC-0.5)), 

and squared point-biserial correlation (rୠ୧୬୭୫
ଶ ). The statistics for the Ab models were squared 

Pearson’s correlation coefficient (r2) and the coefficient of determination (R2). Models were built 

on training data and tested on progressively more independent test data implemented by different 

splitting schemes: none (training data=test data), random (dataset split in half randomly), strips 

(dataset quartered into longitudinal strips, interspersed as training and test data), halves (dataset 

split in longitudinal halves). Standard errors >0.011 are shown as error bars.  



 

 

Figure 3. Influence of modelling technique on performance of distribution models. The median 

coefficient of determination (R2) over models for 79 bird species is shown for four different 

modelling techniques: random forests (RF), boosted regression trees (BRT), general additive 

models (GAM) and multivariate adaptive regression splines (MARS). Models were built on 

training data and tested on progressively more independent test data implemented by different 

splitting schemes: none (training data=test data), random (dataset split in half randomly), strips 

(dataset quartered into longitudinal strips, interspersed as training and test data), halves (dataset 

split in longitudinal halves). Standard errors >0.011 are shown as error bars. Note that R2 is cut 

off at -0.4 in the graph because a negative R2 clearly indicates failed models and displaying even 

more negative values would have made the graph less appealing while not adding any valuable 

information. 
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