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Abstract

Background: Case-cohort studies have become common in epidemiological studies of rare disease, with Cox
regression models the principal method used in their analysis. However, no appropriate procedures to assess the
assumption of proportional hazards of case-cohort Cox models have been proposed.

Methods: We extended the correlation test based on Schoenfeld residuals, an approach used to evaluate the
proportionality of hazards in standard Cox models. Specifically, pseudolikelihood functions were used to define
“case-cohort Schoenfeld residuals”, and then the correlation of these residuals with each of three functions of event
time (i.e., the event time itself, rank order, Kaplan-Meier estimates) was determined. The performances of the
proposed tests were examined using simulation studies. We then applied these methods to data from a previously
published case-cohort investigation of the insulin/IGF-axis and colorectal cancer.

Results: Simulation studies showed that each of the three correlation tests accurately detected non-proportionality.
Application of the proposed tests to the example case-cohort investigation dataset showed that the Cox
proportional hazards assumption was not satisfied for certain exposure variables in that study, an issue we
addressed through use of available, alternative analytical approaches.

Conclusions: The proposed correlation tests provide a simple and accurate approach for testing the proportional
hazards assumption of Cox models in case-cohort analysis. Evaluation of the proportional hazards assumption is
essential since its violation raises questions regarding the validity of Cox model results which, if unrecognized,
could result in the publication of erroneous scientific findings.
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Background
Case-cohort design is an efficient and increasingly popular
method for conducting prospective epidemiological studies
of rare outcomes. Compared with standard longitudinal
cohort studies, case-cohort investigations are typically less
costly, use less resources, and require less time to conduct,
though they entail little loss in statistical power [1-3]. In
case-cohort studies, relevant but costly or difficult to obtain
information is obtained for only a subset of subjects rather
than the entire cohort. Specifically, there are two subject
groups: (i) the subcohort - a random sample of all subjects
in the cohort with no history of the outcome of interest at
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baseline, selected without regard to future outcomes. Thus,
the subcohort may include some individuals who later be-
come cases; and (ii) the case group - all or random sample
of the incident cases of disease, the vast majority of whom
will be from outside the subcohort. Furthermore, because
the subcohort is a representative sample of the entire
cohort without disease at enrollment, it is possible to adopt
case-cohort design to study multiple different types of
disease outcomes (e.g. multiple types of cancer) using
the same subcohort. For example, we present below a
recent prospective study of fasting serum insulin levels
and the risk of three cancer case groups which involved
a single subcohort [4-6].
Case-cohort studies are typically analyzed using Cox

proportional hazards (PH) models [7]. Specifically, es-
timation of the Cox proportional hazards model in a
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case-cohort analysis is obtained by approximating each
instantaneous risk set of the entire cohort included in
the partial likelihood function of a standard Cox model
by a case-cohort risk set. Several approaches to define
a case-cohort risk set have been proposed [1,2,8]. Prentice
[1] defined the case-cohort risk set as the following: at the
instantaneous moment of an event the case-cohort risk
set includes the subject who had the event plus all the
subjects in the subcohort who remained in the study but
did not have the event at least until that exact time. The
Cox-type likelihood function that is conditioned on the
case-cohort risk sets is referred to as the pseudolikelihood
function [1]. Statistical inferences in case-cohort analyses
are then determined based on maximization of this
pseudolikelihood function. As the Prentice approach
involves an exact pseudolikelihood function and, in large
samples the two other well-established approaches [2,8]
provide similar results to the Prentice method, this paper
focuses exclusively on the latter. Appropriate methods to
conduct these analyses are now available in standard
software such as SAS and R, which has helped to reduce
computational obstacles to the adoption of case-cohort
design, and has been a major factor in the growing use
of this cost-effective design.
One of the key assumptions of the Cox model is the

proportional hazards function assumption. Specifically,
the model assumes that each covariate has a multiplica-
tive effect in the hazards function that is constant over
time. The PH assumption is often of substantial import-
ance. For example, in a randomized controlled trial, we
may wish to know whether one treatment is superior to
another uniformly over time or only in the short term.
Similarly, in observational studies, it is often important
to determine whether a factor is associated with a con-
stantly higher or lower risk of the outcome over time.
For example, Bellera et al. [9] showed that the prognostic
relevance of tumor grade for breast cancer metastases
diminished over time and negative hormone receptor status
was associated with an increased risk of metastases early
but became protective thereafter.
Many approaches for assessing the PH assumption are

available for standard cohort studies, including both
graphical methods and statistical tests [10-19]. Graphical
approaches are a visual form of screening for non-
proportionality which can provide insight into the tem-
porality and the extent of non-proportionality that is
otherwise difficult to obtain using statistical methods.
Conversely, graphical methods involve a moderate degree
of subjectivity in interpretation. Statistical tests typically
screen for the lack of fit of a Cox model. Specifically,
Grambsch and Therneau [19] have shown that many of
these statistical tests are essentially tests of a non-zero
slope in generalized linear regression models of the
Schoenfeld residuals [11] as a function of event time.
As discussed further in the Methods section (below),
correlation tests of Schoenfeld residuals and event time
(or log of the event), the rank order of event time [13]
or Kaplan-Meier survival curve (KM) estimates are among
the most frequently used approaches for assessing the PH
assumption [14]. These methods are popular since they can
be calculated using standard statistical software [20,21] and
are easy to interpret.
Methods to assess the PH assumption in case-cohort

studies are not well-established. We therefore assessed
the possibility of extending the correlation tests of
Schoenfeld residuals and event time to case-cohort study
analysis. Two questions in particular need to be addressed.
First, can the pseudolikelihood function be used to calculate
valid Schoenfeld residuals? Second, what function of event
time is best to use for this correlation in case-cohort stud-
ies? This paper aims to address these issues and empirically
evaluate the proposed correlation tests for the assessment
of proportionality in case-cohort Cox model analysis. These
methods are then applied to a case-cohort study designed
to evaluate the associations of insulin and insulin-like
growth factor (IGF)-axis protein levels with the develop-
ment of cancer in postmenopausal women [4].

Methods
Testing proportionality using “Schoenfeld Residuals” in
case-cohort dataset
Consider a case-cohort study where the subcohort C is a
simple random sample of size m selected from the cohort
at baseline (m < n). We define an independent counting
process {Ni(t), t ≥ 0} for i = 1,…, n so that dNi(t) = 1 if the
ith person fails at time t and 0 otherwise and Yi(t) is a 0–1
process which indicates whether the ith subject is at risk
(i.e., remains in the study) at time t. The intensity function
for the {Ni(t), t ≥ 0} is given by

Y i tð Þ exp βXi tð Þð ÞdΛ0 tð Þ

Where Xi(t) is a covariate process of dimension p and
dΛ0(t) is an unspecified hazard function and eβ is the
hazard ratio (HR) associated with a one unit increase in
exposure variable xi(t). Let ~Ri tð Þ ¼ C∪ if g where the
subcohort C is a simple random sample of size m se-
lected from the cohort at baseline with m < n. Then
the pseudolikelihood function which is used to determine
the statistical inference is defined as follows:

~L βð Þ ¼
Yn
i¼1

Y
t

exp βXi tð Þð Þ
∑k∈~Ri tð ÞYk tð Þ exp βXk tð Þð Þ

" #dNi tð Þ
ð1Þ

In a standard Cox model, the estimate of HR can be
obtained by maximizing the partial likelihood function.
For all the events in the cohort, a separate Schoenfeld
residual is defined with respect to each variable in the
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model. Specifically, for an event in the cohort, its
Schoenfeld residual with respect to a variable in the
model is defined as the difference between the value of
the variable and its mean conditioned upon the risk set
at his/her event time (i.e., the subjects who remained
in the study without experiencing the event at least
until this time). The Schoenfeld residuals are shown to
have mean zero under the PH assumption therefore
can be used to assess the PH assumption [11].
For purposes of case-cohort analysis, similarly we define

the Schoenfeld residual with respect to a given variable
for an event occurred at t (either inside or outside the
subcohort) as the difference of the covariate value and
its mean conditioned upon the case-cohort risk set ~Ri tð Þ .
Specifically, for an event occurred at time t with a co-
variate Xij(t) for j = 1,…, p, the Schoenfeld residual rij(t)
is rij tð Þ ¼ xij tð Þ−E xij tð Þ ~Ri tð ÞÞ���

where

Eðxij tð Þj~Ri tð ÞÞ ¼

X
k∈~Ri tð Þ

Yk tð ÞeβXk tð Þxkj tð Þ
X

k∈~Ri tð Þ
Yk tð ÞeβXk tð Þ :

Prentice [1] has shown that conditional on event history
up to time t, rij(t) has mean 0 under the PH assumption,
therefore, it can also be used for assessing proportionality
for case-cohort studies. The pseudolikelihood function
can be readily constructed using available statistical soft-
ware by adopting a counting process to describe the event
time (i.e., each subject’s time to event process is described
by a series of start and stop intervals) [22]. Note that an
event that occurs outside the subcohort is assigned a start
time immediately before the moment of the event so that
this event does not contribute data to any other risk sets.
The case-cohort Schoenfeld residuals can then be easily
calculated using standard statistical software. We can as-
sess the PH assumption by calculating a Pearson correl-
ation coefficient and its significance for each variable in
the model between its Schoenfeld residuals and a function
of the corresponding event times, with detection of a sig-
nificant correlation considered evidence of a violation of
the PH assumption. With regards to specific functions of
the event time, here we propose to use event time by itself,
rank order of the event time and KM estimates. Both rank
orders and KM estimates do not assume a parametric
form of departure of proportionality, while rank orders
are more discrete and depends on only the events that are
already occurred and KM estimates depend on the event
history (i.e., censorings and events).
Proper adjustment needs to be made to obtain KM esti-

mates for case-cohort data where cases were oversampled.
The estimate of increment in cumulative hazard function is
a weighted version of Breslow estimator for the full cohort

[1], i.e., dΛ̂ tð Þ ¼

Xn
j¼1

dNj tð Þ

n=m
X

k∈~R tð ÞYk tð Þ : The KM estimate for

case-cohort data can therefore be shown as:

Ŝ tð Þ ¼ e

—

X
ti≤t

Xn
j¼1

dNj tið Þ
X

k∈~R tið ÞYk tið Þ

2
6666666664

3
7777777775

m=n

:

The R/Splus code to compute for case cohort KM es-
timates and the three correlation tests is given in the
Appendix.
Overall, in case cohort analysis, use of either the event

time or rank order of the event time fails to take into
consideration of the case-cohort design. The KM esti-
mate has the theoretical advantage since it addresses the
oversampling of cases in case-cohort design. These three
correlation tests are also commonly used for standard
Cox models, for which some simulation has shown that
rank order of event time works pretty well [13], there
are other situations where the behavior of the different
time variables do differ [23]. In below, we used simulation
studies to empirically evaluate the performance of these
three proposed correlation tests to examine proportionality
for a case-cohort Cox model analysis.

Simulation studies
Several different cohort and subcohort sample sizes were
assumed, however, since changes in sample size did not
affect the findings, only results for the initial set of
assumptions are presented, a sample size of n = 2000
with a random subcohort of m = 500 subjects. A uniform
censoring distribution was generated so that the event
rate was set to be between 5-10% and all cases outside
the subcohort were included in the study. Below, we list
additional relevant details related to each of the different
scenarios considered in these simulations.
Scenario (1): a Cox model with only one binary variable

with 50% exposed. The time to event distribution was
varied, as was the hazard ratio. Specifically, we considered
the following five situations in which time to event was
generated from:

1. A piecewise exponential distribution: the exposed
group had hazard rates of 0.1, 0.2, 0.05 and 0.1 at
t < 0.3, 0.3 ≤ t < 0.5, 0.5 ≤ t < 0.8 and t ≥ 0.8,
respectively and the unexposed group’s hazard rate
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was proportional to that of the exposed group with
a constant HR of 0.5;

2. A piecewise exponential distribution: the exposed
group’s hazards rates were 0.1, 0.2, 0.05 and 0.1
while the unexposed group’s rates were 0.05, 0.15,
0.05, 0.15 at t < 0.3, 0.3 ≤ t < 0.5, 0.5 ≤ t < 0.8 and t ≥ 0.8,
respectively, so that the HR between exposure and
non-exposed groups varied from 2 to 1.3, 1 and 0.7;

3. A Weibull distribution with increasing hazards over
time: the scale and shape parameters are (4.0, 1.5)
and (4.0, 2.0) for the exposed and unexposed,
respectively. For example, when t changes from
0.1 to 0.5, the HR changes from 0.8 to 1.9 at a rate
of t0.5 (i.e., hazards functions are crossed over);

4. A Weibull distribution with decreasing hazards over
time: the scale and shape parameters are (80, 0.3) and
(80, 0.6) for the exposed and unexposed, respectively.
For example, when t changes from 0.1 to 0.5, the HR
changes from 3.7 to 6.0 at a rate of t0.3;

5. A Weibull distribution with one constant hazard
and another increasing hazards over time: the scale
and shape parameters are (4.0, 1.0) and (4.0, 1.5) for
the exposed and unexposed, respectively. For
example, when t changes from 0.1 to 0.5, the HR
changes from 0.9 to 2.1 at a rate of t0.5.

Scenario (2): a Cox model with a single continuous
covariate generated from a standard normal distribution.
We considered the following three situations in which
survival times were generated from:

1. A piecewise exponential distribution with hazard
rates of 0.1, 0.2, 0.05 and 0.1 at t < 0.3, 0.3 ≤ t < 0.5,
0.5 ≤ t < 0.8 and t ≥ 0.8 and a constant HR of 0.5 per
unit increase of the continuous variable;

2. A Weibull distribution with a shape parameter of 1.5,
a scale parameter of 4.0, and a constant HR of 1.5;

3. A piecewise exponential distribution with parameters
the same as those in Scenario (1.1) but the HR was
0.5, 0.5, 1.0 and 1.0 at the four intervals, respectively.

Scenario (3): a Cox model with more than one covariate.
For simplicity, we generated a binary and an independent
continuous variable. Since our simulations (shown below)
demonstrated that the results are largely robust in relation
to the distribution of the survival times, we limited
the distribution to a piecewise exponential distribution
(scenario (1.1)), a general shape of hazard functions (i.e.,
non-monotonic). We considered the following situations:

1. Both the binary and the continuous covariates had a
constant HR of 0.5;

2. The HR associated with the continuous covariate
was constant at 0.5, for the binary variable it was set
to be (0.5, 0.5, 1.0, 1.0) for the four intervals,
respectively;

3. The HR associated with the binary covariate was
constant at 0.5, for the continuous variable it was set
to be (0.5, 0.5, 1.0, 1.0) for the four intervals,
respectively;

4. Both HRs for the binary and the continuous
covariate were varying and at 0.5, 0.5, 1.0, 1.0 for the
four intervals, respectively.

A case-cohort analysis was conducted on each simulated
data, and then all three proposed correlation tests for
proportionality were applied. The simulation was repeated
1000 times and the percent of simulations in which
proportionality was rejected (i.e., the percent of times
that the p-value from the correlation test was less than 5%)
was determined. When the hazards are truly proportional
(that is, when the null hypothesis is true), this proportion is
the empirical type I error rate of the test; when the hazards
are not proportional (that is, when the alternative is true),
then this proportion is the empirical power of the test.

A case-cohort study example
A case-cohort investigation of incident colorectal cancer
(ICC) was conducted among non-diabetic subjects enrolled
in the Women’s Health Initiative (WHI) Observational
Study, a prospective cohort of 93,676 postmenopausal
women aged 50 to 79 years who were recruited at 40
clinical centers across the United States between 1993
and 1998 [24]. Fasting baseline serum specimens from
all ICC cases (n = 438) and a random subcohort (n = 816)
of the WHI observational study subjects were tested for
levels of insulin, glucose, total and free insulin-like growth
factor (IGF)-I and IGF binding protein (IGFBP)-3. The rela-
tion of ICC risk with each of these biomarkers, as well as
body mass index (BMI), waist circumference and waist/hip
ratio, was assessed in separate multivariate Cox models
that employed appropriate methods to account for the
case-cohort design. Each primary exposure variable was
expressed as quartiles or tertiles based on the distribution of
levels in the subcohort. All models were adjusted for a priori
established colorectal cancer risk factors including age (cate-
gorized as 50 to 54, 55 to 59, 60–64, 65 to 69, 70 to 74 and
75–79 years); smoking status (never, former, and current);
race/ethnicity (White, Black, Hispanic, and other); physical
activity, assessed as metabolic equivalent tasks per hour per
week (categorized as <3.75, 3.75-10, 10–20 and ≥20 METs);
waist circumference (categorized as <75.0, 75.0-83.5, 83.5-
93.0 and ≥93.0 cm); use of nonsteroidal anti-inflammatory
drugs in the preceding year (no/yes), alcohol consumption
(none, <3, and ≥3 number of servings/week); and family
history of colorectal cancer (no/yes).
The results showed that insulin (HR = 1.21; 95% CI:

1.07-1.36) and waist circumference (HR = 1.23; 95% CI:
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1.11-1.35) per quartile increase were significantly associated
with ICC risk. However, the proportionality assumption
was not examined because of unavailability of appropriate
methods for case-cohort studies at that time. In this paper,
we used the methods developed to examine the adequacy
of the PH assumption for the Cox model that included
insulin as the primary exposure variable, and the model
that included waist circumference as the primary exposure
variable. For the Cox model that contains variable(s) which
did not satisfy the assumption, we used a stratified Cox
model [22] or an additive hazards model for case-cohort
datasets [25,26]. For the stratified Cox model, the method
for obtaining a robust variance estimator for confounder-
stratified case-cohort studies was used. In an additive
model, the hazard function is defined as

λ tð Þ ¼ λ0 tð Þ þ γXi tð Þ
in which the covariate Xi(t) acts additively on the hazards
function and γ has the interpretation as the absolute in-
crease in instantaneous event rate per unit increase in the
variable. Therefore, the PH assumption is no longer needed
in this model. Goodness of fit for the additive hazard model
was examined [27].
All the analyses were conducted using R (R 2.12.2, 2011,

The R Foundation for Statistical Computing).

Results
Simulation study
Table 1 shows that with a single binary variable, all three
correlation tests have a similar level of type I error, though
the correlation tests based on the event time and the rank
order were slightly higher than the correlation test based
on the KM estimates (5.9%, 5.6% and 5.4%, respectively).
In most scenarios, all three tests provided similar results
except when both hazard functions are declining but not
proportional, where the correlation test based on event
time had the lowest power (80.5% vs 93.1% and 92.8%).
Figure 1 indicates that the log of hazard ratio under the
fourth scenario (i.e., declining hazards and non-proportional)
Table 1 Proportion of simulations (out of 1000) with P-values

Variable type Shape of hazards functions & proportionality

Binary Non-monotonic proportional

Non-monotonic non-proportional

Increasing non-proportional

Decreasing non-proportional

One constant one increasing non-proportional

Continuous Non-monotonic proportional

Increasing proportional

Non-monotonic non-proportional

Note: Abbreviation: Corr correlation, KM Kaplan-Meier Survival Curve.
The full-cohort sample size for all models was 2000; group 1 and group 2 had equa
random sampling.
can be least approximated by a linear function of survival
time among the four scenarios. This explains why the cor-
relation with time has the lowest power here as the other
two tests are more robust to the shape of the hazard ratio
over time. Although the KM estimate has the advantage
of addressing the case-cohort design and being a more
smoothed curve than the rank order, it does not seem
advantageous over rank in detecting non-proportionality.
In fact, the two tests have very close results. Same as the
findings from standard Cox model, the performance of
the correlation test depends on the true form of the
time-dependent hazard ratio. Therefore, the decision
on which time variable to use is typically case by case,
largely depending on the researchers’ understanding of
the true exposure and disease association.
Table 1 also shows that with a continuous variable,

correlation with event time had slightly better type I
error (5.2% vs 5.9% and 6.0%). In the other scenarios,
all three tests provided similar results. Table 2 shows
that the tests distinguished the variables that satisfied
the proportionality assumption and the variables that
did not when they were in the same model. In summary,
the three tests performed equally well.

The case-cohort study example
In the Cox model that included insulin as the primary
exposure variable the variable “physical activity” failed to
satisfy the PH assumption (Table 3), i.e., the hazards
function for 10–20 METs of physical activity was not
proportional to the reference level. We then graphically
examined how the departure from proportionality had
occurred. A smoothed curve of the scaled Schoenfeld
residuals for physical activity served as an estimate of the
time-dependent departure from proportionality, termed G
(t), with β + G(t) representing the association between
ICC and physical activity if the relationship varied over
time. A flat curve close to 0 is expected if the PH assump-

tion is satisfied. Given β̂ ¼ �0:3177, Figure 2 shows that
the relation of ICC with 10–20 Mets was weaker during
< 0.05 for a single variable

Corr with time Corr with rank Corr with KM estimate

0.059 0.056 0.054

0.874 0.877 0.857

0.445 0.409 0.407

0.805 0.931 0.928

0.657 0.666 0.646

0.052 0.059 0.060

0.041 0.045 0.042

0.997 0.996 0.995

l sample size; and the subcohort sample size was 500 using simple



Figure 1 Log of ratio of hazards functions between two
categories of a binary exposure variable under various of
simulated non PH scenarios of non PH listed in Table 1. Black
line represents non-monotonic hazard functions and non PH;
orange line represents increasing hazards and non PH; red line
represents decreasing hazards and non PH; blue line represents one
constant and one increasing hazards and non PH.

Table 3 Assessment of proportional hazards for each
variable in the multivariate cox model for the example
case-cohort study of colorectal cancer risk, using insulin
levels as the primary exposure variable

Covariates in the model Corr with
event time

Corr with
rank of time

Corr with
KM estimates

Insulin 0.154 0.176 0.164

Mets for physical activity:
(0,3.75)-ref

(3.75,10) 0.389 0.384 0.397

(10,20) 0.045 0.040 0.044

> = 20 0.629 0.686 0.645

Ethnic: white -ref

Black 0.305 0.304 0.294

Hispanic 0.167 0.166 0.176

Others 0.820 0.586 0.704

Family history of colorectal
cancer

0.628 0.598 0.624

History of colonoscopy 0.099 0.076 0.089

Smoking: none-ref

Former 0.962 0.858 0.887

Current 0.613 0.594 0.598

Alcohol consumption: none-ref

(0,3) 0.491 0.326 0.411

> = 3 0.219 0.256 0.255

NSAID 0.059 0.105 0.075

Age group continuous 0.322 0.181 0.261

Note: Abbreviation: Mets metabolic equivalent tasks per hour per week, NSAID
use of nonsteroidal anti-inflammatory drugs in the preceding year.
Multivariate Cox model was applied to the WHI case-cohort study with insulin
as the primary exposure variable, categorized as quartile groups based on the
distribution in the subcohort and then treated as a linear trend. The model
included age group categorized as (a) 50 to 54 years of age (referent), (b) 55
to 59, (c) 60–64, (d) 65 to 69, (e) 70 to 74, (f) 75–79.
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the first three years than in subsequent years. To address
this source of non-proportionality, we stratified the ana-
lysis by physical activity stratum. In this new model, insu-
lin remained significant with an HR of 1.18 (CI: 1.04, 1.34)
per quartile increase in insulin level, an estimate very close
to but smaller than the previous estimate. In other words,
the estimate was more conservative after the adjustment
for non-proportionality.
Table 4 shows results for the Cox model that included

waist circumference as the primary exposure variable.
For simplicity, only the variables that violated the PH
assumption are presented, namely, waist circumference and
physical activity. The residual plot is shown in Figure 3
and suggests that relation of ICC with waist circumference

β̂ þ Ĝ tð Þ (β̂ ¼ 0:2011) was comparatively weak during the
Table 2 Proportion of simulations (out of 1000) with P-values <

Proportionality Variable

Proportionality for both variables Continuou

Binary

Proportionality for the continuous but not the binary variable Continuou

Binary

Proportionality for the binary but not the continuous variable Continuou

Binary

Non-proportionality for both variables Continuou

Binary

Note: Non-monotonic hazards function was assumed.
first two years of follow-up and then increased over time.
Therefore, the previous result that a greater waist circum-
ference quartile is associated with a constant 23% higher
ICC risk over time (HR = 1.23 per quartile level increase)
can be misleading. Because waist circumference is the
0.05 for one continuous variable and one binary variable

Corr with time Corr with rank Corr with KM estimate

s 0.059 0.056 0.056

0.042 0.043 0.045

s 0.047 0.048 0.045

0.646 0.641 0.647

s 0.979 0.971 0.967

0.043 0.045 0.045

s 0.994 0.991 0.989

0.597 0.586 0.580



Figure 2 Schoenfeld residuals for physical activity in the multivariate Cox model for the example case-cohort study of colorectal
cancer risk, using insulin levels as the primary exposure variable. For variable definitions, please see foot note for Table 3. The solid smooth
line is the estimated lowess smoothed curve of G(t), i.e., the time-dependent departure of proportionality, and the dotted lines are the estimated
confidence bands.
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primary exposure variable of interest it is not possible
to stratify the analysis according to this variable since it
would prevent estimation of its coefficient. We therefore
used an additive model for case-cohort studies. In this
new model, waist circumference remained significantly
Table 4 Assessment of proportional hazards for each
variable in the multivariate Cox model for the example
case-cohort study of colorectal cancer risk, using waist
circumference as the primary variable

Covariates in the model Corr with
event time

Corr with
rank of time

Corr with
KM estimates

Waist 0.030 0.024 0.026

METs of physical activity:
(3.75,10)

0.365 0.361 0.373

(10,20) 0.055 0.049 0.053

> = 20 0.629 0.688 0.645

*Note: Model description is the same as above except that in this model waist
circumference is the primary exposure variable. For simplicity, we only listed
the variables that do not satisfy proportionality assumption in the multivariate
Cox model.
associated with ICC risk and had an effect estimate
of 1.41*10-4 (CI: 0.46*10-4,2.36*10-4), suggesting that
there will on average be 1.4 extra ICC cases per quartile
increase in waist circumference for every 1,000 subjects
during 10 years of follow-up. The goodness of fit for
the additive model was examined and no lack of fit
was indicated.
Discussion
In keeping with its name, the proportionality of the hazards
is a critical assumption of Cox proportional hazards ana-
lysis. Violation of the PH assumption can raise questions
regarding the validity of the model, and possibly lead to
misleading and erroneous scientific findings. Because of
the importance of assessing the PH assumption, several
statistical tests have been proposed for detecting departure
from PH in Cox models in the analysis of traditional cohort
studies. However, no similar appropriate methods have
previously been proposed to assess PH in Cox models of
case-cohort data.



Figure 3 Schoenfeld residuals for waist circumference in the
multivariate Cox model for the example case-cohort study of
colorectal cancer risk, using in waist circumference levels as
the primary exposure variable.

Xue et al. BMC Medical Research Methodology 2013, 13:88 Page 8 of 10
http://www.biomedcentral.com/1471-2288/13/88
In this paper, we extended the correlation tests based
on Schoenfeld residuals that are commonly employed to
assess PH in standard Cox models so that they might
be utilized in case-cohort Cox models. Specifically, we
for the first time defined Schoenfeld residuals based on
the exact pseudolikelihood function reported by Pren-
tice for the analysis of case-cohort data, then proposed
a correlation test between these Schoenfeld residuals
and three functions of event time, namely, event time
itself, the rank order of the event times, and K-M esti-
mates. We focused on these correlation tests because
the interpretation of the results is straightforward and
they can be easily implemented using existing software.
The simulation studies showed that each of the three
correlation tests performed well across multiple simulated
scenarios; although, which specific test performed best
varied slightly depending on a given scenario. As it is
easy to conduct these tests, we recommend that all
three tests be performed and that, as a conservative
approach, the lowest p-value among these tests be
reported. Any indication of violation should be further
examined using graphical approaches, which not only
overcome the potential problem of multiple testing but
also provide more insight regarding the nature of the
non-proportionality and how to modify the Cox model
to best fit the data.
As mentioned in the introduction section, score tests
based on scaled Schoenfeld residuals are also commonly
used for standard Cox models [19]. However, because
cases outside the subcohort induce non-nesting of the
so-called sigma fields, the asymptotic distribution theory
for the pseudo-likelihood estimators breaks down so that
adjustments were made on the asymptotic variance [2].
More research is needed to extend the score test on
scaled Schoenfeld residuals to case-cohort data.
Modifications of the Cox model to address non-

proportionality for standard cohort studies include
stratification, use of time-dependent covariates, the
inclusion of an interaction term between exposure and
a function of time, as well as the use of additive haz-
ards models. The first three approaches can be easily
implemented for case-cohort studies. However, the use
of additive models for case-cohort studies needs to be
further developed to allow additive effects to vary by
time and to allow multiplicative and additive combined
models [28].
In case cohort designs, it is often useful to select

subcohort members using an exposure-based stratified
random sampling in order to gain statistical efficiency
[29]. For example, in a study of epithelial growth factor
receptor (EGFR) gene repeat length polymorphism and
radiation exposure joint effects on lung cancer risk, an
alternative sampling approach to the simple random
sampling method was used to randomly select subcohort
members within each stratum of their radiation exposure
[30]. Generalization of the currently proposed methods
for assessing PH, so that they can be used in case-cohort
design with stratified sampling will be an important topic
for future research.
Although not our main focus, this study also served

to further show that insulin is significantly associated
with a higher risk of ICC consistently over time, al-
though the estimate of the insulin HR was somewhat
more conservative than previously reported following
adjustment for the non-proportionality of one of the
covariates in the model. We also demonstrated that
increased waist circumference does not have a uniform
association with ICC risk over time. We then estimated
the association of waist circumference on ICC using an
additive model.
Conclusions
To our knowledge, the current paper is the first to re-
port appropriate methods to assess PH in Cox models
using data from case-cohort studies. These methods
can be easily conducted using standard statistical soft-
ware, and it is hoped that they will be adopted in the
analysis of case-cohort studies to improve the validity
of their reported results.
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Appendix
After defining the counting process to describe event
time for case cohort data with a subcohort of size m and
a cohort of size n, the following R/Splus program can be
used to compute the three proposed correlation tests:
# compute schoenfeld residuals
coxfit < − coxph(Surv(start,stop,event) ~ z, data = ccdat,

method = "breslow", robust = T)
sresid < − resid(coxfit, type = "schoenfeld")
# compute KM estimate
sfit < − survfit(Surv(start,stop,event) ~ 1, data = ccdat)
sest < − sfit$surv[sfit$n.event > 0]
ecnt < − sfit$n.event[sfit$n.event > 0]
km < − rep(sest^(m/n), ecnt)
# correlation test with event time
cor.test(sort(ccdat$stop[ccdat$event==1]),sresid,

method = "pearson")
# correlation test with rank order of event time cor.

test(rank(sort(ccdat$stop[ccdat$event==1])),sresid,
method = "pearson”)
# correlation test with KM estimates
cor.test(km,sresid,method = "pearson")$p.value
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