
When participants are required to respond as quickly as 
possible to the onset of any target stimulus, they usually 
respond faster when two target stimuli are presented than 
when only one is  presented (see, e.g., Hershenson, 1962). 
This gain in reaction time (RT) with redundant stimuli has 
been termed the redundant signals effect (RSE). Several 
theoretical and experimental studies have been conducted 
to unravel the causes of this phenomenon (e.g., Colonius, 
1988, 1990; Colonius & Townsend, 1997; Diederich, 
1995; Giray & Ulrich, 1993; Miller, 1982; Mordkoff & 
Yantis, 1991; Schwarz, 1989, 1994; Townsend & Nozawa, 
1995; Townsend & Wenger, 2004).

Raab (1962) was the first to suggest a detailed model 
for the RSE, a model that is based on a simple statistical 
principle. According to his race model, each stimulus is 
detected separately. In trials with redundant stimuli, a re-
sponse is triggered as soon as the first stimulus is detected. 
In this view, RT is determined by the latency of a single 
detection process in trials with one stimulus, whereas it 
is determined by the faster of two stimulus detection pro-
cesses in trials with redundant signals. Because the aver-
age time of the winner in a race is usually shorter than the 
average detection time of each single process, this race 
model predicts faster RTs in trials with redundant signals 
than in trials with only one stimulus.

Additional tests of the race model can be carried out at 
the level of RT distributions. More specifically, according 
to race models, the observed RT distributions should sat-

isfy, for every value of t, the so-called race model inequal-
ity (Miller, 1982):

 Fz(t)  Fx(t)  Fy(t), t  0, (1)

where Fx and Fy are the cumulative density functions 
(CDFs) of RT in the two single-stimulus conditions Cx and 
Cy, respectively, and Fz is the CDF of RT in the redundant-
stimulus condition Cz. According to race models, Fz(t) 
may approach Fx(t)  Fy(t) for small values of t, espe-
cially when the detection times are strongly negatively 
correlated (Colonius, 1990; Ulrich & Giray, 1986). Yet, 
even in this case, the inequality must be satisfied accord-
ing to race models. Contrary to this prediction, observed 
RT distributions often violate the race model inequality for 
small values of t (see, e.g., Diederich & Colonius, 1987; 
Giray & Ulrich, 1993; Miller, 1982, 1986; Plat, Praamstra, 
& Horstink, 2000).

Distributional tests using the race model inequality 
often show that the observed redundancy gain is actu-
ally larger than the race model can predict. More specifi-
cally, for small values of t, the CDF of RTs observed in 
redundant trials, Fz(t), is often greater than the sum of 
the single-stimulus CDFs, Fx(t)  Fy(t). Therefore, it has 
been suggested that the units of information from the re-
dundant stimuli are somehow combined and that this com-
bined activation triggers the response (see, e.g., Miller, 
1982). Several quantitative models have been developed 
to describe this combination of information and the facili-
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tation of RTs that results from such coactivation processes 
(e.g., Colonius & Townsend, 1997; Miller & Ulrich, 2003; 
Schwarz, 1989, 1994; Townsend & Nozawa, 1997).

The present article describes the statistical assessment 
of a potential violation of the race model inequality and 
shows how this assessment can be carried out with a com-
puter. We provide program code in MATLAB and in Pascal 
that can be used to perform this assessment. This project 
was motivated primarily by two issues. First, there is no 
previously published detailed description of the algorithm 
for estimating the probability distributions underlying this 
test. Moreover, some previous descriptions apply only in 
the special case of equal numbers of RTs in all conditions 
(e.g., Miller, 1982). In fact, numerous researchers have 
asked the authors exactly how the test should be carried 
out. Second (and perhaps more alarming) is the fact that 
some commercial software (e.g., Excel) provides certain 
statistical functions for percentile estimation that might 
seem appropriate for testing the race model inequality, but 
which in fact are not appropriate.

The algorithm that is described in this article is appro-
priate for use with the most common test for evaluating a 
potential violation of Inequality 1 (see, e.g., Bucur, Allen, 
Sanders, Ruthruff, & Murphy, 2005; Krummenacher, 
Müller, & Heller, 2001). Recently, two potential alterna-
tive tests to assess this inequality have been suggested by 
Van Zandt (2002) and by Maris and Maris (2003). Van 
Zandt suggested that a bootstrapping procedure be used 
to estimate a confidence interval for the sample estimate 
D(t)  Fz(t)  [Fx(t)  Fy(t)] at each value of t. Re-
searchers could conclude that the race model inequality 
was violated whenever the bootstrap confidence interval 
indicated that D(t) was significantly larger than zero. 
Although Van Zandt’s procedure is statistically straight-
forward, its usefulness is limited for many typical RT 
studies. First, as noted by Van Zandt herself (p. 491), this 
procedure requires many observations per participant. 
Second, and perhaps more crucially, it is not clear how 
the bootstrapping results can be combined across multiple 
participants, or across multiple sessions for the same par-
ticipant, if performance changes from session to session. 
In many RT studies, however, the number of observations 
per participant needs to be small because many conditions 
are tested, and it is therefore necessary to aggregate the 
results across participants in order to achieve a high level 
of statistical power.

Although the second test, suggested by Maris and Maris 
(2003), allows aggregation of data across participants, it 
suffers from another shortcoming that limits its applica-
tion in experimental work. Their test, which is based on 

Kolmogorov’s goodness-of-fit principle, requires that 
the number of trials in each single-stimulus condition 
be determined randomly for each single participant and 
condition, rather being constant across participants and 
conditions. This requirement is difficult to meet in most 
experimental work, because it also requires many trials per 
participant to ensure that a sufficient number of observa-
tions are available in each stimulus condition. In addition, 
and even more crucially, in order to control for potential 
confounds of stimulus contingencies (Mordkoff & Yantis, 
1991), it is important that the experimenter prespecify a 
certain fixed number of trials for each stimulus condition 
rather than leaving this number to chance. The algorithm 
described in the following section does not require an es-
pecially large number of observations per participant, nor 
does it require that the number of trials be determined by 
chance. In addition, the algorithm allows the overall re-
sults to be aggregated across participants and displayed in 
a feasible manner.

ALGORITHM

In this section, we provide an exact specification of the 
steps necessary for testing potential violations of Inequal-
ity 1. It is convenient to break up this test into four parts. 
First, empirical CDFs have to be estimated for every par-
ticipant and every stimulus condition, and these CDFs will 
be denoted as the individual CDFs. Specifically, let Gx, Gy, 
and Gz be the individual estimates of two single-stimulus 
CDFs, Fx and Fy, and the redundant CDF, Fz, respectively. 
Second, from Gx and Gy, one computes the bounding sum 
B(t)  Gx(t)  Gy(t) for each participant, which provides 
an estimate for each participant of the upper bound on 
the right side of Inequality 1. Third, percentile values are 
computed from Gz and B for each participant at certain 
prespecified probabilities that must be the same for all 
participants. Fourth, the percentile values are aggregated 
across participants.

We will illustrate the first three steps with an example 
data set of a single hypothetical participant. Table 1 con-
tains this example data set for each of the three experi-
mental conditions.

Step 1: Compute Gx, Gy, and Gz
Because the computational steps are identical for Gx, 

Gy, and Gz, we will only describe the computation of Gx. 
Assume that a sample {x1, x2, . . . , xn} of n RTs has been 
observed in condition Cx for a given participant. One or-
ders this sample from the smallest value to the largest—
that is, x1  x2  . . .  xn—and generates a step function 

Table 1 
Illustrative Sets of Reaction Times for Each Experimental Condition 

for a Single Hypothetical Participant

Condition  n  Data Set

Cx 10 244, 249, 257, 260, 264, 268, 271, 274, 277, 291
Cy 16 245, 246, 248, 250, 251, 252, 253, 254, 255, 259, 263, 265, 279, 282, 284, 319
Cz 13 234, 238, 240, 240, 243, 243, 245, 251, 254, 256, 259, 270, 280

Note—n gives the number of observations per stimulus condition.
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of Gx by plotting pi  i/n against xi for i  1 . . . n. For 
values of t smaller than x1, of course, p must be equal to 
zero. For our hypothetical participant, the ordered data set 
in condition Cx is

{244, 249, 257, 260, 264, 268, 271, 274, 277, 291},

and the p values

{.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0}

would be employed to generate the corresponding step 
function. The step function for this data set is shown as 
the dotted line in panel A of Figure 1. The step function 
estimates for Gy and for Gz are obtained in the analogous 
way from the observations in those conditions, and these 
are shown in panels B and C. Note that the number of ob-
servations need not be equal for all stimulus conditions; 
in practice, though, we recommend the use of at least 10 
observations per condition.

Following the standard procedures for percentile es-
timation (see, e.g., Gilchrist, 2000), each step function 
is next used to generate a corresponding cumulative fre-
quency polygon. For this purpose, the midpoint of each 
vertical step segment is determined as [xi, (2i  1)/(2n)], 
and the adjacent midpoints are connected by a straight 
line (i.e., linear interpolation). Specifically, it can be 
shown that for any value of t, the cumulative frequency 
polygon estimate Gx(t) is given by Equation 2 (located at 
the bottom of the page). The solid lines in panels A–C of 
Figure 1 depict these cumulative frequency polygons for 
the three stimulus conditions. These values are stored, 
millisecond by millisecond, in the vectors Gx, Gy, and Gz 
in the MATLAB program shown in Appendix B, and in 
the vectors X.G, Y.G, and Z.G in the Pascal program in 
Appendix C.

The computation of a frequency polygon is more com-
plicated when not all observations are distinct—that is, 
when the same value occurs more than once (a tie) within 
a single data set. Naturally, some ties may be observed 
when n is large and RT is rounded to the nearest millisec-
ond. In this case Equation 2 no longer applies, and it thus 
needs to be adapted to allow for the possibility of ties. The 
adapted formula is presented in Appendix A. This adapted 
formula can be used in all cases, because it reduces to the 
formula in Equation 2 if no ties are present, and is incor-
porated in the computer programs shown in Appendixes 
B and C.

Condition Cz in Table 1 provides a numerical example 
of a data set with two tied values, and the corresponding 
cumulative frequency polygon for this data set is depicted 
in panel C of Figure 1. Although Equation 2 is a special 
case of the more general formula provided in Appendix A, 

we included this special case above to simplify the de-
scription of the complete algorithm.

Step 2: Compute B(t)  Gx(t)  Gy(t)
In order to compute the sum of Gx and Gy, we recom-

mend evaluating the functions Gx and Gy at each millisec-
ond starting at t  1 msec. The results of the two func-
tion evaluations can simply be added, and this sum can be 
stored in an array, which we will call B. Because the sum is 
only compared against the values of Gz, the computation of 
the sum can be terminated at the first value of t for which 
the sum exceeds a value of 1.0. Let us denote this time 
point as tmax. Thus, B has the form [B(1), B(2), B(3), . . . , 
B(tmax)]. The function B(t) computed for the data in Table 1 
is shown as the dashed line in panel D of Figure 1.

Step 3: Determine Percentiles
The third step involves the determination of percentile 

values for Gz and B, and many researchers may want to de-
termine these percentile values for Gx and Gy as well, for 
completeness in presenting the data. It is common practice 
to employ np equally spaced probabilities of the form
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For example, with np  10, the values of pi would be .05, 
.15, .25, . . . , .95. Let us denote the percentiles for Gz as 
z.05, z.15, . . . , z.95. Each value is obtained by searching 
through the array Gz(1), Gz(2), Gz(3), . . . , Gz(zn) to locate 
adjacent values Gz(i) and Gz(i 1) that bracket the desired 
probability, pi, and then using linear interpolation to find 
the appropriate percentile value within the bracketed range. 
As an example, this procedure is illustrated graphically for 
Gy in panel E of Figure 1. The analogous procedure also 
has to be carried out using the array B to obtain the associ-
ated percentiles b.05, b.15, . . . , b.95. The resulting percentile 
arrays for the data in Table 1 are shown in Table 2.

Table 2 
Percentiles of Gz and B As a Function of p

 p  zp  bp  

.05 234.6 244.0

.15 238.6 245.6

.25 240.4 247.3

.35 242.3 249.3

.45 244.1 250.9

.55 248.9 252.3

.65 253.9 253.6

.75 256.8 254.9

.85 265.1 257.8
 .95  278.5  259.8  
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Step 4: Aggregation Across Participants
In this step, the summary measure for each percentile 

value of each function is calculated by simply finding the 
average of that percentile value across participants (cf. 
Vincent, 1912).1 For example, the summary measure for 

z.05 is the average of the z.05 values computed for the indi-
vidual participants, as described in Steps 1–3.

The main goal of the analysis is usually to see whether 
the race model is significantly violated. Within the litera-
ture examining the RSE (e.g., Bucur et al., 2005; Krumme-

240 260
0

.2

.4

.6

.8

1.0

Pr
o

b
ab

ili
ty

G
x
(t) polygon

G
x
(t) step function

A

0

.2

.4

.6

.8

1.0

Pr
o

b
ab

ili
ty

G
y
(t) polygon

G
y
(t) step function

Time (msec)

0

.2

.4

.6

.8

1.0

Pr
o

b
ab

ili
ty

G
z
(t) polygon

G
z
(t) step function

0

.2

.4

.6

.8

1.0

G
y
(t) polygon

G
x
(t) polygon

G
x
(t)+G

y
(t)

0

.2

.4

.6

.8

1.0

G
y
(t)

Time (msec)

0

.2

.4

.6

.8

1.0

G
x
(t)+G

y
(t)

G
z
(t)

G
y
(t)

G
x
(t)

280 300 320 240 260

D

280 300 320

240 260

B

280 300 320 240 260

E

280 300 320

240 260

C

280 300 320 240 260

F

280 300 320

Figure 1. Illustration of computations for the data in Table 1. Panels A, B, and C show the esti-
mates of Gx, Gy, and Gz, respectively. In these panels, the dashed line depicts the step function esti-
mate and the solid line shows the corresponding cumulative frequency polygon. Panel D shows the 
function (dashed line) representing the race model bound, B(t)  Gx(t)  Gy(t). Panel E shows how 
to obtain 10 estimated percentile points corresponding to the percentiles .05, .15, .25, . . . , .95 for the 
function Gy. As is illustrated in this panel, the point associated with any percentile can be determined 
by finding the t value associated with the desired percentile on the cumulative frequency polygon. 
Finally, panel F summarizes the analysis by displaying the 10 estimated percentile points for each of 
the four functions of interest: Gx, Gy, Gz, and B  Gx  Gy.



TEST OF RACE MODEL INEQUALITY    295

nacher et al., 2001), one common method for addressing 
this question is to compute separate paired t tests at each 
of the percentiles under examination. For example, each 
participant supplies a pair of scores z.05 and b.05, and a t 
test is used to see whether there is a significant difference 
between the two types of scores. If the mean for zp is sig-
nificantly less than the mean for bp, it is concluded that the 
race model inequality is significantly violated at the pth 
percentile. Typically, the race model is rejected as insuf-
ficient to account for the data if there is a significant viola-
tion at any percentile. Although this test imposes a certain 
inflation of the Type I error rate because of the computa-
tion of multiple t tests (i.e., across numerous percentiles), 
this inflation may be eliminated by adjusting the overall 
significance level with a Bonferroni-type correction.

Monte Carlo simulations have indicated that this cor-
rection is somewhat conservative, so it is unlikely that vio-
lations will be identified by chance when the race model 
is correct (Kiesel, Miller, & Ulrich, 2005).

DISCUSSION AND CONCLUSIONS

Although tests of the race model inequality have been 
carried out for more than 20 years, this article provides 
the first detailed description of an appropriate algorithm 
for conducting such tests. Such a description seems espe-
cially necessary at this point because some users might 
be tempted to use standard software packages that are 
now readily available (e.g., Excel), but that in fact provide 
built-in functions that would give incorrect results when 
used to compute these tests.

The present article provides an algorithm built on an 
explicit solution to the problem of estimating CDFs of 
RTs when ties are present. Ties will tend to occur most 
frequently when sample sizes are large, when RT variance 
is small, and when the resolution of the RT clock is poor. 
Even if ties are expected to be infrequent, however, it is 
important to have a method of dealing with them, because 
they could occur in any real data set.

It should be emphasized that the sample size limits the 
estimation of upper and lower percentile points. Specifi-
cally, there is no satisfactory method to estimate a percen-
tile point less than p  1/(2n) or greater than p  (2n  
1)/(2n); points in either of these ranges would require ex-
trapolation outside the range of the observed data or strong 
assumptions about the underlying RT distribution. Indeed, 
in cases in which there are ties at the smallest or largest 
sample values, the range of estimable percentile points 
narrows even further. In practice, however, this limitation 
is not too serious, because computer simulations indicate 
that the race model inequality can usually be tested quite 
effectively even with as few as 10 RTs per condition (Kiesel 
et al., 2005). Although such a small sample size might be 
necessary in clinical or developmental studies or in studies 
with low-probability conditions, more observations would 
certainly increase the accuracy of the test. On the basis of 
the simulation studies conducted by Kiesel et al., we rec-
ommend employing at least 20 RTs per condition.

The MATLAB and Pascal implementations of Steps 1, 
2, and 3 of the algorithm that are provided in the appendixes 

incorporate the most sophisticated version of the algorithm 
presented in this article, and we hope that these could be 
easily adapted to any specific software requirements of 
researchers working in this area. Step 4—computation of 
t tests—can then be carried out via any standard statistical 
package. In addition, we can also provide a self-contained 
Windows program called RMITest that computes all four 
steps; this program can be downloaded from the authors’ 
Web sites (e.g., psy.otago.ac.nz/miller/index.html).

AUTHOR NOTE

This research was supported by grants from the Marsden Fund, ad-
ministered by the Royal Society of New Zealand, and from the Depart-
ment of Psychology at the University of Otago. We thank Andrea Kiesel, 
Christopher Hone, and James Townsend for constructive comments on 
an earlier version of the manuscript. Correspondence concerning this 
article may be addressed to R. Ulrich or H. Schröter, Abteilung für Allge-
meine & Biologische Psychologie, Psychologisches Institut, Universität 
Tübingen, Friedrichstr. 21, 72072 Tübingen, Germany (e-mail: ulrich@
uni-tuebingen.de or hannes.schroeter@uni-tuebingen.de), or to J. Miller, 
Department of Psychology, University of Otago, Dunedin, New Zealand 
(e-mail: miller@psy.otago.ac.nz).

REFERENCES

Bucur, B., Allen, P. A., Sanders, R. E., Ruthruff, E., & Murphy, 
M. D. (2005). Redundancy gain and coactivation in bimodal detec-
tion: Evidence for the preservation of coactive processing in older 
adults. Journals of Gerontology, 60B, P279-P282.

Colonius, H. (1988). Modeling the redundant signals effect by specify-
ing the hazard function. Perception & Psychophysics, 43, 604-606.

Colonius, H. (1990). Possibly dependent probability summation of re-
action time. Journal of Mathematical Psychology, 34, 253-275.

Colonius, H., & Townsend, J. T. (1997). Activation-state represen-
tation of models for the redundant-signals-effect. In A. A. J. Marley 
(Ed.), Choice, decision, and measurement: Essays in honor of R. Dun-
can Luce (pp. 245-254). Mahwah, NJ: Erlbaum.

Diederich, A. (1995). Intersensory facilitation of reaction time: Evalu-
ation of counter and diffusion coactivation models. Journal of Math-
ematical Psychology, 39, 197-215.

Diederich, A., & Colonius, H. (1987). Intersensory facilitation in the 
motor component? A reaction time analysis. Psychological Research, 
49, 23-29.

Gilchrist, W. G. (2000). Statistical modelling with quantile functions. 
Boca Raton, FL: Chapman & Hall/CRC.

Giray, M., & Ulrich, R. (1993). Motor coactivation revealed by re-
sponse force in divided and focused attention. Journal of Experimen-
tal Psychology: Human Perception & Performance, 19, 1278-1291.

Hershenson, M. (1962). Reaction time as a measure of intersensory 
facilitation. Journal of Experimental Psychology, 63, 289-293.

Jiang, Y., Rouder, J. N., & Speckman, P. L. (2004). A note on the sam-
pling properties of the Vincentizing (quantile averaging) procedure. 
Journal of Mathematical Psychology, 48, 186-195.

Kiesel, A., Miller, J., & Ulrich, R. (2005). Systematic biases and 
Type I error accumulation in tests of the race models. Manuscript sub-
mitted for publication.

Krummenacher, J., Müller, H. J., & Heller, D. (2001). Visual search 
for dimensionally redundant pop-out targets: Evidence for parallel-
coactive processing of dimensions. Perception & Psychophysics, 63, 
901-917.

Maris, G., & Maris, E. (2003). Testing the race model inequality: A 
nonparametric approach. Journal of Mathematical Psychology, 47, 
507-514.

Miller, J. (1982). Divided attention: Evidence for coactivation with 
redundant signals. Cognitive Psychology, 14, 247-279.

Miller, J. (1986). Timecourse of coactivation in bimodal divided atten-
tion. Perception & Psychophysics, 40, 331-343.

Miller, J., & Ulrich, R. (2003). Simple reaction time and statisti-
cal facilitation: A parallel grains model. Cognitive Psychology, 46, 
101-151.



296    ULRICH, MILLER, AND SCHRÖTER

Mordkoff, J. T., & Yantis, S. (1991). An interactive race model of di-
vided attention. Journal of Experimental Psychology: Human Percep-
tion & Performance, 17, 520-538.

Plat, F. M., Praamstra, P., & Horstink, M. W. I. M. (2000). Redundant-
signals effects on reaction time, response force, and movement-related 
potentials in Parkinson’s disease. Experimental Brain Research, 130, 
533-539.

Raab, D. H. (1962). Statistical facilitation of simple reaction times. 
Transactions of the New York Academy of Sciences, 24, 574-590.

Ratcliff, R. (1979). Group reaction time distributions and an analysis 
of distribution statistics. Psychological Bulletin, 86, 446-461.

Schwarz, W. (1989). A new model to explain the redundant-signals 
effect. Perception & Psychophysics, 46, 498-500.

Schwarz, W. (1994). Diffusion, superposition, and the redundant-
 targets effect. Journal of Mathematical Psychology, 38, 504-520.

Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of 
elementary perception: An investigation of parallel, serial, and coact-
ive theories. Journal of Mathematical Psychology, 39, 321-359.

Townsend, J. T., & Nozawa, G. (1997). Serial exhaustive models can 
violate the race model inequality: Implications for architecture and 
capacity. Psychological Review, 104, 595-602.

Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive paral-
lel processing: New capacity measures and predictions for a response 
time inequality series. Psychological Review, 111, 1003-1035.

Ulrich, R., & Giray, M. (1986). Separate-activation models with vari-
able base times: Testability and checking of cross-channel depen-
dency. Perception & Psychophysics, 39, 248-254.

Van Zandt, T. (2002). Analysis of response time distributions. In 

H. Pashler & J. Wixted (Eds.), Stevens’ Handbook of experimental 
psychology: Vol. 4. Methodology in experimental psychology (3rd ed., 
pp. 461-516). New York: Wiley.

Vincent, S. B. (1912). The function of the vibrissae in the behavior of 
the white rat. Animal Behavior Monographs, 1(No. 5), 1-84.

NOTE

1. The term Vincentizing has been used in the RT literature to refer to 
two slightly different procedures for estimating quantiles of a group RT 
distribution (Jiang, Rouder, & Speckman, 2004). The full Vincentizing 
procedure, which we do not recommend and which is not implemented in 
the present algorithm, proceeds in two steps (Ratcliff, 1979; Van Zandt, 
2002): First, the procedure uses an alternative, nonstandard approach for 
estimating quantiles, and these are sometimes called “Vincentiles” (Van 
Zandt, 2002). It has been shown, however, that Vincentiles do not cor-
respond well to the percentiles of nonsymmetric distributions, and thus 
Vincentiles should not be used for estimating the CDF of an RT distribu-
tion (Van Zandt, 2002). In a second step, these Vincentiles are averaged 
across participants to compute a group quantile. Because Vincentiles are 
poor quantile estimators at the level of a single participant, the resulting 
group average must also be a poor estimator. The term Vincentizing is 
also sometimes used to refer to the simpler procedure of merely averag-
ing standard quantile estimates across participants, without including the 
first step involving the poor quantile estimators (see, e.g., Jiang et al., 
2004). In summary, the present algorithm employs “Vincentizing” in the 
latter sense, so its estimation of RT quantiles rests on solid statistical 
techniques (Gilchrist, 2000).

APPENDIX A 
Cumulative Frequency Polygon for Data Sets With Ties

A data set with ties can be arranged as in Table A1. Assume that a data set has a total of n observations, with 
only k  n distinct observations as a result of some replications of the same data values. We order these k distinct 
observations from the smallest value to the largest—that is, x1  x2  . . .  xk. The column ni indexes how 
often the observation xi occurs in the data set. For example, if xi is observed three times, then ni  3. The fourth 
column of the table contains the cumulative number of observations, si, which is the number of observations that 
are less than or equal to xi. With this notation in mind, it can be shown that
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with s0  0. Note that this expression is equivalent to Equation 2 if there are no ties in the data set.

Table A1 
Data Set With Ties

i  xi  ni  
s ni jj

i
1

1 x1 n1 s1  n1

2 x2 n2 s2  n1  n2

3 x3 n3 s3  n1  n2  n3

k  xk  nk  sk  n1      nk  n
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APPENDIX B 
MATLAB Code for Testing the Race Model Inequality

This appendix presents a MATLAB version of the algorithm described in the text, including handling of ties as 
described in Appendix A. This MATLAB program performs Steps 1, 2, and 3 of the algorithm, and it is written 
as a function that can be integrated into any larger program or simply called at the command window to analyze 
the data set of a single participant. The function requires as input (1) the vectors X, Y, and Z of RTs in conditions 
Cx, Cy, and Cz, respectively; (2) a vector, P, of percentile points at which to test the inequality; and (3) a boolean 
variable, Plot, indicating whether a plot should be produced (i.e., Plot  true) or not (Plot  false). It returns 
the desired percentile values Xp, Yp, and Zp for conditions Cx, Cy, and Cz, respectively, and the percentiles Bp 
for the bound B, as well as a plot of the key values if one is requested.

function [Xp Yp Zp Bp] = RaceModel(X,Y,Z,P,Plot);
   %X,Y,Z are arrays with RTs for conditions Cx, Cy, Cz, respectively.
  %P is an array which contains the probabilities for computing 

     % percentiles.
   %If Plot==true, a plot of the result is generated.

%%% Step 1: Determine Gx, Gy, and Gz %%%

%Check for ties
   [Ux Rx Cx]=ties(X);
   [Uy Ry Cy]=ties(Y);
   [Uz Rz Cz]=ties(Z);

%Get maximum t value
   tmax=ceil(max([X Y Z]));
   T=1:1:tmax;

%Get function values of G
   [Gx]=CDF(Ux,Rx,Cx,tmax);
   [Gy]=CDF(Uy,Ry,Cy,tmax);
   [Gz]=CDF(Uz,Rz,Cz,tmax);

%%% Step 2: Compute B = Gx plus Gy %%%

for t=1:tmax;
   B(t)=Gx(t)+Gy(t);
end

%Check whether requested percentiles can be computed
OKx = check(Ux(1),P(1),Gx);
if OKx == false
   disp(’Not enough X values to compute requested percentiles’)
   Xp=NaN;Yp=NaN;Zp=NaN;Bp=NaN;
   return
end
OKy = check(Uy(1),P(1),Gy);
if OKy == false
   disp(’Not enough Y values to compute requested percentiles’)
   Xp=NaN;Yp=NaN;Zp=NaN;Bp=NaN;
   return
end
OKz = check(Uz(1),P(1),Gz);
if OKz == false
   disp(’Not enough Z values to compute requested percentiles’)
   Xp=NaN;Yp=NaN;Zp=NaN;Bp=NaN;
   return
end
    

%%% Step 3: Determine percentiles %%%

[Xp] = GetPercentile(P,Gx,tmax);
[Yp] = GetPercentile(P,Gy,tmax);
[Zp] = GetPercentile(P,Gz,tmax);
[Bp] = GetPercentile(P,B,tmax);
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%Generate a plot if requested
if Plot == true
   plot(Xp,P,’o-’,Yp,P,’o-’,Zp,P,’o-’,Bp,P,’o-’)
   axis([min([Ux Uy Uz])-10 tmax+10 -0.03 1.03])
   grid on
   title(’Test of the Race Model Inequality’,’FontSize’,16)
   xlabel(’Time t (ms)’,’FontSize’,14)
   ylabel(’Probability’,’FontSize’,14)
   legend(’G_x(t)’,’G_y(t)’,’G_z(t)’,’G_x(t)+G_y(t)’,4)
end

% return to calling routine.

function OK=check(U1,P1,G)
   OK=true;
   for t=(U1-2):(U1+2);
      if (G(t)>P1) && (G(t-1)==0)
         OK=false;
         return
      end
   end

%END of check

function [Tp] = GetPercentile(P,G,tmax)
%Determine minimum of |G(Tp(i))-P(i)|
np=length(P);
for i=1:np;
cc=100;
  for t=1:tmax
   if abs(G(t)-P(i)) < cc
      c=t;
      cc=abs(G(t)-P(i));
   end
  end
  if P(i) > G(c)
     Tp(i)=c+(P(i)-G(c))/(G(c+1)-G(c));
   else
     Tp(i)=c+(P(i)-G(c))/(G(c)-G(c-1));
  end
end
% End of GetPercentile

function [U R C]=ties(W);
% Count number k of unique values
% and store these values in U.
   W=sort(W);
   n=length(W);
   k=1;
   U(1)=W(1);
   for i=2:n
    if W(i)~=W(i-1)
      k=k+1;
      U(k)=W(i);
    end
   end
% Determine number of replications R
   R=zeros(1,k);
   for i=1:k
      for j=1:n
        if U(i)==W(j)
          R(i)=R(i)+1;
        end
      end
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APPENDIX C 
Pascal Code for Testing the Race Model Inequality

This appendix presents an object-oriented Pascal version of the algorithm described in the text, including han-
dling of ties as described in Appendix A. The algorithm can be used to perform Steps 1–3 for each experimental 
participant, and the t tests of Step 4 can then be computed with any standard statistical package. As is illustrated 
in the main program at the end, the user needs to load observed RTs for each participant into the Raw arrays for 
the stimulus conditions Cx, Cy, and Cz and then call the Tabulation procedure for each condition. After that, the 
value of a desired percentile point for any distribution can be computed with the TofG function, and the value of 
the race model bound at any desired percentile point can be computed with the TofSumG function.

Program VCDFTest;

Const MaxArraySize = 2000;

Type
   RealArray = Array[0..MaxArraySize] of Real;
   IntArray = Array[0..MaxArraySize] of Integer;
   
   StimulusType = Object
      Raw, Unique, G : RealArray;
      N, S : IntArray;
      K, TotalN, CheckAt : Integer;
      Constructor Construct;
      Function GofT(t : Real) : Real;
      Function TofG(DesiredG : Real) : Real;
      Procedure Tabulations;
      End;

Var X, Y, Z : StimulusType;

APPENDIX B (Continued)

   end
%Determine the cumulative frequency
   C=zeros(1,k);
   C(1)=R(1);
   for i=2:k
      C(i)=C(i-1)+R(i);
   end
%END of Ties

function [G]=CDF(U,R,C,maximum);
G=zeros(1,maximum);
k=length(U); n=C(k);
for i=1:k;
   U(i)=round(U(i));
end
for t=1:U(1);
   G(t)=0;
end;
for t=U(1):U(2);
   G(t)=(R(1)/2+(R(1)+R(2))/2*(t-U(1))/(U(2)-U(1)))/n;
end;
for i=2:(k-1);
   for t=U(i):U(i+1);
      G(t)=(C(i-1)+R(i)/2+(R(i)+R(i+1))/2*(t-U(i))/(U(i+1)-U(i)))/n;
   end
end
for t=U(k):maximum;
   G(t)=1;
end;
% End of RaceModel



300    ULRICH, MILLER, AND SCHRÖTER

APPENDIX C (Continued)

Procedure SortRealArray(Var RA : RealArray; TotalN : Integer);
Var I, J, D : Integer;
   Temp : Real;
Begin
D := 2;
While 2 * D < TotalN Do D := 2 * D;
D := D - 1;
Repeat
   For I :=1 to TotalN - D Do Begin
      J := I;
      While J >= 1 Do Begin
         If RA[J] > RA[J+D] Then Begin
            Temp := RA[J];
            RA[J] := RA[J+D];
            RA[J+D] := Temp;
            End
          Else J := 0;
         J := J - D;
         End;
      End;
    D := D div 2;
  Until D = 0;
End;

Constructor StimulusType.Construct;
Begin
End;

Procedure StimulusType.Tabulations;
Var I, J : Integer; CurrentRaw : Real;
Begin
SortRealArray(Raw,TotalN);
{ Next:
   o Determine the number of unique values, K.
   o Store these values in the Unique array.
   o Count the number of occurrences of each value in N. }
CurrentRaw := Raw[1] - 1;
K := 0;
For I := 1 to TotalN Do
If Raw[I] = CurrentRaw Then Inc(N[K]) Else Begin
   Inc(K);
   N[K] := 1;
   CurrentRaw := Raw[I];
   Unique[K] := CurrentRaw;
   End;
{ Next, compute the values of the sum array, S, from the values in the 

    count array, N, for the K different distinct values: }
S[0] := 0;
For I := 1 to K Do S[I] := N[I] + S[I-1];
{ Next, make the G array: }
G[0] := 0;
CheckAt := 1;
I := 0;
Repeat
   Inc(I);
   G[I] := GofT(I);
Until (G[I] >= 1) or (I = MaxArraySize);
If G[I] < 1 Then Begin
   Writeln(’Fatal Error: Halting because tabulation routine failed to 

        reach’);
   Writeln(’cumulative probability of 1.0.’);
   Halt(1);
   End;
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For J := I+1 to MaxArraySize Do G[J] := 1;
End;

Function StimulusType.GofT(t : Real) : Real;
{ Compute the estimated CDF value G for an RT equal to t. }
Begin
If t < Unique[1] Then GofT := 0 Else
If t > Unique[K] Then GofT := 1 Else Begin
   While Unique[CheckAt] > t Do Dec(CheckAt);
   While Unique[CheckAt+1] < t Do Inc(CheckAt);
   GofT := 1.0 / S[K] * (S[CheckAt-1] + N[CheckAt]/2.0 +
      (N[CheckAt]+N[CheckAt+1])/2.0*(t-Unique[CheckAt]) /
      (Unique[CheckAt+1]-Unique[CheckAt]) );
   End;
End;

Function StimulusType.TofG(DesiredG : Real) : Real;
{ Compute the t value yielding the estimated CDF value DesiredG. }
Var t : Integer;
Begin
t := 0;
Repeat
   Inc(t);
Until (G[t] >= DesiredG) or (t = MaxArraySize);
If ( (G[t]   < DesiredG) and (G[t-1] <= 0) ) or
   ( (G[t-1] < DesiredG) and (G[t]   >= 1) ) or (G[t] < DesiredG) Then 

       Begin
   Writeln(’Fatal error: Halting because TofG cannot find desired 

       percentile ’, DesiredG:5:3,’.’);
   Halt(1);
   End;
TofG := t - 1 + (DesiredG - G[t-1]) / (G[t] - G[t-1]);
End;

Function TofSumG(DesiredG : Real; Var G1, G2 : RealArray) : Real;
{ Compute the t value yielding the estimated summed CDF value DesiredG. }
Var t : Integer; Sum : Real;
Begin
t := 0;
Repeat
   Inc(t);
   Sum := G1[t]+G2[t];
Until (Sum >= DesiredG) or (t = MaxArraySize);
If ( (Sum > DesiredG) and (G1[t-1]+G2[t-1] <= 0) ) or (Sum < DesiredG) 

     Then Begin
   Writeln(’Fatal error: Halting because TofSumG cannot find desired 

        percentile ’, DesiredG:5:3,’.’);
   Halt(1);
   End;
TofSumG := t - 1 + (DesiredG - G1[t-1] - G2[t-1]) / (G1[t] + G2[t] - 

    G1[t-1] - G2[t-1]);
End;

Procedure ReadArray(Var InFile : Text; Var RA : RealArray; Var TotalN : 
    Integer);
Begin
TotalN := 0;
Repeat
   Inc(TotalN);
   Read(InFile,RA[TotalN]);
Until EOLN(InFile);
Readln(InFile);
End;
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{ The following is a simple main program demonstrating the
  use of the above routines to analyze one individual’s data. }

Const NPctiles = 10;

Var InFile, OutFile : Text;
   I : Integer;
   DesiredG : Real;
Begin
X.Construct; Y.Construct; Z.Construct;

Assign(InFile,’VCDFTest.Dat’);  Reset(InFile);
Assign(OutFile,’VCDFTest.Out’); Rewrite(OutFile);

With X Do Begin
   ReadArray(InFile,Raw,TotalN);
   Tabulations;
   End;
With Y Do Begin
   ReadArray(InFile,Raw,TotalN);
   Tabulations;
   End;
With Z Do Begin
   ReadArray(InFile,Raw,TotalN);
   Tabulations;
   End;

For I := 1 to NPctiles Do Begin
   DesiredG := (I - 0.5) / NPctiles;
   Writeln(OutFile,DesiredG:6:3,X.TofG(DesiredG):10:3,
   Y.TofG(DesiredG):10:3,
   Z.TofG(DesiredG):10:3,
   TofSumG(DesiredG,X.G,Y.G):10:3);
   End;

Close(InFile);
Close(OutFile);
End.
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