
When participants are required to respond as quickly as
possible to the onset of any target stimulus, they usually
respond faster when two target stimuli are presented than
when only one is presented (see, e.g., Hershenson, 1962).
This gain in reaction time (RT) with redundant stimuli has
been termed the redundant signals effect (RSE). Several
theoretical and experimental studies have been conducted
to unravel the causes of this phenomenon (e.g., Colonius,
1988, 1990; Colonius & Townsend, 1997; Diederich,
1995; Giray & Ulrich, 1993; Miller, 1982; Mordkoff &
Yantis, 1991; Schwarz, 1989, 1994; Townsend & Nozawa,
1995; Townsend & Wenger, 2004).

Raab (1962) was the first to suggest a detailed model
for the RSE, a model that is based on a simple statistical
principle. According to his race model, each stimulus is
detected separately. In trials with redundant stimuli, a re-
sponse is triggered as soon as the first stimulus is detected.
In this view, RT is determined by the latency of a single
detection process in trials with one stimulus, whereas it
is determined by the faster of two stimulus detection pro-
cesses in trials with redundant signals. Because the aver-
age time of the winner in a race is usually shorter than the
average detection time of each single process, this race
model predicts faster RTs in trials with redundant signals
than in trials with only one stimulus.

Additional tests of the race model can be carried out at
the level of RT distributions. More specifically, according
to race models, the observed RT distributions should sat-

isfy, for every value of t, the so-called race model inequal-
ity (Miller, 1982):

 Fz(t) Fx(t) Fy(t), t 0, (1)

where Fx and Fy are the cumulative density functions
(CDFs) of RT in the two single-stimulus conditions Cx and
Cy, respectively, and Fz is the CDF of RT in the redundant-
stimulus condition Cz. According to race models, Fz(t)
may approach Fx(t) Fy(t) for small values of t, espe-
cially when the detection times are strongly negatively
correlated (Colonius, 1990; Ulrich & Giray, 1986). Yet,
even in this case, the inequality must be satisfied accord-
ing to race models. Contrary to this prediction, observed
RT distributions often violate the race model inequality for
small values of t (see, e.g., Diederich & Colonius, 1987;
Giray & Ulrich, 1993; Miller, 1982, 1986; Plat, Praamstra,
& Horstink, 2000).

Distributional tests using the race model inequality
often show that the observed redundancy gain is actu-
ally larger than the race model can predict. More specifi-
cally, for small values of t, the CDF of RTs observed in
redundant trials, Fz(t), is often greater than the sum of
the single-stimulus CDFs, Fx(t) Fy(t). Therefore, it has
been suggested that the units of information from the re-
dundant stimuli are somehow combined and that this com-
bined activation triggers the response (see, e.g., Miller,
1982). Several quantitative models have been developed
to describe this combination of information and the facili-

 291 Copyright 2007 Psychonomic Society, Inc.

Testing the race model inequality:
An algorithm and computer programs

ROLF ULRICH
University of Tübingen, Tübingen, Germany

JEFF MILLER
University of Otago, Dunedin, New Zealand

AND

HANNES SCHRÖTER
University of Tübingen, Tübingen, Germany

In divided-attention tasks, responses are faster when two target stimuli are presented, and thus one is redun-
dant, than when only a single target stimulus is presented. Raab (1962) suggested an account of this redundant-
targets effect in terms of a race model in which the response to redundant target stimuli is initiated by the faster
of two separate target detection processes. Such models make a prediction about the probability distributions
of reaction times that is often called the race model inequality, and it is often of interest to test this prediction.
In this article, we describe a precise algorithm that can be used to test the race model inequality and present
MATLAB routines and a Pascal program that implement this algorithm.

Behavior Research Methods
2007, 39 (2), 291-302

R. Ulrich, ulrich@uni-tuebingen.de

292 ULRICH, MILLER, AND SCHRÖTER

tation of RTs that results from such coactivation processes
(e.g., Colonius & Townsend, 1997; Miller & Ulrich, 2003;
Schwarz, 1989, 1994; Townsend & Nozawa, 1997).

The present article describes the statistical assessment
of a potential violation of the race model inequality and
shows how this assessment can be carried out with a com-
puter. We provide program code in MATLAB and in Pascal
that can be used to perform this assessment. This project
was motivated primarily by two issues. First, there is no
previously published detailed description of the algorithm
for estimating the probability distributions underlying this
test. Moreover, some previous descriptions apply only in
the special case of equal numbers of RTs in all conditions
(e.g., Miller, 1982). In fact, numerous researchers have
asked the authors exactly how the test should be carried
out. Second (and perhaps more alarming) is the fact that
some commercial software (e.g., Excel) provides certain
statistical functions for percentile estimation that might
seem appropriate for testing the race model inequality, but
which in fact are not appropriate.

The algorithm that is described in this article is appro-
priate for use with the most common test for evaluating a
potential violation of Inequality 1 (see, e.g., Bucur, Allen,
Sanders, Ruthruff, & Murphy, 2005; Krummenacher,
Müller, & Heller, 2001). Recently, two potential alterna-
tive tests to assess this inequality have been suggested by
Van Zandt (2002) and by Maris and Maris (2003). Van
Zandt suggested that a bootstrapping procedure be used
to estimate a confidence interval for the sample estimate
D(t) Fz(t) [Fx(t) Fy(t)] at each value of t. Re-
searchers could conclude that the race model inequality
was violated whenever the bootstrap confidence interval
indicated that D(t) was significantly larger than zero.
Although Van Zandt’s procedure is statistically straight-
forward, its usefulness is limited for many typical RT
studies. First, as noted by Van Zandt herself (p. 491), this
procedure requires many observations per participant.
Second, and perhaps more crucially, it is not clear how
the bootstrapping results can be combined across multiple
participants, or across multiple sessions for the same par-
ticipant, if performance changes from session to session.
In many RT studies, however, the number of observations
per participant needs to be small because many conditions
are tested, and it is therefore necessary to aggregate the
results across participants in order to achieve a high level
of statistical power.

Although the second test, suggested by Maris and Maris
(2003), allows aggregation of data across participants, it
suffers from another shortcoming that limits its applica-
tion in experimental work. Their test, which is based on

Kolmogorov’s goodness-of-fit principle, requires that
the number of trials in each single-stimulus condition
be determined randomly for each single participant and
condition, rather being constant across participants and
conditions. This requirement is difficult to meet in most
experimental work, because it also requires many trials per
participant to ensure that a sufficient number of observa-
tions are available in each stimulus condition. In addition,
and even more crucially, in order to control for potential
confounds of stimulus contingencies (Mordkoff & Yantis,
1991), it is important that the experimenter prespecify a
certain fixed number of trials for each stimulus condition
rather than leaving this number to chance. The algorithm
described in the following section does not require an es-
pecially large number of observations per participant, nor
does it require that the number of trials be determined by
chance. In addition, the algorithm allows the overall re-
sults to be aggregated across participants and displayed in
a feasible manner.

ALGORITHM

In this section, we provide an exact specification of the
steps necessary for testing potential violations of Inequal-
ity 1. It is convenient to break up this test into four parts.
First, empirical CDFs have to be estimated for every par-
ticipant and every stimulus condition, and these CDFs will
be denoted as the individual CDFs. Specifically, let Gx, Gy,
and Gz be the individual estimates of two single-stimulus
CDFs, Fx and Fy, and the redundant CDF, Fz, respectively.
Second, from Gx and Gy, one computes the bounding sum
B(t) Gx(t) Gy(t) for each participant, which provides
an estimate for each participant of the upper bound on
the right side of Inequality 1. Third, percentile values are
computed from Gz and B for each participant at certain
prespecified probabilities that must be the same for all
participants. Fourth, the percentile values are aggregated
across participants.

We will illustrate the first three steps with an example
data set of a single hypothetical participant. Table 1 con-
tains this example data set for each of the three experi-
mental conditions.

Step 1: Compute Gx, Gy, and Gz
Because the computational steps are identical for Gx,

Gy, and Gz, we will only describe the computation of Gx.
Assume that a sample {x1, x2, . . . , xn} of n RTs has been
observed in condition Cx for a given participant. One or-
ders this sample from the smallest value to the largest—
that is, x1 x2 . . . xn—and generates a step function

Table 1
Illustrative Sets of Reaction Times for Each Experimental Condition

for a Single Hypothetical Participant

Condition n Data Set

Cx 10 244, 249, 257, 260, 264, 268, 271, 274, 277, 291
Cy 16 245, 246, 248, 250, 251, 252, 253, 254, 255, 259, 263, 265, 279, 282, 284, 319
Cz 13 234, 238, 240, 240, 243, 243, 245, 251, 254, 256, 259, 270, 280

Note—n gives the number of observations per stimulus condition.

TEST OF RACE MODEL INEQUALITY 293

of Gx by plotting pi i/n against xi for i 1 . . . n. For
values of t smaller than x1, of course, p must be equal to
zero. For our hypothetical participant, the ordered data set
in condition Cx is

{244, 249, 257, 260, 264, 268, 271, 274, 277, 291},

and the p values

{.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0}

would be employed to generate the corresponding step
function. The step function for this data set is shown as
the dotted line in panel A of Figure 1. The step function
estimates for Gy and for Gz are obtained in the analogous
way from the observations in those conditions, and these
are shown in panels B and C. Note that the number of ob-
servations need not be equal for all stimulus conditions;
in practice, though, we recommend the use of at least 10
observations per condition.

Following the standard procedures for percentile es-
timation (see, e.g., Gilchrist, 2000), each step function
is next used to generate a corresponding cumulative fre-
quency polygon. For this purpose, the midpoint of each
vertical step segment is determined as [xi, (2i 1)/(2n)],
and the adjacent midpoints are connected by a straight
line (i.e., linear interpolation). Specifically, it can be
shown that for any value of t, the cumulative frequency
polygon estimate Gx(t) is given by Equation 2 (located at
the bottom of the page). The solid lines in panels A–C of
Figure 1 depict these cumulative frequency polygons for
the three stimulus conditions. These values are stored,
millisecond by millisecond, in the vectors Gx, Gy, and Gz
in the MATLAB program shown in Appendix B, and in
the vectors X.G, Y.G, and Z.G in the Pascal program in
Appendix C.

The computation of a frequency polygon is more com-
plicated when not all observations are distinct—that is,
when the same value occurs more than once (a tie) within
a single data set. Naturally, some ties may be observed
when n is large and RT is rounded to the nearest millisec-
ond. In this case Equation 2 no longer applies, and it thus
needs to be adapted to allow for the possibility of ties. The
adapted formula is presented in Appendix A. This adapted
formula can be used in all cases, because it reduces to the
formula in Equation 2 if no ties are present, and is incor-
porated in the computer programs shown in Appendixes
B and C.

Condition Cz in Table 1 provides a numerical example
of a data set with two tied values, and the corresponding
cumulative frequency polygon for this data set is depicted
in panel C of Figure 1. Although Equation 2 is a special
case of the more general formula provided in Appendix A,

we included this special case above to simplify the de-
scription of the complete algorithm.

Step 2: Compute B(t) Gx(t) Gy(t)
In order to compute the sum of Gx and Gy, we recom-

mend evaluating the functions Gx and Gy at each millisec-
ond starting at t 1 msec. The results of the two func-
tion evaluations can simply be added, and this sum can be
stored in an array, which we will call B. Because the sum is
only compared against the values of Gz, the computation of
the sum can be terminated at the first value of t for which
the sum exceeds a value of 1.0. Let us denote this time
point as tmax. Thus, B has the form [B(1), B(2), B(3), . . . ,
B(tmax)]. The function B(t) computed for the data in Table 1
is shown as the dashed line in panel D of Figure 1.

Step 3: Determine Percentiles
The third step involves the determination of percentile

values for Gz and B, and many researchers may want to de-
termine these percentile values for Gx and Gy as well, for
completeness in presenting the data. It is common practice
to employ np equally spaced probabilities of the form

p
i
n

i ni
p

p
(.)

.
0 5

1for . . .

(3)

For example, with np 10, the values of pi would be .05,
.15, .25, . . . , .95. Let us denote the percentiles for Gz as
z.05, z.15, . . . , z.95. Each value is obtained by searching
through the array Gz(1), Gz(2), Gz(3), . . . , Gz(zn) to locate
adjacent values Gz(i) and Gz(i 1) that bracket the desired
probability, pi, and then using linear interpolation to find
the appropriate percentile value within the bracketed range.
As an example, this procedure is illustrated graphically for
Gy in panel E of Figure 1. The analogous procedure also
has to be carried out using the array B to obtain the associ-
ated percentiles b.05, b.15, . . . , b.95. The resulting percentile
arrays for the data in Table 1 are shown in Table 2.

Table 2
Percentiles of Gz and B As a Function of p

 p zp bp

.05 234.6 244.0

.15 238.6 245.6

.25 240.4 247.3

.35 242.3 249.3

.45 244.1 250.9

.55 248.9 252.3

.65 253.9 253.6

.75 256.8 254.9

.85 265.1 257.8
 .95 278.5 259.8

G t

t x

n
i

t x
x xx

i

i i

()

,0

1 1
2

1

1

if

iif and

if

x t x i n

t x

i i

n

1

1

, (2)

294 ULRICH, MILLER, AND SCHRÖTER

Step 4: Aggregation Across Participants
In this step, the summary measure for each percentile

value of each function is calculated by simply finding the
average of that percentile value across participants (cf.
Vincent, 1912).1 For example, the summary measure for

z.05 is the average of the z.05 values computed for the indi-
vidual participants, as described in Steps 1–3.

The main goal of the analysis is usually to see whether
the race model is significantly violated. Within the litera-
ture examining the RSE (e.g., Bucur et al., 2005; Krumme-

240 260
0

.2

.4

.6

.8

1.0

Pr
o

b
ab

ili
ty

G
x
(t) polygon

G
x
(t) step function

A

0

.2

.4

.6

.8

1.0

Pr
o

b
ab

ili
ty

G
y
(t) polygon

G
y
(t) step function

Time (msec)

0

.2

.4

.6

.8

1.0

Pr
o

b
ab

ili
ty

G
z
(t) polygon

G
z
(t) step function

0

.2

.4

.6

.8

1.0

G
y
(t) polygon

G
x
(t) polygon

G
x
(t)+G

y
(t)

0

.2

.4

.6

.8

1.0

G
y
(t)

Time (msec)

0

.2

.4

.6

.8

1.0

G
x
(t)+G

y
(t)

G
z
(t)

G
y
(t)

G
x
(t)

280 300 320 240 260

D

280 300 320

240 260

B

280 300 320 240 260

E

280 300 320

240 260

C

280 300 320 240 260

F

280 300 320

Figure 1. Illustration of computations for the data in Table 1. Panels A, B, and C show the esti-
mates of Gx, Gy, and Gz, respectively. In these panels, the dashed line depicts the step function esti-
mate and the solid line shows the corresponding cumulative frequency polygon. Panel D shows the
function (dashed line) representing the race model bound, B(t) Gx(t) Gy(t). Panel E shows how
to obtain 10 estimated percentile points corresponding to the percentiles .05, .15, .25, . . . , .95 for the
function Gy. As is illustrated in this panel, the point associated with any percentile can be determined
by finding the t value associated with the desired percentile on the cumulative frequency polygon.
Finally, panel F summarizes the analysis by displaying the 10 estimated percentile points for each of
the four functions of interest: Gx, Gy, Gz, and B Gx Gy.

TEST OF RACE MODEL INEQUALITY 295

nacher et al., 2001), one common method for addressing
this question is to compute separate paired t tests at each
of the percentiles under examination. For example, each
participant supplies a pair of scores z.05 and b.05, and a t
test is used to see whether there is a significant difference
between the two types of scores. If the mean for zp is sig-
nificantly less than the mean for bp, it is concluded that the
race model inequality is significantly violated at the pth
percentile. Typically, the race model is rejected as insuf-
ficient to account for the data if there is a significant viola-
tion at any percentile. Although this test imposes a certain
inflation of the Type I error rate because of the computa-
tion of multiple t tests (i.e., across numerous percentiles),
this inflation may be eliminated by adjusting the overall
significance level with a Bonferroni-type correction.

Monte Carlo simulations have indicated that this cor-
rection is somewhat conservative, so it is unlikely that vio-
lations will be identified by chance when the race model
is correct (Kiesel, Miller, & Ulrich, 2005).

DISCUSSION AND CONCLUSIONS

Although tests of the race model inequality have been
carried out for more than 20 years, this article provides
the first detailed description of an appropriate algorithm
for conducting such tests. Such a description seems espe-
cially necessary at this point because some users might
be tempted to use standard software packages that are
now readily available (e.g., Excel), but that in fact provide
built-in functions that would give incorrect results when
used to compute these tests.

The present article provides an algorithm built on an
explicit solution to the problem of estimating CDFs of
RTs when ties are present. Ties will tend to occur most
frequently when sample sizes are large, when RT variance
is small, and when the resolution of the RT clock is poor.
Even if ties are expected to be infrequent, however, it is
important to have a method of dealing with them, because
they could occur in any real data set.

It should be emphasized that the sample size limits the
estimation of upper and lower percentile points. Specifi-
cally, there is no satisfactory method to estimate a percen-
tile point less than p 1/(2n) or greater than p (2n
1)/(2n); points in either of these ranges would require ex-
trapolation outside the range of the observed data or strong
assumptions about the underlying RT distribution. Indeed,
in cases in which there are ties at the smallest or largest
sample values, the range of estimable percentile points
narrows even further. In practice, however, this limitation
is not too serious, because computer simulations indicate
that the race model inequality can usually be tested quite
effectively even with as few as 10 RTs per condition (Kiesel
et al., 2005). Although such a small sample size might be
necessary in clinical or developmental studies or in studies
with low-probability conditions, more observations would
certainly increase the accuracy of the test. On the basis of
the simulation studies conducted by Kiesel et al., we rec-
ommend employing at least 20 RTs per condition.

The MATLAB and Pascal implementations of Steps 1,
2, and 3 of the algorithm that are provided in the appendixes

incorporate the most sophisticated version of the algorithm
presented in this article, and we hope that these could be
easily adapted to any specific software requirements of
researchers working in this area. Step 4—computation of
t tests—can then be carried out via any standard statistical
package. In addition, we can also provide a self-contained
Windows program called RMITest that computes all four
steps; this program can be downloaded from the authors’
Web sites (e.g., psy.otago.ac.nz/miller/index.html).

AUTHOR NOTE

This research was supported by grants from the Marsden Fund, ad-
ministered by the Royal Society of New Zealand, and from the Depart-
ment of Psychology at the University of Otago. We thank Andrea Kiesel,
Christopher Hone, and James Townsend for constructive comments on
an earlier version of the manuscript. Correspondence concerning this
article may be addressed to R. Ulrich or H. Schröter, Abteilung für Allge-
meine & Biologische Psychologie, Psychologisches Institut, Universität
Tübingen, Friedrichstr. 21, 72072 Tübingen, Germany (e-mail: ulrich@
uni-tuebingen.de or hannes.schroeter@uni-tuebingen.de), or to J. Miller,
Department of Psychology, University of Otago, Dunedin, New Zealand
(e-mail: miller@psy.otago.ac.nz).

REFERENCES

Bucur, B., Allen, P. A., Sanders, R. E., Ruthruff, E., & Murphy,
M. D. (2005). Redundancy gain and coactivation in bimodal detec-
tion: Evidence for the preservation of coactive processing in older
adults. Journals of Gerontology, 60B, P279-P282.

Colonius, H. (1988). Modeling the redundant signals effect by specify-
ing the hazard function. Perception & Psychophysics, 43, 604-606.

Colonius, H. (1990). Possibly dependent probability summation of re-
action time. Journal of Mathematical Psychology, 34, 253-275.

Colonius, H., & Townsend, J. T. (1997). Activation-state represen-
tation of models for the redundant-signals-effect. In A. A. J. Marley
(Ed.), Choice, decision, and measurement: Essays in honor of R. Dun-
can Luce (pp. 245-254). Mahwah, NJ: Erlbaum.

Diederich, A. (1995). Intersensory facilitation of reaction time: Evalu-
ation of counter and diffusion coactivation models. Journal of Math-
ematical Psychology, 39, 197-215.

Diederich, A., & Colonius, H. (1987). Intersensory facilitation in the
motor component? A reaction time analysis. Psychological Research,
49, 23-29.

Gilchrist, W. G. (2000). Statistical modelling with quantile functions.
Boca Raton, FL: Chapman & Hall/CRC.

Giray, M., & Ulrich, R. (1993). Motor coactivation revealed by re-
sponse force in divided and focused attention. Journal of Experimen-
tal Psychology: Human Perception & Performance, 19, 1278-1291.

Hershenson, M. (1962). Reaction time as a measure of intersensory
facilitation. Journal of Experimental Psychology, 63, 289-293.

Jiang, Y., Rouder, J. N., & Speckman, P. L. (2004). A note on the sam-
pling properties of the Vincentizing (quantile averaging) procedure.
Journal of Mathematical Psychology, 48, 186-195.

Kiesel, A., Miller, J., & Ulrich, R. (2005). Systematic biases and
Type I error accumulation in tests of the race models. Manuscript sub-
mitted for publication.

Krummenacher, J., Müller, H. J., & Heller, D. (2001). Visual search
for dimensionally redundant pop-out targets: Evidence for parallel-
coactive processing of dimensions. Perception & Psychophysics, 63,
901-917.

Maris, G., & Maris, E. (2003). Testing the race model inequality: A
nonparametric approach. Journal of Mathematical Psychology, 47,
507-514.

Miller, J. (1982). Divided attention: Evidence for coactivation with
redundant signals. Cognitive Psychology, 14, 247-279.

Miller, J. (1986). Timecourse of coactivation in bimodal divided atten-
tion. Perception & Psychophysics, 40, 331-343.

Miller, J., & Ulrich, R. (2003). Simple reaction time and statisti-
cal facilitation: A parallel grains model. Cognitive Psychology, 46,
101-151.

296 ULRICH, MILLER, AND SCHRÖTER

Mordkoff, J. T., & Yantis, S. (1991). An interactive race model of di-
vided attention. Journal of Experimental Psychology: Human Percep-
tion & Performance, 17, 520-538.

Plat, F. M., Praamstra, P., & Horstink, M. W. I. M. (2000). Redundant-
signals effects on reaction time, response force, and movement-related
potentials in Parkinson’s disease. Experimental Brain Research, 130,
533-539.

Raab, D. H. (1962). Statistical facilitation of simple reaction times.
Transactions of the New York Academy of Sciences, 24, 574-590.

Ratcliff, R. (1979). Group reaction time distributions and an analysis
of distribution statistics. Psychological Bulletin, 86, 446-461.

Schwarz, W. (1989). A new model to explain the redundant-signals
effect. Perception & Psychophysics, 46, 498-500.

Schwarz, W. (1994). Diffusion, superposition, and the redundant-
 targets effect. Journal of Mathematical Psychology, 38, 504-520.

Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of
elementary perception: An investigation of parallel, serial, and coact-
ive theories. Journal of Mathematical Psychology, 39, 321-359.

Townsend, J. T., & Nozawa, G. (1997). Serial exhaustive models can
violate the race model inequality: Implications for architecture and
capacity. Psychological Review, 104, 595-602.

Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive paral-
lel processing: New capacity measures and predictions for a response
time inequality series. Psychological Review, 111, 1003-1035.

Ulrich, R., & Giray, M. (1986). Separate-activation models with vari-
able base times: Testability and checking of cross-channel depen-
dency. Perception & Psychophysics, 39, 248-254.

Van Zandt, T. (2002). Analysis of response time distributions. In

H. Pashler & J. Wixted (Eds.), Stevens’ Handbook of experimental
psychology: Vol. 4. Methodology in experimental psychology (3rd ed.,
pp. 461-516). New York: Wiley.

Vincent, S. B. (1912). The function of the vibrissae in the behavior of
the white rat. Animal Behavior Monographs, 1(No. 5), 1-84.

NOTE

1. The term Vincentizing has been used in the RT literature to refer to
two slightly different procedures for estimating quantiles of a group RT
distribution (Jiang, Rouder, & Speckman, 2004). The full Vincentizing
procedure, which we do not recommend and which is not implemented in
the present algorithm, proceeds in two steps (Ratcliff, 1979; Van Zandt,
2002): First, the procedure uses an alternative, nonstandard approach for
estimating quantiles, and these are sometimes called “Vincentiles” (Van
Zandt, 2002). It has been shown, however, that Vincentiles do not cor-
respond well to the percentiles of nonsymmetric distributions, and thus
Vincentiles should not be used for estimating the CDF of an RT distribu-
tion (Van Zandt, 2002). In a second step, these Vincentiles are averaged
across participants to compute a group quantile. Because Vincentiles are
poor quantile estimators at the level of a single participant, the resulting
group average must also be a poor estimator. The term Vincentizing is
also sometimes used to refer to the simpler procedure of merely averag-
ing standard quantile estimates across participants, without including the
first step involving the poor quantile estimators (see, e.g., Jiang et al.,
2004). In summary, the present algorithm employs “Vincentizing” in the
latter sense, so its estimation of RT quantiles rests on solid statistical
techniques (Gilchrist, 2000).

APPENDIX A
Cumulative Frequency Polygon for Data Sets With Ties

A data set with ties can be arranged as in Table A1. Assume that a data set has a total of n observations, with
only k n distinct observations as a result of some replications of the same data values. We order these k distinct
observations from the smallest value to the largest—that is, x1 x2 . . . xk. The column ni indexes how
often the observation xi occurs in the data set. For example, if xi is observed three times, then ni 3. The fourth
column of the table contains the cumulative number of observations, si, which is the number of observations that
are less than or equal to xi. With this notation in mind, it can be shown that

G t

t x

sx n i
n n n t xi i i i()

,0 1

1
1 2 2

1

if

x x i i
i i

x t x i k

t
1

1

1

if and

if

,

xk ,

(A1)

with s0 0. Note that this expression is equivalent to Equation 2 if there are no ties in the data set.

Table A1
Data Set With Ties

i xi ni
s ni jj

i
1

1 x1 n1 s1 n1

2 x2 n2 s2 n1 n2

3 x3 n3 s3 n1 n2 n3

k xk nk sk n1 nk n

TEST OF RACE MODEL INEQUALITY 297

APPENDIX B
MATLAB Code for Testing the Race Model Inequality

This appendix presents a MATLAB version of the algorithm described in the text, including handling of ties as
described in Appendix A. This MATLAB program performs Steps 1, 2, and 3 of the algorithm, and it is written
as a function that can be integrated into any larger program or simply called at the command window to analyze
the data set of a single participant. The function requires as input (1) the vectors X, Y, and Z of RTs in conditions
Cx, Cy, and Cz, respectively; (2) a vector, P, of percentile points at which to test the inequality; and (3) a boolean
variable, Plot, indicating whether a plot should be produced (i.e., Plot true) or not (Plot false). It returns
the desired percentile values Xp, Yp, and Zp for conditions Cx, Cy, and Cz, respectively, and the percentiles Bp
for the bound B, as well as a plot of the key values if one is requested.

function [Xp Yp Zp Bp] = RaceModel(X,Y,Z,P,Plot);
 %X,Y,Z are arrays with RTs for conditions Cx, Cy, Cz, respectively.
 %P is an array which contains the probabilities for computing

 % percentiles.
 %If Plot==true, a plot of the result is generated.

%%% Step 1: Determine Gx, Gy, and Gz %%%

%Check for ties
 [Ux Rx Cx]=ties(X);
 [Uy Ry Cy]=ties(Y);
 [Uz Rz Cz]=ties(Z);

%Get maximum t value
 tmax=ceil(max([X Y Z]));
 T=1:1:tmax;

%Get function values of G
 [Gx]=CDF(Ux,Rx,Cx,tmax);
 [Gy]=CDF(Uy,Ry,Cy,tmax);
 [Gz]=CDF(Uz,Rz,Cz,tmax);

%%% Step 2: Compute B = Gx plus Gy %%%

for t=1:tmax;
 B(t)=Gx(t)+Gy(t);
end

%Check whether requested percentiles can be computed
OKx = check(Ux(1),P(1),Gx);
if OKx == false
 disp(’Not enough X values to compute requested percentiles’)
 Xp=NaN;Yp=NaN;Zp=NaN;Bp=NaN;
 return
end
OKy = check(Uy(1),P(1),Gy);
if OKy == false
 disp(’Not enough Y values to compute requested percentiles’)
 Xp=NaN;Yp=NaN;Zp=NaN;Bp=NaN;
 return
end
OKz = check(Uz(1),P(1),Gz);
if OKz == false
 disp(’Not enough Z values to compute requested percentiles’)
 Xp=NaN;Yp=NaN;Zp=NaN;Bp=NaN;
 return
end

%%% Step 3: Determine percentiles %%%

[Xp] = GetPercentile(P,Gx,tmax);
[Yp] = GetPercentile(P,Gy,tmax);
[Zp] = GetPercentile(P,Gz,tmax);
[Bp] = GetPercentile(P,B,tmax);

298 ULRICH, MILLER, AND SCHRÖTER

APPENDIX B (Continued)

%Generate a plot if requested
if Plot == true
 plot(Xp,P,’o-’,Yp,P,’o-’,Zp,P,’o-’,Bp,P,’o-’)
 axis([min([Ux Uy Uz])-10 tmax+10 -0.03 1.03])
 grid on
 title(’Test of the Race Model Inequality’,’FontSize’,16)
 xlabel(’Time t (ms)’,’FontSize’,14)
 ylabel(’Probability’,’FontSize’,14)
 legend(’G_x(t)’,’G_y(t)’,’G_z(t)’,’G_x(t)+G_y(t)’,4)
end

% return to calling routine.

function OK=check(U1,P1,G)
 OK=true;
 for t=(U1-2):(U1+2);
 if (G(t)>P1) && (G(t-1)==0)
 OK=false;
 return
 end
 end

%END of check

function [Tp] = GetPercentile(P,G,tmax)
%Determine minimum of |G(Tp(i))-P(i)|
np=length(P);
for i=1:np;
cc=100;
 for t=1:tmax
 if abs(G(t)-P(i)) < cc
 c=t;
 cc=abs(G(t)-P(i));
 end
 end
 if P(i) > G(c)
 Tp(i)=c+(P(i)-G(c))/(G(c+1)-G(c));
 else
 Tp(i)=c+(P(i)-G(c))/(G(c)-G(c-1));
 end
end
% End of GetPercentile

function [U R C]=ties(W);
% Count number k of unique values
% and store these values in U.
 W=sort(W);
 n=length(W);
 k=1;
 U(1)=W(1);
 for i=2:n
 if W(i)~=W(i-1)
 k=k+1;
 U(k)=W(i);
 end
 end
% Determine number of replications R
 R=zeros(1,k);
 for i=1:k
 for j=1:n
 if U(i)==W(j)
 R(i)=R(i)+1;
 end
 end

TEST OF RACE MODEL INEQUALITY 299

APPENDIX C
Pascal Code for Testing the Race Model Inequality

This appendix presents an object-oriented Pascal version of the algorithm described in the text, including han-
dling of ties as described in Appendix A. The algorithm can be used to perform Steps 1–3 for each experimental
participant, and the t tests of Step 4 can then be computed with any standard statistical package. As is illustrated
in the main program at the end, the user needs to load observed RTs for each participant into the Raw arrays for
the stimulus conditions Cx, Cy, and Cz and then call the Tabulation procedure for each condition. After that, the
value of a desired percentile point for any distribution can be computed with the TofG function, and the value of
the race model bound at any desired percentile point can be computed with the TofSumG function.

Program VCDFTest;

Const MaxArraySize = 2000;

Type
 RealArray = Array[0..MaxArraySize] of Real;
 IntArray = Array[0..MaxArraySize] of Integer;

 StimulusType = Object
 Raw, Unique, G : RealArray;
 N, S : IntArray;
 K, TotalN, CheckAt : Integer;
 Constructor Construct;
 Function GofT(t : Real) : Real;
 Function TofG(DesiredG : Real) : Real;
 Procedure Tabulations;
 End;

Var X, Y, Z : StimulusType;

APPENDIX B (Continued)

 end
%Determine the cumulative frequency
 C=zeros(1,k);
 C(1)=R(1);
 for i=2:k
 C(i)=C(i-1)+R(i);
 end
%END of Ties

function [G]=CDF(U,R,C,maximum);
G=zeros(1,maximum);
k=length(U); n=C(k);
for i=1:k;
 U(i)=round(U(i));
end
for t=1:U(1);
 G(t)=0;
end;
for t=U(1):U(2);
 G(t)=(R(1)/2+(R(1)+R(2))/2*(t-U(1))/(U(2)-U(1)))/n;
end;
for i=2:(k-1);
 for t=U(i):U(i+1);
 G(t)=(C(i-1)+R(i)/2+(R(i)+R(i+1))/2*(t-U(i))/(U(i+1)-U(i)))/n;
 end
end
for t=U(k):maximum;
 G(t)=1;
end;
% End of RaceModel

300 ULRICH, MILLER, AND SCHRÖTER

APPENDIX C (Continued)

Procedure SortRealArray(Var RA : RealArray; TotalN : Integer);
Var I, J, D : Integer;
 Temp : Real;
Begin
D := 2;
While 2 * D < TotalN Do D := 2 * D;
D := D - 1;
Repeat
 For I :=1 to TotalN - D Do Begin
 J := I;
 While J >= 1 Do Begin
 If RA[J] > RA[J+D] Then Begin
 Temp := RA[J];
 RA[J] := RA[J+D];
 RA[J+D] := Temp;
 End
 Else J := 0;
 J := J - D;
 End;
 End;
 D := D div 2;
 Until D = 0;
End;

Constructor StimulusType.Construct;
Begin
End;

Procedure StimulusType.Tabulations;
Var I, J : Integer; CurrentRaw : Real;
Begin
SortRealArray(Raw,TotalN);
{ Next:
 o Determine the number of unique values, K.
 o Store these values in the Unique array.
 o Count the number of occurrences of each value in N. }
CurrentRaw := Raw[1] - 1;
K := 0;
For I := 1 to TotalN Do
If Raw[I] = CurrentRaw Then Inc(N[K]) Else Begin
 Inc(K);
 N[K] := 1;
 CurrentRaw := Raw[I];
 Unique[K] := CurrentRaw;
 End;
{ Next, compute the values of the sum array, S, from the values in the

 count array, N, for the K different distinct values: }
S[0] := 0;
For I := 1 to K Do S[I] := N[I] + S[I-1];
{ Next, make the G array: }
G[0] := 0;
CheckAt := 1;
I := 0;
Repeat
 Inc(I);
 G[I] := GofT(I);
Until (G[I] >= 1) or (I = MaxArraySize);
If G[I] < 1 Then Begin
 Writeln(’Fatal Error: Halting because tabulation routine failed to

 reach’);
 Writeln(’cumulative probability of 1.0.’);
 Halt(1);
 End;

TEST OF RACE MODEL INEQUALITY 301

APPENDIX C (Continued)

For J := I+1 to MaxArraySize Do G[J] := 1;
End;

Function StimulusType.GofT(t : Real) : Real;
{ Compute the estimated CDF value G for an RT equal to t. }
Begin
If t < Unique[1] Then GofT := 0 Else
If t > Unique[K] Then GofT := 1 Else Begin
 While Unique[CheckAt] > t Do Dec(CheckAt);
 While Unique[CheckAt+1] < t Do Inc(CheckAt);
 GofT := 1.0 / S[K] * (S[CheckAt-1] + N[CheckAt]/2.0 +
 (N[CheckAt]+N[CheckAt+1])/2.0*(t-Unique[CheckAt]) /
 (Unique[CheckAt+1]-Unique[CheckAt]));
 End;
End;

Function StimulusType.TofG(DesiredG : Real) : Real;
{ Compute the t value yielding the estimated CDF value DesiredG. }
Var t : Integer;
Begin
t := 0;
Repeat
 Inc(t);
Until (G[t] >= DesiredG) or (t = MaxArraySize);
If ((G[t] < DesiredG) and (G[t-1] <= 0)) or
 ((G[t-1] < DesiredG) and (G[t] >= 1)) or (G[t] < DesiredG) Then

 Begin
 Writeln(’Fatal error: Halting because TofG cannot find desired

 percentile ’, DesiredG:5:3,’.’);
 Halt(1);
 End;
TofG := t - 1 + (DesiredG - G[t-1]) / (G[t] - G[t-1]);
End;

Function TofSumG(DesiredG : Real; Var G1, G2 : RealArray) : Real;
{ Compute the t value yielding the estimated summed CDF value DesiredG. }
Var t : Integer; Sum : Real;
Begin
t := 0;
Repeat
 Inc(t);
 Sum := G1[t]+G2[t];
Until (Sum >= DesiredG) or (t = MaxArraySize);
If ((Sum > DesiredG) and (G1[t-1]+G2[t-1] <= 0)) or (Sum < DesiredG)

 Then Begin
 Writeln(’Fatal error: Halting because TofSumG cannot find desired

 percentile ’, DesiredG:5:3,’.’);
 Halt(1);
 End;
TofSumG := t - 1 + (DesiredG - G1[t-1] - G2[t-1]) / (G1[t] + G2[t] -

 G1[t-1] - G2[t-1]);
End;

Procedure ReadArray(Var InFile : Text; Var RA : RealArray; Var TotalN :
 Integer);
Begin
TotalN := 0;
Repeat
 Inc(TotalN);
 Read(InFile,RA[TotalN]);
Until EOLN(InFile);
Readln(InFile);
End;

302 ULRICH, MILLER, AND SCHRÖTER

APPENDIX C (Continued)

{ The following is a simple main program demonstrating the
 use of the above routines to analyze one individual’s data. }

Const NPctiles = 10;

Var InFile, OutFile : Text;
 I : Integer;
 DesiredG : Real;
Begin
X.Construct; Y.Construct; Z.Construct;

Assign(InFile,’VCDFTest.Dat’); Reset(InFile);
Assign(OutFile,’VCDFTest.Out’); Rewrite(OutFile);

With X Do Begin
 ReadArray(InFile,Raw,TotalN);
 Tabulations;
 End;
With Y Do Begin
 ReadArray(InFile,Raw,TotalN);
 Tabulations;
 End;
With Z Do Begin
 ReadArray(InFile,Raw,TotalN);
 Tabulations;
 End;

For I := 1 to NPctiles Do Begin
 DesiredG := (I - 0.5) / NPctiles;
 Writeln(OutFile,DesiredG:6:3,X.TofG(DesiredG):10:3,
 Y.TofG(DesiredG):10:3,
 Z.TofG(DesiredG):10:3,
 TofSumG(DesiredG,X.G,Y.G):10:3);
 End;

Close(InFile);
Close(OutFile);
End.

(Manuscript received September 30, 2005;
revision accepted for publication February 10, 2006.)

