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Abstract 

�������: One of the under�explored aspects in the process of user information seeking behaviour is 

influence of time on relevance evaluation. It has been shown in previous studies that individual users 

might change their assessment of search results over time. It is also known that aggregated judgments of 

multiple individual users can lead to correct and reliable decisions; this phenomenon is known as the 

“wisdom of crowds”. The aim of this study is to examine whether aggregated judgments will be more 

stable and thus more reliable over time than individual user judgments.  

���	
��
������: In this study two simple measures are proposed to calculate the aggregated judgments of 

search results and compare their reliability and stability to individual user judgments. In addition, the 

aggregated “wisdom of crowds” judgments were used as a means to compare the differences between 

human assessments of search results and search engine’s rankings. A large�scale user study was 

conducted with 87 participants who evaluated two different queries and four diverse result sets twice, 

with an interval of two months. Two types of judgments were considered in this study: 1) relevance on a 

4�point scale, and 2) ranking on a 10�point scale without ties.  

�	��	�
�: It was found that aggregated judgments are much more stable than individual user judgments, 

yet they are quite different from search engine rankings.   

�����	���� 	���	���	���: The proposed “wisdom of crowds” based approach provides a reliable reference 

point for the evaluation of search engines. This is also important for exploring the need of personalization 

and adapting search engine’s ranking over time to changes in users preferences. 
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��	
	���	��������: This is a first study that applies the notion of “wisdom of crowds” to examine the 

under�explored phenomenon in the literature of “change in time” in user evaluation of relevance.  

 

Keywords: ranking, relevance judgment, change in time, wisdom of crowds 

Research paper 

1.� Introduction 

Numerous general models of information seeking and web searching behaviour have been proposed in the 

past such as (Ellis, 1989; Bates, 1989; Kuhlthau, 1991; Dervin, 1992; Johnson and Meishke, 1993; 

Marchionini, 1995; Spink, 1997; Wilson, 1999; Fisher et al., 2005; Knight and Spink, 2008; Du and 

Spink, 2010; Case, 2012). Relevance is a central notion in information science and is an important part of 

user information seeking models (Saracevic, 2007). This study investigates an under�explored topic in the 

literature (Saracevic, 2007): stability and change of user assessment of search results over time. Human 

evaluation of documents relevance is a complex process that requires coordination of multiple cognitive 

tasks (Du and Spink, 2011). User result evaluation is needed in many fields and has many purposes, 

hence it is important to understand the factors and phenomena behind it. This study aims to extend the 

understanding of the result evaluation component of the proposed web search behavior models, with 

respect to the temporal change factor. In this broad context, this research contributes to modelling the 

change in user relevance evaluation behaviour over time.  

As stated by (Saracevic, 2007, p. 2139): “The role of research is to make relevance complexity more 

comprehensible formally and possibly even more predictable”. Accurate ranking of search results 

according to the users’ preferences is one of the most important challenges of the modern search systems.  

However, previous research found a low correlation between users’ and search engines’ rankings of 

search results (Vaughan, 2004; Veronis, 2006; Bar�Ilan, Keenoy, Yaari and Levene ,2007; Lewandowski, 

2008; Bar�Ilan and Levene, 2011), thus, leading to a conclusion that more work is required to improve the 

systems’ ability to assess documents’ relevance. 

 

Previous work above and those reviewed in (Saracevic, 2007) concentrated on the successive or evolving 

search processes, where further iterations are used to refine and improve the search. It is known that 

users’ information needs, evaluation criteria and preference of results, as well as query formulation and 

retrieved result sets tend to change during the search process, since users better understand their needs at 

the end of the process rather than at the beginning, and try to refine their search to get the optimal results. 

As opposed to the above works investigating an evolution of search and result evaluation process, this 

study explores a different dimension of change in user evaluation of relevance: the “change in time”. This 

change, if it exists, reflects the essential subjectivity and instability of user perception and evaluation of 
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relevance, and thus might reveal the inherent complexity, subjectivity and vagueness/fuzziness in users’ 

perception of relevance. This type of change might be discovered when other factors of influence are 

neutralised (i.e. in independent evaluation sessions with identical tasks, environments, goals and data but 

at two different points in time).  In other words, if users were asked to choose a relevance grade or a rank 

for each result, given the same query and result set, would these assessments remain stable over time? 

Would users provide similar relevance judgments and ranks to the same results and queries in a few 

weeks or months?  

 

It was shown in previous work (Scholer et al., 2011) that individual users might change their assessments 

of search results over time due to subjectivity in human relevance perception or even human error. Inter�

user agreement on ranking of search results has also been shown to be quite low due to subjectivity in 

human judgments (Bar�Ilan et al., 2007; Bar�Ilan and Levene, 2011). On the other hand, it is also known 

that in many fields of knowledge aggregated judgments of multiple individual users lead to more correct 

and reliable decisions; this phenomenon is called “wisdom of crowds” (Cooper et al., 2010; Giles, 2005; 

Surowiecki, 2005; Preis et al., 2013; Harshavardhan et al., 2012; Bollen and Mao, 2011; Mortensen et al., 

2014; Zhitomirsky�Geffet and Erez, 2014; Cen et al., 2009; Bao et al., 2007). Therefore, this study's 

research goal is to examine the level of change and stability of aggregated judgments compared to 

individual user judgments. Accordingly, the two main research questions tested in this study are:  

1) Whether and how aggregated judgments will be more stable and thus more reliable over time than 

individual user judgments?  

2) Whether and to what extent are the search engines’ ranking similar/different from the “wisdom of 

crowds” ranking?  

 

As noted above, previous research reveals quite a high level of disagreement between the ranking of 

search engines and rankings produced by individual. In this context an additional goal of this study is to 

examine to what extent the aggregated “wisdom of crowds” judgments differ from the ranking of search 

engines.  

 

The rest of this paper is organized as follows. In the next section the related work is reviewed. Then our 

study setup is described, and following that the results are presented and discussed.  Finally, some 

conclusions and future research directions are provided. 

 

2.� Related work 

First, a review of some previous studies is presented, which apply “wisdom of crowds”�based techniques 

to improve and learn search result relevance and ranking. Then, the most relevant user studies are 
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reviewed, which are related to agreement on ranking and relevance judgments and comparison between 

user and search engine ranking.  

 

������	����������� ��!������	"��������	�������	�������	�#���

In recent years, a number of articles have suggested using social tags as a source of “wisdom of crowds” 

for improving ranking of search results (e.g., Yanbe �����., 2007; Bao �����., 2007; Zhang �����., 2009; 

Choochaiwattana and Spring, 2009; Zhitomirsky�Geffet and Daya, 2015). Yanbe �����. (2007) suggested 

enhancing result ranking by integrating the PageRank algorithm with the tag information on social 

bookmarking sites. Bao ��� ��. (2007) devised two algorithms for ranking according to social 

bookmarking: 1) the SocialSimRank algorithm which assesses the resemblance between the query and the 

tags; and 2) the SocialPageRank algorithm which measures the quality of a page according to its 

popularity. Their study indicates that these two algorithms significantly improved the quality of result 

ranking. A similar method was presented in an additional study (Zhang �����., 2009). This method ranks 

search results according to a query's resemblance to the tags, with the rank weight determined by the 

popularity of the tags. Another study (Choochaiwattana and Spring, 2009) considered the number of 

social tags that matched the query terms. The authors reported that the ranking method that yielded the 

best results, ranked the document according to the number of users who tagged it on Delicious with tags 

that matched the terms of the search query. Kawase et al. (2014) employed Wikipedia categories 

constructed by wisdom of crowds as a basis for fingerprints creation for different web services (e.g. 

Twitter, Flickr, Delicious). The topic coverage of these services’ represented by their fingerprints was 

comparatively analysed. These fingerprints were also shown to be effectively used for a movie 

recommendation task in the crowdsourcing experiment. Singh et al. (2013) developed an eBook 

recommender system based on content analysis and various social web eResources, e.g. YouTube, 

Slidershare, Twitter and LinkedIn. Zhitomirsky�Geffet and Daya (2015) presented a technique for using 

social tags to extract diverse subtopics for a query, and reduction and re�ranking of search results, 

according to the most prominent and discriminative subtopics.  

Another group of investigations used user click�through data as a source of “wisdom of crowds” to infer 

user relevance preferences of search results (Cen et al., 2009; Agichtein et al., 2006; Dou et al., 2008). 

Cen et al. (2009) showed that it is possible to accurately evaluate relevance of search results based on 

aggregated click�through information from query logs. The underlying assumption was that a result with a 

larger amount of clicks is more relevant to the query than a result with fewer clicks. Agichtein et al. 

(2006) proposed an idea of aggregating information from many unreliable user search sessions, instead of 

treating each user as a reliable expert to predict user relevance assessment of search results. Dou et al. 

(2008) used aggregate click�through logs to learn the ranking of search results, and found that the 

aggregation of a large number of user clicks is indicative of relevance preferences. Harris (2014) found 
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that crowds are able to predict the consensus ranking of search results with significantly higher recall 

when asked to judge document relevance based on their estimate of the consensus decision than when the 

judgment is based on their personal viewpoint. Zhitomirsky�Geffet et al. (2016) applied a similar 

methodology for classification of diet ontology’s statements by crowdsourcing. They found that crowds 

are able to correctly distinguish between consensual and controversial statements when asked to predict 

the experts’ opinion. 

 

In summary, the above studies demonstrated that “wisdom of crowds”�based techniques applied to 

various types of user data can increase the reliability of this data for learning relevance preferences and 

ranking of search results. The goal of the current study is to test whether such techniques of aggregation 

of user�produced data might increase the stability of user evaluation of search results over time.    

����$���#������#�����	����������%	�
�������������������&���������������������
	����

Lewandowski (2008) conducted a user study with 40 subjects who judged relevance (on a binary scale) of 

top�20 results of five search engines. He reported quite low precision at 20 results, ranging from 0.37 to 

0.52, while Yahoo! and Google outperformed the other search engines and yielded quite similar results. 

Vaughan (2004) compared 24 subjects’ ranking of four queries’ results with those of Google, AltaVista 

and Teoma. In his study, Google outperformed the other search engines with 0.72 average correlation 

between Google’s and subjects’ rankings. Veronis (2006) conducted a user study with 14 students as 

subjects who judged the relevance of top�10 results of six search engines on 14 topics and 5 queries per 

topic. He found that Google and Yahoo! significantly outperformed the other search engines but still 

reached only an average score of 2.3 on a 0�5 relevance scale. A later study examined differences in 

relevance judgments of results retrieved by Google, Yahoo!, Bing, Yahoo! Kids, and ask Kids search 

engines for 30 queries formulated by children  (Bilal, 2012). Yahoo! and Bing produced a similar 

percentage in hit overlap with Google (nearly 30%), while Google performed best on natural language 

queries, and Bing showed a similar precision score (� = 0.69) on two�word queries. In a recent large�scale 

study (Lewandowski, 2015) a sample of 1,000 informational and 1,000 navigational queries from a major 

German search engine was used to compare Google's and Bing's search results. It was found that Google 

slightly outperformed Bing for informational queries, however, there was a substantial difference between 

Google and Bing for navigational queries. Google found the correct answer in 95.3% of cases, whereas 

Bing only found the correct answer 76.6% of the time. These studies did not consider ranking of the 

results but only compared their relevance grades.  

A few studies compared user ranking of search results to popular search engines’ ranking. In a study (Bar�

Ilan et al., 2007) users were presented with randomly ordered result sets retrieved from Google, Yahoo! 
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and MSN (now Bing) and were asked to choose and rank the top�10 results. The findings, generally, 

showed low similarity between the users and the search engines rankings. In a follow�up study (Bar�Ilan 

and Levene, 2011), country�specific search results were tested in a similar way. In this case it was shown 

that at least for Google, the users preferred the results and the rankings of the local Google version over 

other versions. In (Hariri, 2011) the authors also studied Google rankings and asked whether top results 

are considered more relevant by the users. In this study the fifth ranked result was judged to be of highest 

relevance, slightly more than the top ranked result. These studies only asked the users to rank the results, 

without asking for their relevance judgments.  

��'�(���
��	���	���	������#������������%	�
��#�����	���

 
Saracevic (2007) in his extensive review on relevance discusses the dynamics of relevance evaluation 

over time, when the information need changes due to information gained during the information search. 

One of the first studies of dynamic changes was carried out by Rees and Schultz (1967). According to the 

information retrieval model of Bates (1989) during the iterative process of search the user relevance 

judgments of the results are influenced by the results of previous search. Later, Spink and Dee (2007) 

defined a web search model as comprising multiple tasks and cognitive shifts between tasks (e.g. shifts 

between topic, result evaluation, document, information problem, search strategy). Cognitive shift was 

defined as a human ability to handle the demands of complex and often multiple tasks resulting from 

changes due to external forces. Du and Spink (2011) found that evaluation is one of the three most 

experienced states during multi�tasking search process. Also shifts from one evaluation to another were 

quite frequent among other shift types. Saracevic (2007) mentions additional studies where the relevance 

assessments at different points in the information seeking task of more than two participants were 

investigated   (Smithson, 1994; Bruce, 1994; Wang and White, 1995; Bateman, 1998; Vakkari and 

Hakala, 2000; Vakkari, 2001; Tang and Solomon, 2001). However, the setting of the above mentioned 

studies is different from the current setting. In the previous studies the users’ information need changed as 

the task evolved.  In the current study the participants were explicitly instructed to use the same criteria 

and goals, the same query and result sets in both rounds of the experiment. The question is what happens 

in two separate standalone search sessions when the task is identical, and assessed at two different points 

in time? The only difference between the sessions is that the users saw the given set of documents (or 

their snippets) once before.  

 

Self�agreement and change in user evaluation of the same search results for the same query is an under�

explored area. Scholer et al. (2011) studied repeated relevance judgments of TREC evaluators. They 

found that quite often (for 15�24% of the documents) the evaluators were not consistent in their decisions, 

and considered these inconsistencies to be errors made by the assessors. As opposed to their study, here 
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changes in (ordinary) users' rather than domain experts' judgments are measured, for relevance on a four 

point�scale as opposed to the binary scale used by them, and also for ranking of the top�ten results.  

 

Scholer et al. (2013) studied the influence of exposure to more or less relevant documents on relevance 

assessment of documents shown later.  They asked their users to evaluate the relevance (on a 4�point 

scale) 28 documents, where the first three and the last three were identical, thus they saw the same 

documents for the second time after viewing and judging 25 other documents. In their study the users 

viewed documents for the second time within the same sessions, while in our study there is a significant 

gap in time between the two assessments. The reported self�agreement on these three documents was only 

about 50%. To the best of our knowledge changes in users’ rankings over time have not been examined in 

any previous research. 

 

In summary, it has been shown in the literature that there is a substantial difference between users’ and 

search engines’ relevance evaluation of search results. This means that in order to reduce this gap more 

research is needed into this field. The main differences between the current research and the reviewed 

literature are as follows. Studies that explored the change in users’ search behaviour over time, mostly 

addressed successive search behaviour and used only one type of evaluation (either ranking or relevance 

judgment). Neither of them investigated the “wisdom of crowds” evaluation change in time. Conversely, 

past works that applied “wisdom of crowds” techniques did not explore the temporal factor of information 

retrieval and evaluation. The most related study by Scholer et al. (2011) used only binary evaluation of 

documents’ relevance and did not check the change in “wisdom of crowds” result evaluation. 

3.� Method 

'���)�����)���	�
�

 

'�����*���	���
 

Ideally users choose topics of their interest to search for and make assessments, however when the queries 

differ between users their judgments cannot be aggregated. Therefore, to test the above research questions 

two popular scientific topics were selected as queries by the authors, Big Data (in English) and Alzheimer 

(in Hebrew). In addition to the queries a search scenario was provided as "for the aim of preparing a 

summary of the topic, based solely on the results in this set” (they did not actually have to submit the 

summary). 

The query topics were not part of the curriculum, and were not studied either in this course or in any other 

courses the participants took. For each query two separate sets of 20 search results were created.  The 

search results of the first set were collected from Google and Bing, and included top�10 Google and top�
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10 Bing, supplemented, because of the partial overlap between the top results of the two search engines. 

The second set comprised the Google results displayed on the first and the tenth result pages (i.e. results 1 

to 10 and 101 to 110). Thus, four different tasks were defined each with a different query and a different 

result set for each query: AlzheimerGoogle10&100, BigDataGoogle10&100, AlzheimerGoogle&Bing 

and BigDataGoogle&Bing. Google and Bing are the two leading search engines according to comScore 

(2015), and this is why we chose to present results from these search engines. 

�

'���������	�	������

Two randomly created groups of 42 and 45 Information Science students, who participated in the 

“Introduction to Information Science” course, were asked to judge the results. No specific demographic 

data was collected for the purpose of this study. Each group was presented with two out of the above four 

tasks, one for each query. Every result set was judged by only one of the groups. The order of 

presentation of the results to the students was random, to avoid prior bias in their judgments. The students 

were instructed to judge the results in the set with respect to the query with the aim of preparing a 

summary of the topic, based solely on the results in this set (they did not actually have to submit the 

summary). Two types of judgments were featured: relevance judgments on a scale of four: not relevant 

(1), slightly relevant (2), somewhat relevant (3) and relevant (4), where ties were allowed; ranks for the 

top�10 out of 20 results with  no ties allowed. The tasks with queries and results for judgment were 

presented to the participants in Google forms and included title, URL and snippet as displayed by the 

search engine for each result along with two types of judgment scales. 

 

Two months later the same participants were asked to judge the same result sets for the same queries with 

the same evaluation criteria and instructions but presented in a different random order. This time the same 

set of results was presented in a different random order to prevent the students from copying or fully 

recalling their first judgments. We note that the first round of evaluation took place about six weeks after 

the fall semester started, and the second time occurred at the end of the fall semester. 

 

The participants filled�in the Google forms using their personal computers (laptops or desktops) for both 

rounds. Most of them performed judged the relevance and ranked both queries on the same day in the 

round, although this was not a requirement. 

 

 

'���'�$���#�����+��
�����������
	���,����%	�
��

 

The two types of judgments were employed, since they test different cognitive processes executed by the 

users and we wanted to understand the differences between them. When assessing relevance of a 

document to a query, this can be done independently from the other retrieved documents and thus requires 
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a smaller amount of cognitive shifts and their coordination, while for ranking the whole set of retrieved 

documents must be taken into account engaging a higher level of multi�tasking and coordinated cognitive 

shifts. The choice of the relevance scale was based on our preliminary experiment, where we asked 27 

users to decide on the number of relevance categories and then assign each search result to a category. 

The average number of categories was 4.1, which led us to the decision in these experiments to use a 4�

point scale for relevance. It seems more reasonable to ask the participants rank only top�10 results than all 

20, as it would require too much cognitive effort, coordination of multiple cognitive shifts (Du and Spink, 

2011), and time to compare and uniquely rank 20 results of two different queries. Also search engines 

normally present only the top�10 results on the first page, which are considered to be the most important 

for users (Jansen & Spink, 2006; Chitika, 2013, p.5). 

 

'������������	���&	���

In each round all the participants in a given group saw the results in the same order. While, in general, the 

order of results might have influenced the judgments (Bar�Ilan et al., 2009; Joachims et al., 2007),  it has 

been shown that when the number of results is small than this influence is insignificant (Saracevic, 2007). 

Interestingly, Table 1 below shows that in all cases users changed their minds about the rankings. 

However, as also shown in Table 1, for three out of the four tasks there was no noticeable correspondence 

between the order of the results’ presentation to the users and their ranks. Only for the Alzheimer 

-��
��./	�
 task two of the first three displayed results were ranked at top�3 ranks by the users. This 

can be explained by the fact that in comparison to the other three tasks, for this task there were 

substantially less non�relevant results, with relevance value of 1 (by 53�123% in the first round of the 

experiment, on average over all the users, and by 15%�113% on average for the second round). Also, for 

the Alzheimer -��
��./	�
 task the percentage of relevant results (with the relevance grade of 4) is 

substantially higher than for the other tasks (by 10�13%, on average for the first round, and by 15�24%, 

on average for the second round). The differences between the percentages of the most relevant and the 

least relevant results for every task and round are presented in Figures 1 and 2.  
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Figure 1: The averaged (on all the users) percentage of the results judged as least and most relevant for 

every task for the first round of the experiment. 

 

 

Figure 2: The averaged (on all the users) percentage of the results judged as least and most relevant for 

every task for the second round of the experiment. 

 

 

Table 1. The average ranks of the first three results displayed to the users at each of the rounds for every 

query. The corresponding search engines’ ranks of these results are displayed in parentheses (Google 

rank, Bing rank where available), if not available it is denoted as n/a. 

 
BigData  

��������	
��

BigData 

������������ 

Alzheimer 

��������	
� 

Alzheimer 

������������ 
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Displayed 

to users as 

number 

Ranked 

in 

Round1 

as 

Ranked 

in 

Round2 

as 

Ranked 

in 

Round1 

as 

Ranked 

in 

Round2 

as 

Ranked 

in 

Round1 

as 

Ranked 

in 

Round2 

as 

Ranked 

in 

Round1 

as 

Ranked 

in 

Round2 

as 

1 13 (5,n/a) 5 (4,n/a) 20 (6) 6 (3) 3 (7,7) 2 (4,3) 8 (101) 20 (106) 

2 3 (8,n/a) 11 (7,n/a) 14 (105) 8 (110) 2 (n/a,10) 6(n/a,12) 2 (6) 14 (102) 

3 7 (6,n/a) 14 (5,n/a) 16 (106) 9 (10) 
15 

(10,n/a) 
3 (n/a,8) 14 (109) 11 (105) 

 

The participants were informed that their rankings will be aggregated and analyzed anonymously, and 

those who wished not to contribute their data to the aggregated study were asked to inform the course 

instructor by email. No students asked to withdraw their data. Although the experiments involve human 

subjects (students), no personal information was gathered on them. The Faculty of Humanities’ IRB 

(ethics committee) waived the need for written consent. The IRB of the Faculty of Humanities in Bar�Ilan 

University approved the experiments. 

'�'�
���������������
��	��������#�����	�������������������� 

To test these research questions, two measures were proposed to calculate the aggregated judgments of 

search results that reflect the "wisdom of crowds" of a user group and compare their stability to the 

individual user judgments. Two types of judgments were considered in this study: 1) relevance on a 4�

point scale with possible ties, and 2) ranking on a 10�point scale without ties.  

 

To compute the aggregated “wisdom of crowds” ranking and relevance�based ranking grades, all the 

individual users' values for every result were summed up and the result list was sorted by these sums in 

ascending order to obtain the ranked list of results by users' ranking, and in descending order to obtain the 

list of results by users' relevance judgments. This was repeated for both rounds of the experiment. These 

aggregated results are referred to as ��������� ���%	�
0&����� ���%	�
 and ��������� ����#����0&�����

���%	�
. In this study there were no ties (i.e. two items with exactly the same aggregate score). In case 

there are ties, these are resolved randomly. 

 

To assess the stability of the judgments over time for each individual user and of the user consensus, two 

measures were devised. For each query and result set, the proportion of the results in the set that was ��� 

given identical ranks or relevance judgments by a specified user or by the user consensus, on the first and 

second rounds of the study was calculated. This measures the amount of change at the �1��������� level 

(i.e. results with distance 0 are those that were identically judged by the given user in both rounds). 
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Further, cases when the rankings or relevance judgments were not precisely identical in both rounds but 

still sufficiently close were also considered. 

 

Formally, the ����
�������	�	��� at a distance �2 with 0 ≤ � ≤ |�| is defined for a given set of results, ��2�

��2�32��%, evaluated twice by a user (or by the user consensus), �, either with ranking or relevance values, 

���and���, as follows: 

Ω��� = 1 −� 
���|�|
��� �
|�| 2 where������ = � 1, |�1���� − �2����| ≤ �																	0, ��ℎ�� !��																																			 

Thus, Ω��� is the proportion of the results that are judged in the two rounds at distance greater than � in 

the set ). Note that for �45 the change coefficient reduces to the exact match case, while �65 defines the 

more general case. For relevance all the 20 results in ) were judged by the users and thus all of them are 

considered in the calculation of the change coefficient. However, for ranking only the top�10 results were 

actually assessed by the users. Therefore, for ranking only, as there are more results than ranks, the 

unranked results are technically assigned the rank of 11. Only results with at least one of the ranks being 

lower than 11 are considered. This is because results that were assigned rank 11 were not actually ranked 

by the users. 

 

In addition, based on subsets of % ranks, the proportion of new ���0�#������	�
 results in the subset of % 

consecutive ranks is measured, which starts at a position �, that were introduced in the second round of 

the study. More formally, given a set of results $, and a consecutive subset of ranks 7�"2��"#$2� ���2�"#%8 
where �9�	≤:$:2 two subsets of ranked results are constructed with the corresponding ranks for each of 

the two rounds, $� and $�. Thus, the ����
��	��%0��&����measure, is defined as follows; 

<�(�2%) = 1� |$�∩$�|/%, for some �, %={1..<}  

In the sequel <�7���0%8 will stand for <�7�2%8�and <�7����0%8 will stand for <�7<0%=�2%8��This measure 

computes the proportion of results in a certain subset in one of the rounds that were not part of this subset 

in the other round. 

  

4.� Results and discussion 

To answer the first research question of this study we computed the changes in the individual users’ 

judgments and the corresponding changes in the consensus judgments by the two types of measures 

defined above and then compared these changes.  It was found that the majority of changes in user 

evaluation of search results are local within 1�2 close ranks and relevance values. Moreover, the 

consensus rankings (obtained by aggregation of the individual ranks) were considerably more stable 

(changed in time less) than the individual users’ rankings, but were still quite different (by 30�60%) from 

the search engine’s rankings. These findings imply that “wisdom of crowds” decreases the subjectivity 

Page 12 of 40Aslib Proceedings

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

13 

and increases the stability of user ranking and thus can be used as a reliable reference for user relevance 

evaluation behaviour modelling. 

>���?�����	�������������
�������	�	��������	��	#	����������+��
������#�������������+��
������

To this end, first, the changes of individual users' rankings and relevance judgments for the same 20 

results between the first and second rounds of the experiment were computed. To this end, the average of 

the change coefficients,	Ω���, with �=0 over the individual users’ rankings and relevance judgments were 

calculated. The results for different studies are presented in Table 2. Then, the change coefficient was 

measured for distances greater than or equal to one between judgments in the two rounds. In our 

experiment��4� for relevance, and 1 ≤ � ≤ 3 for rankings were used (as the distance between judgments 

of the results in the two rounds), and are also presented in Table 2. For Ω�� >1) only changes of distance 

2 or more were counted (i.e. if for example, an item was ranked 7
th
 in the first round, and 9

th
 or above, or 

5
th
 or below in the second round, then we consider it as a change). As mentioned above, all unranked 

items by the user received a virtual rank of 11.  

Table 2. The average change coefficient values of individual users for ranking and relevance with 

different distances and result sets. Standard deviation values are shown in parentheses following the 

average.  

Experiment 
Ranking Relevance 

Ω(0) Ω(1) Ω(2) Ω(3) Ω(0) Ω(1) 

AlzheimerGoogle10&100 0.87(0.18) 0.61(0.23) 0.45(0.22) 0.33(0.19) 0.48(0.11) 0.12(0.07) 

AlzheimerGoogle&Bing 0.87(0.18) 0.67(0.21) 0.50(0.20) 0.39(0.17) 0.53(0.09) 0.15(0.05) 

BigDataGoogle10&100 0.84(0.18) 0.62(0.22) 0.44(0.20) 0.31(0.17) 0.52(0.14) 0.13(0.06) 

BigDataGoogle&Bing 0.87(0.18) 0.64(0.21) 0.48(0.20) 0.32(0.17) 0.43(0.15) 0.10(0.06) 

Average of the averages 0.86(0.18) 0.64(0.22) 0.47(0.20) 0.34(0.17) 0.49(0.12) 0.13(0.06) 

 

It can be observed that, in general, similarly high values (84�87% for ranking and 43�53% for relevance) 

were obtained for the different queries and result sets, recalling that when Ω���=0 then no change 

occurred. Further, the explored research question is whether consensus ranking, which aggregates all the 

individual ranks for a given result into a single score, would exhibit a smaller amount of changes than the 

average for individual users. To test this question, each result for every query is assigned an identifying 

number. Then, the consensus rank/relevance score for every result of each query and result set is 

computed as a sum of all its individual user ranks/relevance grades, similar to the "agreed" ranking 

defined by Bar�Ilan et al. (2007). Then, all the results with a consensus rank higher than 10 were assigned 

a rank value of 11 as was done for the individual rankings, since in our experiments users could only rank 

the best 10 out 20 results. According to the definition of  Ω�0� and similarly to the analysis of the 
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individual user judgments the change coefficients for the consensus ranking is calculated over the top�10 

results only. The same method was applied to compute the consensus relevance grades for relevance�

based ranking but all 20 results were assigned a rank in this case. Thus, the consensus relevance�based 

ranking shows a way to create a ranking for the full result list without the users ranking them explicitly. 

The results of the change coefficient measure for the consensus ranking and relevance�based ranking are 

displayed in Table 3. 

The change coefficient for relevancies is considerably lower than for rankings (in Table 2), which may 

indicate that for users, ranking is generally more difficult than judging relevance. As expected, a 

consistent decrease in the change coefficient is observed, especially the considerable decrease between 

distance 0 and distance 1, for the relevance judgments, which indicates that most of the changes in 

relevance judgments were local within distance 1. Also, for ranking the majority of changes were local 

within distance 2. In addition, virtually similar numbers for both queries and result sets were obtained. 

This reflects a general pattern in user evaluation behaviour which is not specific to a specific case, users 

or data set.  

Here we introduced new measures and a unique experimental setting, aiming to examine the time as the 

only varying parameter. The only closely related works for comparison are those by Scholer et al. (2011) 

and Scholer et al. (2013), which we mentioned earlier in the related work section. Our results on change 

in relevance with �45 seem quite similar to those of (Scholer et al., 2013) who reported about 50% 

change rate. When considering �4� as an approximation of the two�point scale, our results (12�15% 

change coefficients) are also comparable but slightly lower to those of (Scholer et al., 2011), who 

reported on 15�24% change rates. However, as opposed to our approach, Scholer et al. (2011) viewed 

cases where the document was evaluated differently the second time as errors. In the experimental setting 

of (Scholer et al., 2013), three documents were assessed twice within a short period of time (of about one 

hour) and the results in this study were not interpreted.  

Table 3. The change coefficient for consensus ranking and relevance grades with various distances for 

different experiments. 

Experiment 
Ranking3based ranking Relevance3based ranking 

Ω(0) Ω(1) Ω(2) Ω(3) Ω(0) Ω(1) Ω(2) Ω(3) 

AlzheimerGoogle10&100 0.70 0.40 0.20 0.10 0.70 0.40 0.20 0.10 

AlzheimerGoogle&Bing 0.80 0.60 0.40 0.40 0.85 0.50 0.50 0.40 

BigDataGoogle10&100 0.60 0.30 0.10 0.10 0.70 0.40 0.20 0.10 

BigDataGoogle&Bing 0.60 0.10 0.10 0.10 0.65 0.25 0.00 0.00 

Average 0.68 

(0.10) 

0.35 

(0.21) 

0.20 

(0.15) 

0.18 

(0.15) 

0.73 

(0.09) 

0.39 

(0.11) 

0.23 

(0.21) 

0.15 

(0.18) 
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The results for consensus ranking and relevance�based ranking are quite similar despite the fact that the 

former was calculated for top�10 results only, while the latter considers all 20 results. For ranking with 

�45 (exact match) were obtained, while for �>0 the numbers are strictly monotonically decreasing 

(except for AlzheimerGoogle&Bing task for Ω�2�	and Ω�3�). As can be observed by comparing the first 

four columns of Tables 2 and 3, the numbers in Table 3 are 22% lower on average, for the averaged 

individual ranking change coefficient for the exact match, and 51% lower on average for �6�2� than the 

corresponding values, shown in Table 2. The smallest decrease in change (of 8%) was observed for 

AlzheimerGoogle&Bing task (�45), and the greatest decrease (of 84%) was observed for the consensus 

ranking of the BigDataGoogle&Bing task (�4�). The change coefficient for consensus ranking is more 

than one standard deviation lower than the average mean change coefficient for the individual users. 

 

>���?�����	�������������
��	��������&��������%����%������	��	#	����������+��
������#�������������+��
������

 

Next, our second measure was applied to compute the change in the subsets of % ranks. Table 4 considers 

the change in the top�5, last�5 and unranked results.  Thus, the non�local (inter�subset) changes were 

measured between the two evaluation rounds in the top�5 result subset, (i.e. <�7���0@8)2 and in the last�5 

result subset, (i.e. <�7����0@8)2 and in all the unranked results, (i.e. <�7�����%��882� results that were 

unranked at least in one of the rounds,�as a third subset of ranks��

 

Table 4. The change in ranking for unranked, top�5 and last 5 for the different experiments. Standard 

deviation values are shown in parentheses following the average.��

�

 
���
��
����� 
���������� 
���������

AlzheimerGoogle10&100 0.30(0.16) 0.64(0.28) 0.41(0.20) 

AlzheimerGoogle&Bing 0.31(0.15) 0.61(0.26) 0.47(0.24) 

BigDataGoogle10&100 0.25(0.14) 0.62(0.24) 0.39(0.26) 

BigDataGoogle&Bing 0.23(0.14) 0.53(0.22) 0.41(0.22) 

Average 0.27(0.15) 0.60(0.25) 0.42(0.24) 

 

We note that for all the tasks there is much more change in the middle category subset of results (last�5) 

than in either the top ranked most relevant category (top�5) or the unranked least relevant subset. A 

reasonable explanation for this is that it is probably easier for the users to judge the extremes than the 

middle�category results. The most stable category was “unranked results” for which over two thirds of the 
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results remained unranked in both rounds. For the top�5 results the majority remained in top�5 over both 

rounds. 

Table 5. The change in top�@ and last�@ and unranked for consensus ranking�based ranking for the 

different experiments. 

 
���
��
����� 
���������� 
���������

AlzheimerGoogle10&100 0.10 0.20 0.00 

AlzheimerGoogle&Bing 0.10 0.60 0.40 

BigDataGoogle10&100 0.10 0.20 0.00 

BigDataGoogle&Bing 0.10 0.20 0.00 

Average 0.10(0.0) 0.30(0.20) 0.10(0.20) 

 

The <�7�2%8 values for the consensus ranking�based ranking also decreased in comparison to the 

individual user ranking as shown in Table 5 and compared to Table 4. The obtained results show less 

change in the top�% values for the top�5 consensus ranking (10% average <�7���0@8) than for the last�5 

(30% average <�7����0@8). Moreover, there were lower changes except for the AlzheimerGoogle&Bing 

task in the top�5 and last�5 categories for the consensus ranking than for the individual user rankings in 

the top�5 results (where 42% of results were new in the second round on average for all the experiments). 

In particular, it was found that except for the Alzheimer Google&Bing task, there were no new results 

within the top�5 results in the consensus rankings between the rounds; however, there are some changes 

in the actual rankings. Similarly, only one out of the top�10 results (10%) of the consensus ranking was 

different for the first and second rounds for all the experiments (compared to 27% on average for 

individual users’ ranking in Table 4). Again, as for the change coefficient above, the change in subsets of 

% ranks for consensus ranking is more than one standard deviation lower than the average mean change 

for the individual users.  

 

Thus, the consensus ranking which reflects the “wisdom of crowds” evaluation is more stable than 

individual user rankings. Within distance 2 about 80% of consensus ranks on average did not change, and 

for top�5 virtually all the results remained in the top�5 subset in both rounds. The highest proportion of 

non�local changes and its lower decrease for consensus ranking observed for Alzheimer Google&Bing 

task may be explained by the highest proportion of relevant results which made the ranking task more 

difficult for the users for this query as discussed above; see Figures 1 and 2. 

 

>�'�A�����������������%	�
�#���������������
	������%	�
�

To address the second research question of this study we compared the user consensus ranking to the 

search engine rankings. 
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As was shown in the previous section, consensus ranking�based ranking is much more stable and less 

subjective than individual user�based ranking. Thus, it could serve as a good reference/gold standard for 

evaluating search engines’ rankings. To this end we compared the user consensus rankings to the search 

engine rankings by using the change in %�subset measure to assess the difference between these two types 

of ranking. The results are shown in Table 6.  

Table 6. The change in top�% for %4�5 (all the ranked results) and for %4@ between the consensus ranking 

and the search engine ranking. 

 

Google–
��top3

10) 

round1, round2 

Google–
��top3

5) 

round1, round2 

Bing – 
��top3

10) 

round1, round2 

Bing – 
��top3

5) 

round1, round2 

AlzheimerGoogle10&100 0.20, 0.30 0.60, 0.60 N/A N/A 

AlzheimerGoogle&Bing 0.50, 0.50 0.60, 0.60 0.30, 0.30 0.60, 0.60 

BigDataGoogle10&100 0.40, 0.30 0.40, 0.40 N/A N/A 

BigDataGoogle&Bing 0.30, 0.40 0.40, 0.40 0.50, 0.60 0.60, 0.60 

 

For every experiment in the corresponding cell of the table the proportion of non�overlapping results is 

shown in the subset of top�10 and of top�5 computed for each of the two rounds separated by comma. 

 

In general, from Table 6 we can see that the difference between users’ consensus and search engines’ 

rankings in both rounds is quite considerable (20�60% for the top�10 ranks) as has also been shown in a 

previous study (Bar�Ilan et al., 2007). Figures 3�6 show the overlap and the changes in the consensus 

rankings between rounds, with information added regarding the rankings assigned by the search engines. 

The overlapping results are inter�linked with arrows, while results that were ranked in the top�10 only for 

one of the rounds are marked with an X icon. Moreover, the difference between users’ consensus and 

search engines’ ranking is much higher than the change between the users’ consensus rankings in the two 

rounds of the experiment (10%), as can be seen from Figures 3�6. However, the majority of results ranked 

in top�10 by Google were also ranked in top�10 by user consensus (again with exception for 

AlzheimerGoogle&Bing result set). Interestingly, comparable numbers were obtained for Google and 

Bing, while for one of the queries Google’s ranking was closer to the consensus ranking than Bing’s one 

(0.30 vs. 0.50, respectively), and for the other query Bing’s ranking was closer to the consensus ranking 

(0.30 vs. 0.50, respectively) than Google’s one. 
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Figure 3. Top�10 results of the consensus rankings for the Alzheimer Google 10&100 experiment. The 

corresponding Google ranks are shown in the parentheses. The change coefficient of users’ consensus 

ranking�based ranking in two assessment rounds for this task is 0.70. 
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Figure 4. Top�10 results of the consensus rankings for the Alzheimer G&B experiment. The 

corresponding Google (G) and Bing (B) ranks are shown in the parentheses. The change coefficient of 

users’ consensus ranking�based ranking in two assessment rounds for this task is 0.80. 

 

Figure 5. Top�10 results of the consensus ranking for the Big Data Google 10&100 task. The 

corresponding Google ranks are shown in the parentheses. The change coefficient of users’ consensus 

ranking�based ranking in two assessment rounds for this task is 0.60. 
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Figure 6. Top�10 results of the consensus ranking for the Big Data G&B experiment. The corresponding 

Google (G) and Bing (B) ranks are shown in the parentheses. The change coefficient of users’ consensus 

ranking�based ranking in two assessment rounds for this task is 0.60. 

 

Interestingly, for all the queries, 2 to 3 results were overlapping in the top�5 ranks for Google, Bing, and 

the user consensus ranking on both rounds. Also, all the results that were not ranked in the top�10 in the 

second round appeared at low ranks (rank 8 or lower) in the first round, which reflects higher stability in 

the top�7 consensus rankings than in the lower ones. For three out of four tasks in both rounds, the top 

result was the same as that of the search engines and for the user consensus rankings. Only for one task in 

the first round, was the search engine’s top�ranked item ranked as second. As can be observed from the 

Figures 3�6, there were smaller differences in the top�10 consensus ranks for the Big Data query than for 

the Alzheimer's query, especially for the Alzheimer Google&Bing task, which appeared to be the most 

controversial and least stable according to the applied measures. 

 

Users generally preferred English sites, when available, over Hebrew ones, and in one instance a 

YouTube video outranked textual results. For Bing there were cases of irrelevant results referring to a 

different meaning of Big Data (like the music project and a recruitment management company). Quite 

surprisingly, for the Alzheimer Google10&100 task three out of top�10 results, and for Big Data 

Google10&100 four out of top�10 results in the consensus rankings were from Google's 100+ results set. 

These findings show that even on the tenth SERP there may be results that may be preferred to those in 

the top�10 shown to the users. 
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5.� Conclusions and future work 

Ranking of search results according to their relevance to the users is one of the primary tasks of search 

engines. However, this task is extremely challenging especially due to the changes over time in user 

preferences, which affect their assessment of search results.  This paper presented an exploratory study of 

this issue that has not been addressed before. 

 

The primary goal of this study was to investigate whether and how the user preferences change over time. 

In particular, the main idea was to test whether aggregated consensus judgments are more stable than 

individual user judgments and whether they are similar to the search engines’ rankings. To this end, two 

new measures of change were proposed for ranking and relevance judgments, the change coefficient, 

Ω���, at distance �, and the change in %�subset measure <�7�2%82 for a consecutive subset % of ranks. 

 

To aid our investigation, a large�scale user study was conducted for ranking and judging the relevance of 

query result sets, and repeated the evaluation within a two�month period.  It was found that the amount of 

changes was quite high for individual users, but the majority of changes both for relevance and ranking 

judgments were local within distance 1 and 2, respectively. In addition, the overlap in the top�5 and 

unranked subsets of the results was higher than in the last�5 subset, which implies that users are more 

certain about ranking of the top and least relevant results than ranking of the middle subset.   

 

In addition, our results show that consensus ranking calculated by aggregating the individual user 

rankings and relevance judgments resulted in substantially fewer changes compared to the averaged 

individual user rankings. Finally, as in other studies (Bar�Ilan and Levene, 2007), quite low similarity was 

found between the search engines' and consensus users' rankings. 

  

Generally, understanding the user intent is beneficial, as in some cases the most relevant results may be 

further down the ranking list (as shown by our Google 10&100 tasks). The above tendencies were quite 

similar for all the queries and result sets.  

 

This is a user study with a relatively large number of participants, however, the main limitation of this 

study is the fact that the participants only judged the results of two informational queries they were asked 

to assess. In addition, this study is based on a user behaviour model, where users evaluate only a limited 

amount of results (20) coming from one or two search engines. The conclusions could be generalised by 

experimenting with more queries from a broad spectrum of topics, and also in the context of library and 

information science, where information seeking has been widely researched (Case, 2012).  
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The findings of this research contribute to understanding the user evaluation behaviour and its change 

over time and show a way to bridge the gap between search engines’ and users’ ranking and relevance 

evaluation. This research may have practical implications for personalisation, as users' preferences change 

over time and therefore the ranking of a search engine should adapt to this. For ranking, with the maximal 

locality threshold (�4'), about one third of the results undergo non�local changes, so it is these differently 

evaluated results that are especially in need of personalisation.  

 

@���B���	���	�����������������

 

Personalisation of search engine results has been much researched in the past decade (Keenoy and 

Levene, 2005; Micarelli et al., 2007),  although is it unclear what the uptake of personalisation has been in 

commercial search services, mainly due to the scale of the problem and the unclear benefits of such an 

undertaking. It is well�known that the automated retrieval algorithms used by search engines take into 

account the popularity of user choices from analysis of the click�through data it records, however, the 

details of how this is done remain undisclosed. The results in this paper may provide insight to several 

aspects related to personalisation of search. As we have shown, there is a considerable difference between 

search engines’ ranking and users’ consensus ranking. From this we may conclude that search engines 

ranking of results is not fully compatible with users’ preferences. Moreover, we have shown that users’ 

judgements change considerably in time (over 30% of the results have non�local changes), so this change 

in users’ preferences is another important factor that should be taken into account when ranking search 

results. Personalisation on an individual level may be viable in e�commerce and internet advertising, 

where the benefits are clearly visible, although for search engines there is no proven model for 

personalisation as yet. Nonetheless, for search engines, taking the consensus ranking into account may be 

a reasonable solution to improving the quality of results’ ranking. What we have clearly shown in the 

paper is that the consensus ranking is more stable than individual rankings, so apart from the 

computational benefits of such an approach, it is more stable than dealing with individual users where the 

changes are more variable and thus less predictable. There is also another positive side to the consensus 

ranking in that it will most likely result in a more diverse search results list (Santos et al., 2015) , than 

would arise from personalisation on an individual level. 
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 BigData  

Google&Bing 

BigData 

Google10&100 

Alzheimer 

Google&Bing 

Alzheimer 

Google10&100 

Displayed 

to users as 

number 

Ranked 

in 

Round1 

as 

Ranked 

in 

Round2 

as 

Ranked 

in 

Round1 

as 

Ranked 

in 

Round2 

as 

Ranked 

in 

Round1 

as 

Ranked 

in 

Round2 

as 

Ranked 

in 

Round1 

as 

Ranked 

in 

Round2 

as 

1 13 (5,n/a) 5 (4,n/a) 20 (6) 6 (3) 3 (7,7) 2 (4,3) 8 (101) 20 (106) 

2 3 (8,n/a) 11 (7,n/a) 14 (105) 8 (110) 2 (n/a,10) 6(n/a,12) 2 (6) 14 (102) 

3 7 (6.n/a) 14 (5,n/a) 16 (106) 9 (10) 15 

(10,n/a) 

3 (n/a,8) 14 (109) 11 (105) 
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Experiment 
Ranking Relevance 

Ω(0) Ω(1) Ω(2) Ω(3) Ω(0) Ω(1) 

AlzheimerGoogle10&100 0.87(0.18) 0.61(0.23) 0.45(0.22) 0.33(0.19) 0.48(0.11) 0.12(0.07) 

AlzheimerGoogle&Bing 0.87(0.18) 0.67(0.21) 0.50(0.20) 0.39(0.17) 0.53(0.09) 0.15(0.05) 

BigDataGoogle10&100 0.84(0.18) 0.62(0.22) 0.44(0.20) 0.31(0.17) 0.52(0.14) 0.13(0.06) 

BigDataGoogle&Bing 0.87(0.18) 0.64(0.21) 0.48(0.20) 0.32(0.17) 0.43(0.15) 0.10(0.06) 

Average of the averages 0.86(0.18) 0.64(0.22) 0.47(0.20) 0.34(0.17) 0.49(0.12) 0.13(0.06) 
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Experiment 
Ranking�based ranking Relevance�based ranking 

Ω(0) Ω(1) Ω(2) Ω(3) Ω(0) Ω(1) Ω(2) Ω(3) 
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