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Abstract 

Models of stochastic choice are intended to capture the substantial amount of noise observed 

in decisions under risk. We present an experimental test of one model, which many regard as 

the default—the Basic Fechner model. We consider one of the model’s key assumptions—

that the noise around the subjective value of a risky option is independent of other features of 

the decision problem. We find that this assumption is systematically violated. However the 

main patterns in our data can be accommodated by a more recent variant of the Fechner 

model, or within the random preference framework. 
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Due to its simplicity, elegance and versatility, John von Neumann and Oskar Morgenstern’s 

(1947) Expected Utility Theory (EUT) has been one of the most influential and widely used 



tools in economic analysis during the past 65 years. However, early attempts to elicit 

individuals’ utility functions (e.g. Mosteller and Nogee 1951) highlighted the fact that many 

people’s responses were characterised by a substantial degree of ‘noise’, which prompted the 

development of research into probabilistic choice (see Luce and Suppes 1965 for an early 

review). At the same time, experimental tests of the descriptive validity of EUT identified a 

number of seemingly systematic violations of its axioms (see Camerer 1995 for a review), 

which led to the development of a large number of alternative theories (see Starmer 2000). 

These violations are ‘seemingly systematic’ because it has become clear that whether any 

particular empirical regularity can be regarded as a violation of EUT (or any other theory) 

turns out to depend crucially on the assumptions made about the stochastic specification of 

the decision-making process (see Loomes and Sugden 1995; Wilcox 2008). Many of what 

have for years been treated as systematic violations of EUT can be accommodated within the 

EU framework under some assumptions about the stochastic specification, although they 

contradict EUT under other specifications of the noise in people’s responses (e.g. 

Loomes 2005; Blavatskyy 2006, 2009). Indeed, the assumptions made about the stochastic 

specification may be as important, if not even more important, than assumptions about which 

‘core’ theory is invoked (e.g. Blavatskyy and Pogrebna 2010). 

We cannot yet identify just which stochastic specification is most appropriate. But in some 

settings, one can rule out specifications that are known to be problematic. For instance, a 

model in which individuals are assumed to commit errors at a rate that does not depend on 

any of the characteristics of the decision problem (Harless and Camerer 1994) is inadequate 

in most circumstances (Loomes and Sugden 1998). 

The literature has also documented various reasons for concern about another very popular 

stochastic model, the Basic Fechner (BF) model (Fechner 1860, 1966; Hey and Orme 1994), 



which many regard as the ‘standard’ stochastic model of choice under risk. In this model, a 

symmetric, zero-mean error1 term is attached to the true subjective value of a risky option. 

On the empirical side, it has been shown that this model entails many more violations of first-

order stochastic dominance than are usually observed (e.g. Loomes and Sugden 1998; 

Loomes et al. 2002). On the theoretical side, even if such a model is used to estimate 

parameters meant to reflect agents’ degrees of risk aversion in the Pratt (1964) sense, the 

estimated parameters do not necessarily satisfy a ‘statistically more risk averse’ relation 

(Wilcox 2011). 

However, in spite of such serious limitations, the BF model is still popular in applied work 

(e.g. Harrison et al. 2007; Bruhin et al. 2010; von Gaudecker et al. 2011; Epper et 

al. 2011).2 A possible reason for this is the relative ease of econometric implementation. But 

tractability, while useful, is not sufficient: using an inadequate model could well result in the 

serious mis-estimation of parameters and incorrect inferences about the structure of people’s 

preferences. 

In this paper we report an experimental test of one of the central assumptions of the BF 

model, namely, that the error terms attached to the subjective values of the risky prospects in 

a binary choice are independent of each other. Our experiment was motivated by some data 

from a preference reversal experiment by Butler and Loomes (2007), who found that 

imprecision intervals around certainty and probability equivalents for standard P-bets and $-

bets were systematically related to the characteristics of the prospect being valued: contrary 

to the BF independence assumption, the $-bet appeared to exhibit more noise than the P-bet 

in the certainty equivalent exercise, while the P-bet showed greater imprecision than the $-bet 

in the probability equivalence task. We say more about this in Section 2. 



In order to explore this issue more directly, we constructed a series of binary choice problems 

in which P- and $-bets were matched with two distinct sets of progressively better common 

alternatives. As we explain in Section 1, the BF independence assumption entails that any 

inference concerning the relative noisiness of the errors associated with the P- and $-bets 

should not depend on which set of comparators is used. Our results show that this 

independence assumption is systematically violated. Prospects like the P-bets, which are 

more similar to certain amounts, are inferred to have lower variance error terms than the $-bet 

when both are matched with an increasing sequence of certainties. However, when both bets 

are matched with a series of lotteries that are riskier than the $-bet, the P-bets are inferred to 

have higher variance error terms. 

Our new test adds to the evidence of the inadequacy of the BF model in many contexts. In 

Section 3, we turn to the important issue of which stochastic specification is able to come to 

grips with the systematic patterns that we find. We conduct some simple calibration exercises 

which show that these patterns can be accommodated by the extension of the BF model 

proposed by Blavatskyy (2009, 2011), but not by the contextual utility model proposed by 

Wilcox (2011). These models have the common feature that the variance of the error term is, 

in effect, conditioned on features of a particular binary choice. However, they implement this 

contextualisation in different ways, and in Section 3 we explain why this can organise the 

data in one case but not in the other. 

An alternative way of explaining our findings is provided by the random preference 

framework (e.g. Becker et al. 1963; Loomes and Sugden 1995) in which agents act as if the 

parameters of their core preferences have random components. In Section 3 we show that 

because P-bets are less risky than $-bets, their evaluation against a common set of certainties 

on the basis of a given distribution of risk aversion coefficients is characterised by less 



variability than the corresponding evaluation of $-bets, whereas the opposite is true when 

both bets are matched with prospects which are even riskier than the $-bet. 

As we point out in the concluding section of the paper, our findings emphasise the pressing 

need to go beyond the BF modelling approach, and we suggest avenues for further research 

into how best to model the stochastic component in decision-making under risk. 

 

1 A test of the Basic Fechner model 

In line with most of the literature, we consider decisions between pairs of lotteries. 

A lottery is a probability distribution over a set of monetary consequences X = {x0, …, xn}, 

with x0 < x1 < … < xn. Typical lotteries are denoted by vectors of probabilities such as p ≡ 

(p0, …, pn) and q ≡ (q0, …, qn), with p0 + p1 + … + pn = 1 and q0 + q1 + … + qn = 1. 

A binary choice is denoted by {p, q}.x0 

Most deterministic decision theories assume the existence of some function V(.) that 

associates each lottery with an individual’s subjective value. Different theories are defined by 

different ways of computing V(.). In any choice {p, q}, p is preferred to, equally preferred to 

or less preferred than q according to whether V(p) is greater than, equal to or less than V(q). 

More succinctly: 

       (1) 

The Fechner model (Fechner 1860, 1966) offers a simple mechanism for making the 

deterministic decision rule (1) stochastic. According to this model, each p is evaluated with 

some noise, εp, which is usually assumed to be symmetric and to have mean zero and 

variance σ2
p. This error term is also assumed to be lottery-specific, i.e. not to depend on 



features of the decision problem other than the characteristics of the lottery itself. This 

assumption, which is of particular importance for the test that we derive in the remainder of 

this Section, is not shared by more recent variants of the Fechner model such as those 

proposed by Blavatskyy (2011) and Wilcox (2011). We will come back to these variants later 

in the paper, but for the moment our principal concern is with the Basic Fechner version just 

described. This version is less restrictive than the one often used in applied work, in which a 

symmetric, mean-zero error term is attached to the difference between the subjective values 

of the two lotteries, entailing that the lottery-specific error term has the same variance for all 

lotteries.3 Such an assumption is unnecessarily restrictive. 

Once the error terms are introduced, choice becomes probabilistic: 

    (2) 

where Pr(p|{p, q}) is the probability that p is chosen in decision problem {p, q}. To keep 

with the standard practice followed in most applications, εp and εq can be thought of as 

normally distributed error terms. The BF independence assumption then entails that cov(εp, 

εq) = 0, so that the joint variance of the error terms is σ2
p + σ2

q. 

Now consider what happens to Pr(p|{p, q}) if lottery q is progressively improved by moving 

probability mass from low-value to higher-value consequences. For simplicity, let us assume 

for the moment that the error term associated with each q has the same variance σ2
q. 

Figure 1illustrates. The solid line represents Pr(p|{p, q}) as a function of V(q). When V(q) is 

very low, p is always chosen. But as q is improved and V(q) increases, a point is reached 

where the difference between V(p) and V(q) may occasionally be outweighed by particular 

combinations of εq and εp, so that the probability of choosing p falls below 1; and 

Pr(p|{p, q}) falls further as V(q) continues to rise. When V(q) = V(p), errors in the two 



directions balance each other on average, so that Pr(p|{p, q}) = 0.5. We will call this 

the stochastic indifference point. Further increases in V(q) progressively reduce Pr(p|{p, q}), 

until it reaches a point where p is rarely, and eventually never, chosen. 

The slope of the Pr(p|{p, q}) function is determined by the combined variance of the error 

terms—that is, by σ2
p + σ2

q. When εp and εq are normally distributed, the shape is the mirror 

image of a normal c.d.f. 

Now take another lottery, r, with error term εr, and such that V(r) < V(p). To start with, 

suppose that σ2
r = σ2

p, so that σ2
r + σ2

q = σ2
p + σ2

q for all q. The resulting Pr(r|{r, q}) is 

shown as the dashed line in Fig. 1. As the combined variances are the same, the dashed line is 

everywhere to the left of the solid line. Because of the strict monotonicity of the c.d.f. 

function, there is no point at which the two lines in Fig. 1 cross. The same would happen with 

any other symmetric, strictly increasing c.d.f. such as those used in applications. 

However, the simplification that σ2
r = σ2

p is by no means an essential characteristic of the BF 

model. Figure 2 considers the case in which σ2
r > σ2

p, i.e. there is more noise around V(r) 

than around V(p). This alters the Pr(r|{r, q}) curve, increasing the range over which 

Pr(r|{r, q}) lies between 1 and 0: for any given q there is a greater likelihood that noise 

overturns the difference between the subjective values of the two lotteries, making the whole 

curve flatter around the stochastic indifference point. Because V(r) < V(p), the dashed line 

must lie to the left of the solid line for all Pr(p|{p, q}) ≥ 0.5. However, the flatter trajectory of 

the dashed line allows the possibility that it may cut the solid line from below4; in which case, 

for all V(q) to the left of that crossover point, Pr(p|{p, q}) > Pr(r|{r, q}), whereas for all 

V(q) to the right of that point, Pr(p|{p, q}) < Pr(r|{r, q}). 

So, if we were to observe repeated choices between p and the qlow marked in Fig. 2, and also 

between r and qlow, we should see p chosen from {p, qlow} more often than r is chosen from 



{r, qlow}. This difference is represented by the vertical distance (vdlow) shown by the down 

arrow. By contrast, with a comparator lottery sufficiently attractive that it lies to the right of 

the crossover point—e.g. qhigh—we should see p chosen from {p, qhigh} less often than r is 

chosen from {r, qhigh}, with this difference being represented by the vertical distance (vdhigh) 

shown by the up arrow. 

Under the BF model, where by assumption εp, εq and εr are all independent of one another, 

this is the case whatever the particular nature of q. So it is true if q is a certainty, with V(q) 

increasing as the size of the sure payoff increases. And it is also true if q is some probability 

mix of a positive sum xm and zero, with V(q) increasing as the probability of xm increases 

(and the probability of zero correspondingly decreases). This provides a simple way of testing 

the BF model. If one is able to map the Pr(p|{p, q}) and Pr(r|{r, q}) curves by matching 

both p and r with two distinct sets of progressively better q lotteries, then the mappings 

deriving from the two distinct sets should have the same implications as to whether σ2
r = σ2

p, 

or σ2
r > σ2

p, or σ2
r < σ2

p. 

Notice that our working assumption that all q’s have the same variance is inconsequential if p 

and r are matched with exactly the same set of q’s. What matters for the test is whether, for 

any given q, the joint variance σ2
r + σ2

q is less than, equal to, or greater than the joint 

variance σ2
p + σ2

q, and this clearly depends only on the relationship between σ2
r and σ2

p. 

 

2 Experimental design and results 

2.1 Motivation 

Our experimental design was motivated by the findings of the Preference Reversal (PR) 

experiment by Butler and Loomes (2007). In a typical PR experiment, subjects make 

decisions involving two lotteries, a P-bet offering a modest prize with a fairly high 



probability (and nothing otherwise), and a $-bet offering a larger prize with a smaller 

probability (and nothing otherwise).5 Subjects choose between the two lotteries and report a 

money equivalent (often called a certainty equivalent) for each. It is usually found that the 

pattern of inconsistent responses is highly asymmetrical, with the subjects who choose the P-

bet but value the $-bet more (a standard reversal) greatly outnumbering those who choose the 

$-bet but put a higher value on the P-bet (a counter reversal); see Seidl (2002) for a review. 

Butler and Loomes reported that this pattern was reversed if, instead of reporting a money 

equivalent for the two lotteries, subjects were asked to report a probability equivalent in the 

form of a probability of winning a sum of money fixed at a higher level than the payoff 

offered by the $-bet. In this setting, counter reversals outnumbered standard ones. 

Butler and Loomes also elicited the intervals of money and probability equivalents over 

which subjects were less than completely sure about their preferences. They found that 

money equivalent intervals were wider for the $-bet, while probability equivalent intervals 

were wider for the P-bet. The patterns of money equivalent intervals were consistent with the 

possibility that the variance of the error term was greater for the $-bet than for the P-bet. On 

the other hand, the patterns of probability equivalent intervals were in line with the opposite 

possibility, namely that the variance of the error term was greater for the P-bet than for the $-

bet. Clearly, according to the BF model, only one of these possibilities can be true. So the 

Butler and Loomes imprecision interval data cast doubt upon the BF model. 

However, those intervals were elicited by a procedure that could not be made incentive 

compatible,6 and might therefore be regarded with a degree of scepticism by those who 

believe that participants in experiments will only provide valid responses if these are linked 

to material rewards. On the other hand, Butler and Loomes’s experiment did also produce 

some incentive-compatible data that provide further suggestive evidence. The participants 

made a number of straight choices in which the $-bet (offering A$80 with 0.25 probability) 



and the P-bet (A$24 with 0.7 probability) were matched with five predetermined sure 

amounts of Australian dollars (A$8, A$12, A$16, A$20 and A$24 for the $-bet and A$4, 

A$8, A$12, A$16 and A$20 for the P-bet) and five lotteries offering different predetermined 

chances of winning an amount (A$160) twice as large as that offered by the $-bet (namely, 

0.1, 0.12, 0.15, 0.18 and 0.2 for the $-bet, and 0.1, 0.15, 0.2, 0.25 and 0.3 for the P-bet). The 

proportions of participants choosing the $-bet and P-bet in these tasks are plotted in Fig. 3. 

When the two PR lotteries are matched with increasing certain amounts (see panel A), the 

proportion of participants choosing the $-bet decreases more slowly than that of participants 

choosing the P-bet. When the two lotteries are matched with increasing chances of winning 

A$160 (see panel B), the proportion of those choosing the $-bet is always smaller, but it 

decreases more rapidly than the proportion of participants choosing the P-bet. The two curves 

in panel A cross in a manner consistent with the error of the $-bet having greater variance. 

Although the two curves in panel B do not cross, the flatter slope of the P-bet curve is 

consistent with a greater error variance for the P-bet than for the $-bet. These patterns are 

analogous to those found in the data on money and probability equivalent intervals and are in 

conflict with the BF model. However, they are somewhat limited in scope and cannot be 

regarded as much more than suggestive of the need for further experimental investigation. 

2.2 Design 

Our experiment uses the same kinds of comparisons, but attempts to do so for parameters for 

which both sets of curves cross, and for sets of lotteries which are exactly the same for all PR 

bets. Participants make a series of decisions in which a P-bet and a $-bet are each paired with 

two sets of common alternatives. The $-bet offers a 25% chance of winning £40 and is the 

same for all subjects. There are two P-bets, one offering a 90% chance of winning £10 and 

the other offering a 65% chance of winning £10, randomly allocated between two subsamples 



of participants. We use two different P-bets in order to increase the likelihood of identifying 

the regions where the two curves cross for both sets of common alternatives. 

The first of these sets consists of four sure sums £4, £6, £8 and £10. The second set consists 

of lotteries offering, respectively, a 10%, 15%, 20% and 25% chance of winning £60 (and 

nothing otherwise). In what follows, it will sometimes be convenient to refer to these lotteries 

as L10, L15, L20 and L25 respectively, or L lotteries as a group. Each participant faces the 

following choices: four in which the P-bet is matched with the four certainties; four in which 

the P-bet is matched with the four L lotteries; four in which the $-bet is matched with the four 

certainties and four in which the $-bet is matched with the four L lotteries. In addition, 

participants make straight choices between the P-bet and the $-bet. An important aspect of 

our design, which was absent in Butler and Loomes’s, is that every one of these choices is 

repeated a minimum of three times during the course of the experiment (the {$, P} choice is 

repeated four times). We will come back to this aspect later in this Section. So, for each 

individual, we have a total of 52 decisions involving these lotteries.7 

In each choice, the alternatives are labelled A and B. An example of the way choices were 

displayed is given in Fig. 4, which reproduces one of the pairs used in the experiment. The 

amounts to be won are shown in boxes for which the width is proportional to the probability 

of winning, which is also shown as a percentage underneath the money amounts. Lotteries are 

played out by drawing one of 100 numbered discs from a bag; the numbers associated with 

each amount are shown at the top of each box. 

At the beginning of each task, the cursor is located in the middle of the bar. Subjects choose 

A by moving it to the left towards the large letter A; they choose B by moving it to the right 

towards the large letter B. They are asked to move the cursor along the bar so as to indicate 

their strength of preference for whichever lottery they choose.8 Subjects are not allowed to 



report indifference. At the end of the experiment, one decision problem is randomly selected 

for each subject: the chosen lottery is played out and the subject is paid the resulting amount 

in cash, with no show-up fee.9 With this procedure, choices are incentive-compatible.10 

2.3 Results 

The experiment was conducted at the University of East Anglia in May 2009. The 138 

subjects who took part were recruited via email shots from the general student population. 

The instructions were read aloud at the beginning of each session. Clarifying questions were 

answered publicly. The instructions also included some questions designed to check subjects’ 

understanding of how lotteries were displayed and played out (see Appendix for details). On 

average, experimental sessions took less than an hour to complete. 

The experimental results are presented in Table 1, which reports the proportions of subjects 

choosing each PR bet against each of the four certainties, and against each of the four L 

lotteries that offer various chances of winning £60. The first column of the table indicates 

which observations the data refer to. Each choice was repeated three times. The proportions 

of subjects choosing each PR bet in each repetition are reported separately. We also report the 

proportions aggregating over the three repetitions (denoted by ‘Aggr.’) and the proportions 

computed using each individual’s median choices (‘Median’). Half of the sample (69 

subjects) made choices involving the relatively attractive P-bet, P1 = (£10, 0.9), while the 

other 69 subjects faced the somewhat less attractive P-bet, P2 = (£10, 0.65). The $-bet, $ = 

(£40, 0.25) was the same for both subsamples.11 The observations for the $-bet are pooled 

across the two subsamples.12 

Table 1 shows that the choice proportions vary somewhat between repetitions. This is exactly 

the kind of variability that models of stochastic choice are intended to capture. Another 

feature of the data is that some choice proportions—those of decision problems {P1, £10}, 



{P2, £10} and {$, L25}, where L25 = (£60, 0.25)—are extremely low. In those problems, the 

PR lotteries are first-order stochastically dominated by the alternative. According to most 

deterministic decision theories, dominated lotteries should never be chosen, except in error.13 

The two sets of decisions in which the $-bet and the P-bets are matched with progressively 

better alternatives can be used to map aggregate versions of the kinds of curves shown in 

Figs. 1 and 2. Regardless of which set of data is used, much the same picture emerges. 

Figure 5 illustrates the curves aggregating across the three repetitions. 

Panel A shows how the proportions vary when the PR lotteries are matched with increasing 

certainties. At the aggregate counterpart of the stochastic indifference point—i.e. at the 0.5 

point on the vertical axis—we can see that P1 ≻ $ ≻ P2. The two curves relating to the P-bets 

are steeper than that for the $-bet. If we were to take aggregate data as reflecting the 

preferences of ‘representative agents’ and if we were to apply the BF model accordingly, this 

would lead us to infer that the error term associated with $ has greater variance than that 

associated with each P-bet. 

In Panel B, the curves for both P-bets are flatter than the curve for the $-bet, with P1 ≻ P2 ≻ 

$ at the 0.5 point on the vertical axis. From this picture, we would infer that the error term 

associated with $ now has a smaller variance than those associated with P1 and P2. 

These inferences appear to contradict the BF model, but are subject to an important caveat. 

The test described in relation to Fig. 2 refers to a single individual, while our analysis has 

focused on aggregate choice proportions as if they were typical of a representative agent. In 

order to obtain a really detailed description of each separate individual, one would need to 

ask each respondent a very large number of questions, which poses serious practical 

problems. In our experiment, each choice was repeated three times. This is clearly not enough 

for us to be able to map the probability curves separately for each individual in the kind of 



detail we would ideally have liked. However, we can use these repetitions to see whether 

individuals show the same broad patterns that we observe at the aggregate level. Consider the 

choices between the PR bets and the certain amounts. The key tendencies that are driving our 

results are the following. The $-bet is chosen over high certainties relatively more frequently 

than the P-bets, but as the certainties decrease the pattern tends to be reversed. The opposite 

happens when the comparator lotteries involve different chances of winning £60: the $-bet is 

chosen relatively more frequently than the P-bet over low probabilities of £60, but relatively 

less frequently for higher probabilities. 

To see how far individual participants show these patterns, it is useful to refer back to the 

vertical distances between the curves in Fig. 2. In order to draw a parallel with that Figure, 

we look at the first and third lowest certainties and probabilities, which seem to best 

approximate the qlow and qhigh shown there. For both sets of choices, we define 

chPlow (ch$low) as the number of times out of three that the individual chooses the P-bet ($-

bet) over the lowcertainty (£4) or probability (0.1), and we define chPhigh (ch$high) as the 

number of times the individual chooses the P-bet ($-bet) over the high certainty (£8) or 

probability (0.2). On that basis, we construct the following variable: 

     (3) 

where (chPlow–ch$low) is the vertical distance between the two curves at the low certainty 

(probability) for the individual—i.e. the counterpart of vdlow in Fig. 2—while (chPhigh–

ch$high) is the vertical distance at the high certainty (probability) for the same individual—i.e. 

vdhigh in Fig. 2. We denote this variable by Δvd to indicate that it stands for the change in 

vertical distance. For individuals who show the pattern we observe at the aggregate level, 

Δvd should tend to be positive for certainties and negative for L lotteries, and hence greater 



for certainties than for L lotteries. Table 2 reports the distributions of this variable as one 

goes from £4 to £8 and from L10 to L20, separately for the two subsamples. 

Table 2 leaves little room to doubt that the patterns we observe in the aggregate are a 

reflection of most individuals behaving in a similar way. In the top eight rows, we can see 

that there is a far greater tendency for changes to be negative in comparisons involving the L 

lotteries than in comparisons involving certainties, as reflected by the mean and medians 

shown in the ninth and tenth row. In both subsamples, the distribution of Δvd shifts 

significantly in the predicted direction. For 50 out of 69 (72%) members of the P1 subsample, 

and for 51 out of 69 (74%) of those in the P2 subsample, Δvd is greater in tasks involving 

certainties than in tasks involving different chances of winning £60. The opposite slope 

reversal occurs much less frequently: in 9 out of 69 cases (13%) in the P1 subsample, and in 

10 out of 69 cases (15%) in the P2 subsample. We can easily reject the null hypothesis that 

both types of reversal are equally likely to occur (p < 0.001 in a binomial test). 

 

3 Going beyond the Basic Fechner model 

Our experiment demonstrates that a key assumption of the BF model is systematically 

violated. In this Section, using calibration exercises we consider whether any extant 

alternative approaches can accommodate the main patterns we observe in our data. We 

consider two recent extensions of the Fechnerian approach: the contextual utility model 

proposed by Wilcox (2011); and the model proposed by Blavatskyy (2009, 2011). We also 

consider the random preference approach originally proposed by Becker et al. (1963) and 

revived by Loomes and Sugden (1995). 

Before turning to the details of our calibration exercises, it is important to clarify that we are 

not seeking to fit a particular dataset. Our main objective is to identify different approaches 



that might reproduce the key features of our data that contradict the BF model, namely, the 

reversal of the relative slopes of the curves for the $-bet and the P-bets, which is clearly 

visible in Fig. 5. For this reason, we try as far as possible to keep our assumptions about 

parameters and functional forms constant across the various approaches. 

The two extensions of the basic Fechner model that we consider are similar in spirit, as they 

both normalise the differences between the subjective values of the two lotteries. In the 

contextual utility model, the subjective value difference is normalised with respect to the 

difference between the subjective value of the highest and lowest monetary consequences in 

the set over which the two alternatives are defined. In this model, the probability that 

lottery pis chosen over lottery q can be written as: 

    (4) 

where F is a cumulative distribution function, λ is a precision parameter, V(xn) and V(x0) are, 

respectively, the utilities of the degenerate lotteries offering the certainty of winning the 

highest (xn) and lowest (x0) monetary consequences amongst those offered by p and q. This 

set of monetary consequences represents the context of decision problem {p, q}. 

Since xn and x0 may vary with the decision problem, it is intuitive that the model has the 

potential to explain the patterns of our data in the pairs in which the PR lotteries are matched 

with various certain amounts. For all four pairs, the context ranges from £0 to £40 for the $-

bet, and from £0 to £10 for the two P-bets. Since the differences in subjective values are 

divided by a smaller amount for the two P-bets, for these bets choice probabilities should be 

more responsive to an increase in the matched certainty than for the $-bet, for which the 

subjective value difference is divided by a larger amount. A simple calibration exercise, 

which assumes EUT at the core14 with a power utility function U(x) = x0.8, a precision 



parameter λ = 5 and normally distributed errors, shows that this is indeed the case. The 

resulting choice proportions are shown in panel A of Fig. 6. 

For the reasons just discussed, however, the model cannot mimic equally well the patterns in 

the pairs in which the PR lotteries are matched with increasing chances of winning £60. In 

this case, the extreme consequences in the context of the decision problem are the same for 

the $-bet and the two P-bets (£0 and £60), and therefore, the differences in subjective values 

are divided by the same amount for all bets, which rules out the inversion of the relative 

slopes of the curves observed in our data. This is shown in panel B of Fig. 6. 

The model proposed by Blavatskyy is similar in some respects, but uses a different 

normalisation. For any {p, q} we can identify a greatest lower bound (GLB) p^q, which is 

the best lottery that is stochastically dominated by both p and q. The model then considers 

the subjective value differences between each lottery and that GLB—i.e. (V(p)–V(p^q)) and 

(V(q)–V(p^q))—and puts functions of these differences into a Luce choice formulation 

(Luce 1959). Thus, the probability that lottery p is chosen over lottery q can be written as: 

    (5) 

where φ is a non-decreasing function such that φ(0) = 0, and V(.) is the EU of the relevant 

lottery.15 

In effect, this modelling strategy cuts across the BF assumption of independence between the 

noise associated with each V(.) because the same q interacts differently with different p’s 

when generating the GLB p^q to be applied in any particular choice. To see this, consider the 

two bets P2 = (£10, 0.65) and $ = (£40, 0.25) presented to the second subsample, each in 

conjunction with a q offering some sure amount X and then each in conjunction with a q 

offering some probability π of £60. 



In the comparisons with the sure sums, the GLBs are P2^X = (X, 0.65) and $^X = (X, 0.25). 

Since the EU of the GLB for each {P2, X} choice is 2.6 times the EU of the GLB for each 

corresponding {$, X} choice, Expression (5) gives different values even when the EUs of the 

P-bet and the $-bet are equal. The general result is that Pr($ |{$, X}) falls more slowly as X 

rises than does Pr(P2 |{P2, X}), in much the same way that the dashed line in Fig. 2 is flatter 

than the solid line. 

But now consider the comparisons with the L lotteries. The GLBs are P2^L = (£10, π) and 

$^L = (£40, π). Now the GLB in the $-bet cases is a multiple of the GLB in the P-bet cases, 

so that Expression (5) tends to change more slowly in the P-bet comparisons, with the result 

that Pr(P2 |{P2, L}) will tend to fall more slowly than Pr($ |{$, L}) as π rises, reversing the 

relationship. This is illustrated in panels C and D of Fig. 6. Here, we have conducted a 

calibration exercise in which we assume EUT at the core with a power utility function U(x) = 

x0.8, and for simplicity we take φ to be the identity function. Such a parameterisation of this 

model can reproduce the qualitative patterns in our data. 

Finally, we turn to the random preference (RP) approach. Instead of assuming that 

individuals have one true deterministic preference relation, to which an error term is attached, 

the RP approach models individuals as if their preferences consist of a number of 

deterministic preference functions, each corresponding with (slightly) different moods or 

states of mind. That is, RP allows that an individual’s attitudes, perceptions and ways of 

processing decisions—and hence their responses—may vary somewhat from one occasion to 

another. To capture this, RP supposes that when facing a decision problem, the individual 

acts as if randomly drawing one of these functions and applying it to the decision problem as 

a whole. In this setting, the probability that lottery p is chosen over lottery q is given by the 

proportion of preference functions for which V(p) > V(q). 



This approach is rather flexible, in principle, if one allows any possible distribution over any 

possible kind of preference function. However, we can put substantial restrictions on the 

allowable preference functions, and can still mimic the key features of our data quite closely. 

In our calibration, we assume preferences to be represented by a family of twenty power 

utility functions of the form that we have assumed for the other two models, U(x) = xr, with 

r—the coefficient of constant relative risk aversion (CRRA)—ranging from 0.1 to 1.5 in 

equally spaced steps (median 0.8). As can be seen in panels E and F of Fig. 6, this is 

sufficient to reproduce the patterns found in our data that the BF model cannot explain.16 

The intuition for this result is best seen if the problem is framed in terms of money and 

probability equivalents. At the most risk averse end of the individual’s spectrum of utility 

functions, the riskier $-bet will be much less attractive than the safer P-bet, implying that the 

money equivalents for the $-bet will be much lower than the money equivalents for the P-bet. 

By contrast, at the most risk seeking end of the spectrum, the $-bet will be much more 

attractive than the P-bet and it will have much higher money equivalents. So, the distribution 

of money equivalents for the $-bet is wider than the corresponding distribution for the P-bet. 

The implication is that a given range of sure amounts will span a bigger proportion of the P-

bet distribution than the $-bet distribution, leading to bigger changes in the frequencies with 

which the P-bet is chosen. This is reflected by the curves for the P-bets in Panel E of Fig. 6 

being steeper than the curve for the $-bet. 

But for probability equivalents, the relative riskiness of the lotteries produces the opposite 

results. At the most risk averse end of the spectrum, the more attractive P-bet requires higher 

probability equivalents than the $-bet, while at the most risk seeking end of the spectrum, the 

P-bet is less attractive and the probability equivalents are lower than for the $-bet. Hence for 

probability equivalents, it is the P-bet that has a wider distribution and this is reflected by the 

curves for the two P-bets being flatter than that for the $-bet in Panel F of Fig. 6. 



4 Concluding remarks 

Researchers in the field of decision-making under risk are becoming increasingly aware that 

the assumptions they make about the stochastic specification of the decision process can 

crucially affect the conclusions they are able to draw from their studies (e.g. Loomes 2005; 

Wilcox 2008; Hey et al. 2010). There have already been attempts at comparing the adequacy 

of alternative stochastic specifications (e.g. Loomes and Sugden 1998; Loomes et al. 2002; 

Wilcox 2008), which have highlighted some of the limitations of the BF model—in particular 

the over-prediction of violations of first-order stochastic dominance, which are actually quite 

rarely observed when transparent. In spite of these concerns, this model is still popular in 

applied work. 

In this paper we have taken a different approach. Motivated by the findings of Butler and 

Loomes (2007), we have designed an experiment in which a key assumption of the BF 

model—that the error attached to the subjective value of a risky option is independent of the 

characteristics of all other options in the choice set—makes distinct and refutable predictions. 

Our results are incompatible with those predictions, adding to the evidence of the inadequacy 

of that model. 

In the face of the evidence against the BF model, it is natural to start looking for alternatives. 

Using simple calibration exercises, we have identified just two extant approaches that are 

able to come to grips with the systematic patterns in our data. The approach proposed by 

Blavatskyy (2009, 2011) uses both lotteries in the construction of the greatest lower bound 

(or, equivalently, least upper bound), which is then used to compute their relative 

attractiveness and their respective probabilities of being chosen in a way which is consistent 

with our data. The random preference approach (Becker et al. 1963; Loomes and 

Sugden 1995) takes a rather different perspective, but by imposing some regularity upon the 



distribution of preferences—in our example, supposing a uniformly distributed family of 

CRRA utility functions ordered by the coefficient of relative risk aversion—we can also 

reproduce the key patterns in our data. 

Our calibration exercises are meant to be simple illustrations of possible ways to overcome 

the limitations of the BF model. We do not have enough evidence to conclude in favour of 

either of the two stochastic specifications that are consistent with our findings. Indeed, there 

may be other yet-to-be-developed approaches which might turn out to be superior to both of 

them. Further work will be required to explore new approaches or discriminate between 

existing ones. Meanwhile, our results provide further evidence cautioning against the 

uncritical use of some form of BF specification, and suggesting the need to thoroughly 

investigate the properties of various extensions and/or alternatives to the ‘standard’ BF 

model. 

 

Footnotes 

1Although we shall sometimes refer to ‘error’, we are not suggesting that the variability is due to mistakes, in the 
sense of miscalculations or lapses of attention. Many experimental datasets may indeed contain cases of such 
mistakes (sometimes referred to as ‘trembles’) but our usage is in the econometric spirit of a disturbance term. 

2In some of these applications, a BF-like error term is attached to certainty equivalents instead of subjective 
values. 

3In cases in which estimation is done separately for each individual, the variance of the error term is allowed to 
vary across individuals (see, for example, Hey and Orme 1994). 

4If the difference V(p)–V(r) is sufficiently large relative to the difference between σ2
r and σ2

p it is possible that 
the dashed line will lie to the left of the solid line for all V(q). The discussion that follows applies to those cases 
where the differences involved are such that the two lines cross. 

5In early PR experiments, lotteries often involved small losses (e.g. Lichtenstein and Slovic 1971). 

6For instance, one way of eliciting the money equivalent of a bet involved starting with a choice between the bet 
and a very low certainty (A$1) and asking the respondent to report whether she ‘definitely’ preferred the bet, 
‘probably’ preferred the bet, probably preferred the sure sum, or definitely preferred the sure sum. The 
respondents almost always signified a definite preference for the bet in this choice. The sure sum was then 
changed by increments of A$1 and the question was repeated for each new value. As that sum was made 
progressively more attractive, most respondents moved from a definite preference for the bet to a probable 
preference for the bet, then to a probable preference for the sure amount, and eventually to a definite preference 



for the sure sum. The interval of money equivalents over which the respondent is less than completely sure 
about her preference is given by the difference in switching values between a definite and a probable preference 
for the bet, and a probable and a definite preference for the sure amount. These switching points were not linked 
to incentives. Analogous intervals were also elicited for probability equivalents. 

7Subjects face all pairings before any pair is repeated. The sequence of pairs is predetermined, separately for the 
two subsamples, and differs in each of the repetitions. 

8As they move the cursor, some text appears underneath the bar. In the first quarter of each side, the text says 
that the chosen lottery is ‘slightly better’ than the alternative, in the second that it is ‘better’, then ‘much better’ 
and finally ‘very much better’. In fact, each side of the bar maps into a 100-point scale (not visible to the 
subjects); when subjects confirm their decision, the value corresponding to the position of the cursor is recorded. 
The full text of the instructions is reported in the Appendix. 

9There were a total of 100 tasks in the experiment. In addition to the 52 discussed in this paper, there were 
another 48 decision problems. These are described in Butler et al. (2012a). 

10The strength of preference judgments, which are not linked to incentives, are reported elsewhere (Butler et 
al. 2012a, b). 

11Given that all the lotteries we work with have just one non-zero consequence, from now on, we denote a 
lottery K which offers £x with probability p and nothing otherwise as K = (£x, p). 

12For each choice involving the $-bet, we test the hypothesis that the proportion of subjects choosing it over the 
alternative is the same in both subsamples using the median choice. We only reject this hypothesis in one out of 
eight comparisons. 

13As we have noted in the introduction, violations of first-order stochastic dominance are not ruled out by the BF 
model. However, irrespective of whether or not the BF model is the correct one, the frequencies of these 
violations are normally so low that they can be regarded as ‘trembles’ (see Loomes et al. 2002). 

14Notice that extending the analysis to other transitive core models that allow for non-linear probability 
weighting, such as rank-dependent expected utility theory, cannot in itself do much to accommodate the patterns 
in our data. This is because any probability distortion would be the same for the P-bets and the $-bet in the two 
series of comparisons and could have no effect on the relative slopes of the curves we consider, which reflect 
the variability of the error terms. 

15Blavatskyy takes EUT as the basis for V(.) and shows that, for binary choice, an equivalent expression for 
Pr(p |{p, q}) can be derived in terms of a least upper bound (LUB). Everything we say in terms of the GLB has 
a counterpart in terms of the LUB and no conclusions are altered by using the LUB rather than the GLB. The 
model can, in principle, be used with non-EU V(.) functions. 

16Further details on these calibration exercises are available from the authors upon request. 
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Appendix 

Experimental instructions 

Introduction 

In this session you will be offered a number of choices displayed in the form shown lower 

down this page. These are choices between different chances of different sums of money. 

After you have made all your choices, just ONE of them will be picked at random to be run 

for real. Your ENTIRE PAYMENT will depend on how your choice in that one question 

works out, so please think carefully about every choice—any one of them could turn out to be 

the one on which your entire payment depends, and you will NOT be able to change your 

mind once each choice has been made. 

The choice shown below is only an example and will not be run for real. Alternative   gives 

you a 55% chance of receiving £29 and a 45% chance of getting £3. Alternative   gives you 

an 85% chance of receiving £17 and a 15% chance of nothing. 

If this were the choice that is being run for real, here’s what would happen. We would see 

which alternative you had chosen. Then we would ask you to dip into a bag containing a 

hundred little discs, each with a different number on it, and you would pick one out at 

random. 

https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figa_HTML.gif
https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figb_HTML.gif


If you had chosen  , you would be paid £29 if the number on the disc was between 1 and 55 

inclusive; but if you chose A and the number turned out to be between 56 and 100 inclusive, 

you would get £3. On the other hand, if you had chosen  , you would receive £17 if the 

number on the disc was between 1 and 85 inclusive; but if it was between 86 and 100, you 

would get nothing. 

 

 

If you have a question, please ask. 

If you are ready to continue, click here. [CONTINUE] 

Checking for understanding 

We have to make sure that everyone who takes part understands how things work. So please 

answer the check questions below by clicking on the answer you believe to be correct and 

then clicking on OK. 

 

 

Question 1. If the number on the randomly chosen disc is 73, how much will someone receive 

if they have chosen  ? 

[ ] £29 [ ] £17 [ ] £3 [ ] 0 

https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figc_HTML.gif
https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figd_HTML.gif
https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Fige_HTML.gif
https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figf_HTML.gif
https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figg_HTML.gif
https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figh_HTML.gif
https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figi_HTML.gif


[OK] 

(check if answer is correct. If wrong, explain right answer and give chance to ask questions) 

Question 2. If the number on the randomly chosen disc is 23, how much will someone receive 

if they have chosen  ? 

[ ] £29 [ ] £17 [ ] £3 [ ] 0 

[OK] 

(check if answer is correct. If wrong, explain right answer and give chance to ask questions) 

Practice 

There are no right or wrong answers—in each decision we ask you to make, we just want you 

to tell us what YOU personally prefer. 

We also want you to tell us HOW MUCH BETTER you think one alternative is than the 

other. So each decision will be shown in the form below. 

To tell us which alternative you choose AND how much better you think it is, put the cursor 

on the button in the middle of the bar below and move it either left (if you want to choose  ) 

or right (if you want to choose  ). 

If you feel that both alternatives are almost equally good so that you think the one you are 

choosing is only SLIGHTLY better than the other one, just move the button a little way in the 

direction of your choice. However, if you think the one you are choosing is VERY MUCH 

BETTER than the other one, move the button a long way along the bar in the direction of 

your choice, possibly as far as the end if you feel very strongly indeed. 

https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figj_HTML.gif
https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figk_HTML.gif
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Once you have moved the button to the position that shows which alternative you choose and 

how much better you think it is, press OK. Then you will be asked to confirm your choice (or 

change it, if you change your mind) before moving to the next decision. 

Try it now on this PRACTICE question. 

 

[OK] 

 

 

(After OK was pressed, the following message appeared beneath the two prospects) 

You have chosen   

To confirm this choice, click on Yes. 

To change your decision, click on No and make your choice again. 

[YES] [NO] 

Checking for understanding 

Just to be sure that everyone is understanding how things work, please answer the check 

questions underneath the display. 

In this choice, you chose   

https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figm_HTML.gif
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Question 1: If the number on the randomly-picked disc were 19, how much would you 

receive? 

[ ] £37 [ ] £13 [ ] £7 [ ] 0 

[OK] 

(check if answer is correct. If wrong, explain right answer and give chance to ask questions) 

Question 2: If the number on the randomly-picked disc were 81, how much would you 

receive? 

[ ] £37 [ ] £13 [ ] £7 [ ] 0 

[OK] 

(check if answer is correct. If wrong, explain right answer and give chance to ask questions) 

End of practice 

That is the end of the Practice. From now on, every decision you make could be the one that 

YOUR ENTIRE PAYMENT depends on. 

Remember, after you have made your final decision, one of your choices will be selected at 

random (they are all equally likely to be picked, as you will see when the time comes). We 

will then see what you chose and your choice will be played out FOR REAL. 

Whatever amount you receive will be paid straight away, in cash. You will be asked to sign a 

receipt for it. 

https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figr_HTML.gif
https://static-content.springer.com/image/art:10.1007/s11166-012-9154-4/MediaObjects/11166_2012_9154_Figs_HTML.gif


If you have any more questions, please raise your hand and someone will come to your desk. 

If you are happy to proceed to the real choices, click on OK below. 

[OK] 
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Fig. 1 Pr(p|{p, q}) and Pr(r|{r, q}) as a function of V(q) when σ2
r = σ2

p, and V(r) < V(p). 
The solid line depicts how the probability that lottery p is chosen from the pair {p, q} varies 
as a function of the subjective value assigned to q according to the individual’s core 
preferences, V(q). When V(q) = V(p), the individual is stochastically indifferent and chooses 
each lottery with equal probability. The dashed line shows how the probability that 
lottery r is chosen from the pair {r, q} varies as a function of V(q). The two curves are 
parallel because it is assumed that the variance around V(r), σ2

r, is the same as the variance 
around V(p), σ2

p 

 

 

 

 

 

 

 

 

 



Fig. 2 Pr(p|{p, q}) and Pr(r|{r, q}) as a function of V(q) when σ2
r > σ2

p, and V(r) < V(p). 
The solid line is just as in Fig. 1. The dashed line shows how the probability that lottery r is 
chosen from the pair {r, q} varies as a function of V(q). The two curves may now cross 
because σ2

r > σ2
p entails the c.d.f. being flatter for r than for p. The down arrow denoted 

vdlow shows that, for a qlow to the left of the crossing point, p is chosen more frequently 
over q than is r. The up arrow denoted by vdhighshows that, for a qhigh to the right of the 
intersection point, p is chosen less frequently over q than is r 

 

 

 

 

 

 

 

 

 

 



Fig. 3 Choice proportions from Butler and Loomes (2007). The solid lines depict the 
probability with which $ = (A$80, 0.25) is chosen over a series of certain amounts (Panel A) 
or a series of different chances of winning A$160 (Panel B). The dashed lines depict the 
probability with which P = (A$24, 0.7) is chosen over a series of certain amounts (Panel A) 
or a series of different chances of winning A$160 (Panel B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 4 An example of a binary choice. The two lotteries in each pair are labelled A and B, and 
presented as strips in which the amounts to be won are shown in boxes for which the width is 
proportional to the chances of winning, which are shown as percentages underneath the 
amounts. Lotteries are played out by drawing one of 100 numbers from an opaque bag. The 
correspondence between numbers and prizes can be read above the amounts. Choices are 
made by dragging the slider to the left (to choose A), or to the right (to choose B). The slider 
starts at the middle of the bar and allows participants to express the strength of their 
preference for their chosen lottery 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 5 Choice proportions using aggregate data. Panel A presents the choice proportions for $ 
= (£40, 0.25), P1 = (£10, 0.9) and P2 = (£10, 0.65) when each is matched against four certain 
amounts (£4, £6, £8 and £10). Panel B presents the choice proportions for $, P1 and P2 when 
each is matched against the four L lotteries offering different chances (0.1, 0.15, 0.2 and 
0.25) of winning £60. Contrary to the independence assumption of the BF model, the curve 
for the $-bet is flatter than those for the two P-bets in one case, and steeper in the other 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 6 Calibration of alternative stochastic EU models. For Wilcox’s (2011) model, U(x) = 
x0.8 and λ = 5. For Blavatskyy’s (2011) model, U(x) = x0.8 and φ(z) = z. For Random 
Preference model, U(x) = xr, with r drawn from 20 equally spaced risk aversion coefficients 
ranging from 0.1 to 1.5 (median 0.8). Predicted choice proportions on the vertical axis 

 

 

 

 

 

 



Table 1 Experimental results 

 

 

PR Lottery–Observation Common certainties Common chances of £60 

£4 £6 £8 £10 0.1 0.15 0.2 0.25 

$–1st 0.529 0.268 0.283 0.138 0.957 0.768 0.239 0.029 

$–2nd 0.609 0.457 0.304 0.167 0.913 0.783 0.449 0.014 

$–3rd 0.587 0.464 0.297 0.203 0.920 0.819 0.449 0.014 

$–Aggr. 0.575 0.396 0.295 0.169 0.930 0.790 0.379 0.019 

$–Median 0.580 0.449 0.297 0.159 0.935 0.804 0.370 0.007 

P1–1st 0.913 0.638 0.261 0.043 0.855 0.754 0.681 0.638 

P1–2nd 0.754 0.623 0.391 0.014 0.797 0.725 0.580 0.551 

P1–3rd 0.812 0.594 0.362 0.000 0.812 0.696 0.710 0.580 

P1–Aggr. 0.826 0.618 0.338 0.019 0.821 0.725 0.657 0.589 

P1–Median 0.841 0.609 0.348 0.014 0.826 0.783 0.681 0.609 

P2–1st 0.507 0.145 0.072 0.043 0.826 0.696 0.580 0.536 

P2–2nd 0.522 0.174 0.058 0.014 0.841 0.754 0.609 0.478 

P2–3rd 0.493 0.188 0.072 0.014 0.884 0.725 0.638 0.522 

P2–Aggr. 0.507 0.169 0.068 0.024 0.850 0.725 0.609 0.512 

P2–Median 0.507 0.116 0.058 0.014 0.855 0.768 0.580 0.536 

 

$ = (£40, 0.25); P1 = (£10, 0.90); P2 = (£10, 0.65). Observations for $-bet pooled. 

Each choice was presented three times. The choice proportions for each presentation are denoted by 1st, 2nd and 
3rd. 

The proportions obtained by aggregating across the three repetitions are denoted by ‘Aggr’. We also report 
proportions using the median choice for each participant. 



Table 2 Individual-level tendencies 

 

Δdv = (chPlow–ch$low)–(chPhigh–ch$high) P1 = (£10, 0.9) P2 = (£10, 0.65) 

£4 to £8 L10 to L20 £4 to £8 L10 to L20 

−3 1 7 0 10 

−2 4 15 6 14 

−1 8 20 11 27 

0 23 22 20 14 

1 11 5 14 1 

2 14 0 14 3 

3 7 0 4 0 

4 1 0 0 0 

Mean 0.65 −0.9565217 0.45 −1.130435 

Median 0 −1 0 −1 

Cert. > Prob.   50   51 

Cert. = Prob.   10   8 

Cert. < Prob.   9   10 

 

chPlow = number of times P is chosen against the low sure amount (£4) or the low probability of 
winning £60 (L10). ch$low = number of times $ is chosen against the low sure amount (£4) or the low 
probability of winning £60 (L10). chPhigh = number of times P is chosen against the high sure amount 
(£8) or the high probability of winning £60 (L20). ch$high = number of times $ is chosen against the 
high sure amount (£8) or the high probability of winning £60 (L20). 

The top eight rows report the whole distributions. The means and medians are in the ninth and tenth 
row. 

The bottom three rows report the number of individuals for whom the change in vertical distance 
when the P and $ bets are matched with certainties (Cert.) is greater than, equal to, or less than that for 
L lotteries (Prob.) 
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