
Testing Unconstrained Optimization
Software

JORGE J. MORI~, BURTON S. GARBOW, and KENNETH E. HILLSTROM
Argonne National Laboratory

Much of the testing of optimization software is inadequate because the number of test functmns is
small or the starting points are close to the solution. In addition, there has been too much emphasm
on measurmg the efficmncy of the software and not enough on testing reliability and robustness. To
address this need, we have produced a relatwely large but easy-to-use collection of test functions and
designed gmdelines for testing the reliability and robustness of unconstrained optimization software.

Key Words and Phrases: performance testing, systems of nonlinear equatmns, nonlinearleast squares,
unconstrained minnmzation, optimizatmn software
CR Categorms. 4.6, 5.15, 5.41
The Algorithm: FORTRAN Subroutines for Testing Unconstrained Optimizatmn Software. ACM
Trans. Math. Software 7, 1 (March 1981), 136-140.

1. INTRODUCTION

When an algorithm is presented in the optimization literature, it has usually been
tested on a set of functions. The purpose of this testing is to show that the
algorithm works and, indeed, that it works better than other algorithms in the
same problem area. In our opinion these claims are usually unwarranted because
it is often the case that there are only a small number of test functions, and that
the starting points are close to the solution.

Testing an algorithm on a relatively large set of test functions is bothersome
because it requires the coding of the functions. This is a tedious and error-prone
job that is avoided by many. However, not testing the algorithm on a large
number of functions can easily lead the cynical observer to conclude that the
algorithm was tuned to particular functions. Even aside from the cynical observer,
the algorithm is just not well tested.

It is harder to understand why the standard starting points are usually close to
the solution. One possible reason is that the algorithm developer is interested in
testing the ability of the algorithm to deal with only one type of problem (e.g., a
curved valley), and it is easier to force the algorithm to deal with this problem if
the starting point is close to the solution.

Thus a test function like Rosenbrock's is useful because it tests the ability of
the algorithm to follow curved valleys. However, test functions like Rosenbrock's
are the exception rather than the rule; other test functions have much more
complicated features, and it has been observed that algorithms that succeed from

This work was performed under the auspmes of the U.S. Department of Energy,
Authors' address: Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439.
© 1981 ACM 0098-3500/81/0300-0017 $00 00

ACM Transactions on Mathematmal Software, Vol 7, No. 1, March 1981, Pages 17-41

18 • J.J. More, B. S. Garbow, and K. E. Hillstrom

the standard starting points often have problems from points farther away and
fail. Hillstrom [15] was one of the first to point out the need to test optimization
software at nonstandard starting points. He proposed using random starting
points chosen from a box surrounding the standard starting point. This approach
is much more satisfactory, but it tends to produce large amounts of data which
can be hard to interpret. Moreover, the use of a random number generator
complicates the reproduction of the results at other computing centers.

A final complaint against most of the testing procedures that have appeared in
the literature is that there has been too much emphasis on comparing the
efficiency of optimization routines and not enough emphasis on testing the
reliability and robustness of optimization software--the ability of a computer
program to solve an optimization problem. It is important to measure the
efficiency of optimization software, and this can be done, for example, by counting
function evaluations or by timing the algorithm. However, either measure has
problems, and with the standard starting points it is usually fairly hard to
differentiate between similar algorithms (e.g., two quasi-Newton methods) on
either count. In contrast, the use of points farther away from the solution will
frequently reveal drastic differences in reliability and robustness between the
programs, and hence in the number of function evaluations and in the timing of
the algorithms.

To deal with the above problems, we have produced a relatively large collection
of carefully coded test functions and designed very simple procedures for testing
the reliability and robustness of unconstrained optimization software. The heart
of our testing procedure is a set of basic subroutines, described in Sections 2 and
3, which define the test functions and the starting points. The attraction of these
subroutines lies in their flexibility; with them it is possible to design many
different kinds of tests for optimization software. Finally, in Sections 4 and 5 we
describe some of the tests that we have been using to measure reliability and
robustness.

It should be emphasized that the testing described in this paper is only a
beginning and that other tests are necessary. For example, the ability of an
algorithm to deal with small tolerances should be tested. However, the testing of
Sections 4 and 5 does examine reliability and robustness in ways that other
testing procedures have ignored.

2. THE BASIC SUBROUTINES

Testing of optimization software requires a basic set of subroutines that define
the test functions and the starting points. We consider the following three
problem areas:

I. Systems of nonlinear equations. Given f~ : R" ~ R for i -- 1 , . . . , n, solve

f,(x)---O, l<__i<__n, x E R n.

II. Nonlinear least squares. Given f~ : R n --> R for i -- 1 , . . . , m with m __ n, solve

m i n { , _ ~ f ~ (x) : x E R n } •

ACM Transact ions on Mathemat ica l Software, Vol 7, No. 1, March 1981

Testing Unconstrained Optimization Software • 19

III. U n c o n s t r a i n e d m in im i za t i on . Given f :R" --. R , solve

rain { [(x) : x ~ Rn} .

The subroutines that define the test functions and starting points depend on
the dimension parameters M and N and on the problem number NPROB. We
first describe the subroutines for the test functions.

For systems of nonlinear equations, the subroutine

VECFCN(N, X, FVEC, NPROB)

returns in FVEC the vector

(f l (x) , . . . , fn(X)),

and

VECJAC(N, X, FJAC, LDFJAC, NPROB)

returns in FJAC the Jacobian matrix

of,(x)
axj ' i = 1 ,n, j = l ,n.

(The parameter LDFJAC is the leading dimension of the array FJAC as defined
in the main program.) In order to prevent gross inefficiencies with solvers that
only require one component at a time,

COMFCN(N, K, X, FCNK, NPROB)

returns in FCNK the kth component fk(x). For nonlinear least squares

SSQFCN(M, N, X, FVEC, NPROB)

returns in FVEC the vector

(fdx) , . . . , fro(x)),

and

SSQJAC(M, N, X, FJAC, LDFJAC, NPROB)

returns in FJAC the Jacobian matrix

of,(x)
i f f i l m, j = l n.

Oxj '

For unconstrained minimization

OBJFCN(N, X, F, NPROB)

returns in F the objective function value f (x) and

GRDFCN(N, X, G, NPROB)

returns in G the gradient vector

of(x) of(x)~
' OXn /

For each problem area, the starting points are generated by a subroutine

INITPT(N, X, NPROB, FACTOR)

ACM Transa0tions on Mathematical Software, VoL 7, No. 1, March 1981.

20 J.J. Mor6, B. S. Garbow, and K. E. Hillstrom

which returns in X the starting point corresponding to the parameters NPROB
and FACTOR. If Xs denotes the s tandard starting point, then X will contain
FACTOR*Xs, except tha t if Xs is the zero vector and FACTOR is not unity,
then all the components of X will be set to FACTOR.

3. TEST FUNCTIONS

Almost all of the test functions tha t have appeared in the optimization literature
are nonlinear least squares. Given a nonlinear least squares problem defined by
fx fro, we can obtain an unconstrained minimization problem by setting

m

f(x) = ~ f2(x). (3.1)
t l l

If m = n, this problem can be posed as the system of nonlinear equations

f,(x) = O, 1 <_ i _ n, (3.2)

and if m > n, the optimality conditions for (3.1) lead to the system of nonlinear
equations

m (~
2 0 f ~ (x) f~(x) = O, l <_ j <_ n. (3.3)

Note that, in general, it is inefficient to solve nonlinear least squares problems by
general minimization algorithms, since they tend to ignore the structure in (3.1).
As far as the nonlinear equations approach is concerned, (3.2) may not have any
solutions, while (3.3) will have as a solution any critical point of (3.1). However,
for testing purposes, (3.1), (3.2), and (3.3) are valid problems. All of our test
functions are formulated for problem area II (nonlinear least squares). The
corresponding test function for problem area III (unconstrained minimization) is
(3.1), while for problem area I (systems of nonlinear equations), the function is
(3.2) if m = n and (3.3) if m > n. A given test function may appear in more than
one problem area; coding differences among its various versions depend on the
particular area.

To define the test functions, we have adopted the following general format:

Name of function [reference]
(a) Dimensions
(b) Function definition
(c) Standard starting point (designated x0)
(d) Minima

In (d) we give the minima of the function {3.1) tha t we have found, and if
convenient, the corresponding minimizers. In a few cases a minimizer is, for
example, of the form (a, fl, + ~). This means tha t

lim Vf(a, fl, ,/) = 0,
y - ~ +¢Q

and thus an algorithm may decide tha t a minimizer is in a neighborhood of
(a, fl, 7) for some large value of y.
ACM Transactions on Mathematical Software, Vol 7, No 1, March 1981.

Testing Unconstrained Opttmtzation Software 21

(1) R o s e n b r o c k func t ion [24]
(a) n = 2, m = 2
(b) f d x) = 10(x2 - x 2)

f2(x) = 1 - x l
(c) Xo-- (- 1 . 2 , 1)
(d) f = O a t (1 , 1)

(2) F r e u d e n s t e i n a n d R o t h func t ion [13]
(a) n = 2, m = 2
(b) fl(x) = - 1 3 + Xl + ((5 - x2)x2 - 2)x2

f2(x) -- - 2 9 + x l + ((x2 + 1)x2 - 14)x2
(c) Xo = (0 . 5 , - 2)
(d) f = 0 a t (5, 4)

f = 4 8 . 9 8 4 2 . . . a t (11.41 - 0 . 8 9 6 8 . . .)

(3) P o w e l l bad ly s ca led func t ion [22]
(a) n = 2, m = 2
(b) f l (x) = 1 0 4 X l X 2 - - 1

f2(x) = e x p [- x ,] + e x p [- x 2] - 1.0001
(c) Xo = (o, 1)
(d) f = 0 a t (1 . 0 9 8 . . . 10 -5 , 9 . 1 0 6 . . .)

(4) B r o w n badly sca led func t ion [u n p u b l i s h e d]
(a) n = 2, m = 3
(b) f d x) = xl - 106

f 2 (x) ---- X2 - - 2 - 1 0 -6

f3(x) = xlx2 - 2
(c) Xo = (1, 1)
(d) f = 0 a t (106 , 2 . 1 0 -6)

(5) B e a l e func t ion [2]
(a) n = 2 , m = 3

(b) f,(x) = y, - Xl(1 - xJ) ,
w h e r e y l = 1.5, y2 = 2.25, y3 = 2.625

(c) Xo = (1, 1)
(d) f = O at (3, 0.5)

(6) J e n n r i c h a n d S a m p s o n func t ion [16]
(a) n = 2 , m>>_n
(b) f , (x) = 2 + 2i - (exp[ix~] + exp[ix2])
(c) Xo = (0.3, 0.4)
(d) f = 1 2 4 . 3 6 2 . . , a t x 1 = x 2 = 0 . 2 5 7 8 . . , fo r m = l O

(7) Hel i ca l val ley func t ion [12]
(a) n = 3, m = 3

(b) f , (x) =-- 10[x3 - lOO(Xl, x2)]
f2(x) = lO[x2~ + x~) ~/2 - 1]
f 3 (x) = x~

ACM Transac t ions on M a t h e m a t m a l Software, VoL 7, No. 1, M a r c h 1981

22 • J.J. Mor~, B. S. Garbow, and K. E. Hillstrom

where

O(xl, x2) =

1 (x2~,
arctan \ ~ / ff xl > 0

1
arctan + 0.5, if xl < 0

(c) Xo = (--1, 0, 0)
(d) f = 0 at (1,0,0)

(8) Bard function [1]
(a) n = 3 , m - - 1 5

(b) fjx) = y~- (xl + u,)
V~X2 + WzX3

where u~= i , v ~ f f i 1 6 - i , w , = m i n (u , v3, and

(9)

t y i y t y

1 0.14 5 0.29 11 0.73
2 0.18 6 0.32 12 0.96
3 0.22 7 0 35 13 1.34
4 0.25 8 0.39 14 2.10

9 0.37 15 4.39
10 0.58

(c) Xo = (1, 1, 1)
(d) f ffi 8.21487.. . 10 -z

fffi 17.4286... at (0.8406... , -0% -oo)

Gaussian function [unpublished]
(a) n = 3 , m = 1 5

[-x2(t~2 - 1 (b) f~(x) = x~ exp[x3)2j - Y~

where t , = (8 - i) / 2 and

1, 15 0.0009
2, 14 0.0044
3, 13 0.0175
4, 12 0.0540
5, 11 0.1295
6, 10 0.2420
7, 9 0.3521
8 0.3989

(c) Xo -- (0.4, 1, 0)
(d) f = 1.12793-.. 10 -s

ACM Transactions on Mathematmal Software, Vol 7, No 1, March 1§81

Testing Unconstrained Optimization Software • 23

(10) Meyer function [18]
(a) n - - 3 , m = 1 6

Ix2] (b) f,(x) = xl exp (t,-+x3)" - y'

where t ~ = 4 5 + 5 i and

y, l y,

1 34780 9 8261
2 28610 10 7030

3 23650 11 6005
4 19630 12 5147

5 16370 13 4427
6 13720 14 3820

7 11540 15 3307
8 9744 16 2872

(c) Xo -- (0.02, 4000, 250)
(d) f = 87.9458. . .

(11) Gul f research and development function [10]
(a) n = 3 , n _ < m ~ 1 0 0

(b) f , (x) - - e x p [, y, mixlX2 ,x3] _ t,

where t, = i/lO0
and y, = 25 + (- 5 0 ln(t,)) 2/3

(c) Xo = (5, 2.5, 0.15)
(d) f = 0 a t (50,25,1 .5)

(12) Box three-dimensional funct ion [4]
(a) n = 3, m >_ n var iable
(b) f,(x) = exp[- t , xl] - e x p [- t , x2] - x3(exp[- t ,] - exp [-10 t ,])

where t, = (0.1)i
(c) Xo = (0, 10, 20)
(d) f = 0 a t (1 , 1 0 , 1) , (1 0 , 1 , - 1)

and whereve r (xl = x2 and x3 = 0)

(13) Powel l s ingular function [23]
(a) n = 4, m = 4

(b) fdx) = x~ + 10x2
f2(x) = 5~/2(x3 - x4)
f3(x) = (x2 - 2x3) 2
f~(x) = 10'/~(Xl - x4) 2

(c) Xo = (3, - 1 , 0, 1)
(d) f = 0 at the origin

(14) Wood function [9]
(a) n ~ 4, m = 6

ACM Transactions on MathemaUcal Software, Vol. 7, No. 1, March 1981

24 d.d. More, B. S. Garbow, and K, E. Htllstrom

(b) f l (x) = lO(x2 - x l 2)

f2(x) = 1 - x l
A(x) = (90)~/2(x~ - ~)
f4(x) = 1 - x3
f5(x) = (10)1/2(X2 + X4 -- 2)

A (x) = (1 0) - ~ / 2 (x 2 - x4)
(c) Xo = (- 3 , - 1 , - 3 , - 1)
(d) f - O a t (1 , 1 , 1 , 1)

(15) K o w a l i k a n d O s b o r n e f u n c t i o n [17]
(a) n = 4 , m = 11

xdu 2 + u,x2)
(b) f , (x) = y, - (u 2 + u,x3 + x4)

w h e r e

t y, u, l y, u,

1 0.1957 4.0000 7 0.0456 0.1250
2 0.1947 2.0000 8 0.0342 0.1000
3 0.1735 1.0000 9 0.0323 0.0833
4 0 1600 0.5000 10 0 0235 0.0714
5 0.0844 0.2500 11 0.0246 0.0625
6 0 0627 0.1670

(c) Xo = (0.25, 0.39, 0.415, 0.39)
(d) f = 3 .07505 . • • 10 -4

f = 1 . 0 2 7 3 4 . . . 10 -3 a t (+ ~ , - 1 4 . 0 7 . . . , - ~ , - ~)

(16) B r o w n a n d D e n n i s f u n c t i o n [6]
(a) n ffi 4, m _ n v a r i a b l e
(b) f , (x) = (xl + t,x2 - exp[t ,]) 2 + (x3 + x4 s in(t ,) - cos(t ,)) 2

w h e r e t~ = ~/5
(c) Xo = (25, 5, - 5 , - 1)
(d) f = 8 5 8 2 2 . 2 . . . i f m = 20

(17) O s b o r n e i f u n c t i o n [21]
(a) n ffi 5, m = 33

(b) f , (x) = y, - (x l + x2 e x p [- t , x 4] + xa e x p [- t ~ x s])
w h e r e t , = l O (i - 1) a n d

t y, i y, t y, t y,

1 0.844 10 0 784 19 0.538 28 0.431
2 0.908 11 0.751 20 0.522 29 0.424
3 0.932 12 0.718 21 0.506 30 0.420
4 0.936 13 0.685 22 0.490 31 0.414
5 0.925 14 0.658 23 0.478 32 0.411
6 0.908 15 0.628 24 0 467 33 0.406
7 0.881 16 0.603 25 0.457
8 0 850 17 0.580 26 0.448
9 0.818 18 0.558 27 0.438

ACM Transactions on Mathematmal Software, Vol 7, No 1, March 1981

Testing Unconstrained Optimization Software • 25

(c) Xo = (0.5, 1.5, - 1 , 0.01, 0.02}
(d) f - - 5 . 4 6 4 8 9 . . . i0 -5

(18) Biggs EXP6 function [3]

(a) n = 6, m >_ n variable

(b) f , (x) = x3 e x p [- t , x ,] - x4 exp[-t~x2]
+ x6 exp[-t~x~] - y,

whe re t, = (0.1)i
and y, = e x p [- t J - 5 e x p [- 1 0 t ,] + 3 e x p [- 4 t J

(c) Xo-- (1, 2, 1, 1, 1, 1)
(d) f = 5 . 6 5 5 6 5 . . . 10 -3 if m = 13

f = 0 a t (1 , 1 0 , 1 , 5 , 4 , 3)

(19) Osborne 2 func t ion [21]
(a) n = l l , m = 6 5

(b) f~(x) = y, - (xl e x p [- t , xs] + x2 e x p [- (t , - x9)2x6]
+ xz e x p [- (t , - xlO)2XT] + x4 exp[- (t~ - Xll)2xs])

w h e r e t, = (i - 1) /10 and

i y, ~ y, ~ y,

1 1.366 23 0.694 45 0.672
2 1.191 24 0.644 46 0.708
3 1.112 25 0.624 47 0.633
4 1.013 26 0.661 48 0.668
5 0.991 27 0.612 49 0.645
6 0.885 28 0.558 50 0.632
7 0.831 29 0.533 51 0.591
8 0.847 30 0.495 52 0.559
9 0.786 31 0 500 53 0.597

10 0.725 32 0.423 54 0.625
11 0.746 33 0 395 55 0.739
12 0.679 34 0.375 56 0.710
13 0.608 35 0.372 57 0.729
14 0.655 36 0.391 58 0.720
15 0.616 37 0 396 59 0.636
16 0.606 38 0.405 60 0.581
17 0.602 39 0 428 61 0.428
18 0.626 40 0.429 62 0.292
19 0.651 41 0.523 63 0.162
20 0.724 42 0.562 64 0.098
21 0.649 43 0.607 65 0.054
22 0.649 44 0.653

(20)

(c) Xo = (1.3, 0.65, 0.65, 0.7, 0.6, 3, 5, 7, 2, 4.5, 5.5)
(d) f = 4.01377 . . . 10 -2

W a t s o n f unc t i on [17]
(a) 2 _< n _ 31, m = 31

ACM Transactions on MathemaUcal Software, Vol 7, No 1, March 1981.

26 J.J. Mor6, B. S. Garbow, and K E. Hillstrom

(21)

(22)

w h e r e t , = / / 2 9 , 1 _ < i _ 2 9
f M x) = x l , f 3 1 (x) = x 2 - x 2 - 1

(c) xo = (0, . . . , O)
f = 2.28767 . . . 10 -3 i f n == 6

(d) f = 1.39976 . . . 10 - s if n = 9
f = 4 .72238 . . . 10 - l ° i f n = 12

Extended Rosenbrock function [25]
(a) n v a r i a b l e b u t e v e n , m = n
(b) f2 , - l (x) = lO(x2, - x2,-1)

f2 t (X) ~- 1 - - X2,-1

(c) Xo = (~j) w h e r e ~2j-1 = - 1 . 2 , ~2j = 1

(d) f = O a t (1 , . . . , 1)

Extended Powell singular function [25]
(a) n v a r i a b l e b u t a m u l t i p l e of 4,

(b) f4,-3(x) = x4,-3 + lOxat-2
f a t - 2 (X) =- 51/2(X4,-1 - - Xa,)

] ~ , - I (X) = (X4,-2 - - 2X4t-1) 2

f4~(X) ---- 1 0 1 / 2 (X 4 , - 3 - - X4 t) 2

(c) Xo = (~j)
w h e r e ~ 4 j - 3 = 3 , $ 4 i - 2 = - 1 , ~ 4 j _ 1 = 0 ,

(d) f = 0 a t t h e o r i g i n

(23) Penalty function I [14]
(a) n v a r i a b l e , m == n + 1
(b) f , (x) = a l / 2 (x , - 1) , l _ _ i _ < n

w h e r e a = 10 .5

(c) X o = (~) w h e r e ~ j = j
(d) f = 2.24997 . . . 10 -5 i f

f = 7.08765 . . . 10 -5 i f

(24) Penalty function H [14]
(a) n v a r i a b l e , m = 2 n
(b) fl(x) = x, - 0.2

n = 4
n - - 10

f , (x) =

f (x) =

f 2n (X) =

w h e r e

ACM TransacUons on

m -~ n

~ = 1

ded]+
rx,_°+,l

a),

a o,O- + e x ,

Mathematmal Software, Vol 7, No 1, March 1981

2<_i<_n

n < t < 2 n

Testing Unconstrained Optimization Software • 27

(c) x0 = (½ ½)
(d) f = 9.37629 . . . 10 -6 i f n = 4

f = 2 . 9 3 6 6 0 . . . 10 -4 i f n = 1 0

(25) Var iab ly d i m e n s i o n e d func t ion [u n p u b l i s h e d]
(a) n v a r i a b l e , m -- n + 2
(b) f~(x) = x , - 1 , i = 1 n

(26)

(27)

n
fn÷l (X) = Z j (x j - 1)

J~ l

f . + ~ (x) = x j - 1 ~

(c) xo = ((~) w h e r e ~j = 1 - (j / n)
(d) f = O at (1 1)

Tr igonometr ic [unct ion [25]
(a) n v a r i a b l e , m = n

(b) f~(x) = n - ~ cos xl + i(1 - cos x ,) - s i n x,
j--1

(c) Xo = (1/n, . . . , 1 /n)
(d) f - 0

B r o w n a lmos t - l i near func t ion [5]
(a) n v a r i a b l e , m = n

(b) f ,(x) = x, + ~ x j - (n + 1), l < _ i < n

(28)

(29)

(c) xo = (½ ½)
(d) f - 0 a t (a a , a l - n)

w h e r e a s a t i s f i e s n a n - (n + 1) a n - ' + 1 = 0; in p a r t i c u l a r , ~ = 1

f = l a t (0 , . . . , 0 , n + l)

Discrete boundary value func t ion [20]
(a) n v a r i a b l e , m = n
(b) f~(x) = 2x, - x~-i - x~+~ + h2(x, + t~ + 1)3/2

w h e r e h = l / (n + l) , t , - i h , a n d X o = X ~ + l = O
(c) Xo = (~j) w h e r e ~] = t j (t I - - 1)

(d) f = 0

Discrete in tegra l equa t ion func t ion [20]
(a) n v a r i a b l e , m - n

= x, + h i (1 - t~) ~ tj(x~ + tj + 1) a (b) f , (x)
L J- - '

n]/
+ t , ~ (1 - t ~) (x ~ + t ~ + l) ~ 2

J~z+l

w h e r e h - - - 1 / (n + l) , t ~ = i h , and x o - - - x . ÷ l = O
ACM Transactions on Mathematmal Software, VoL 7, No. 1, March 1981

28 J.J. Mor6, B. S. Garbow, and K. E. Hillstrom

(30)

(31)

(c) xo = (~) where ~ = t~(tj - 1)
(d) f = 0

B r o y d e n t r i d i a g o n a l f unc t ion [7]
(a) n variable, m = n
(b) f ,(x) = (3 - 2x,)x, - x,-1 - 2x,+1 + 1

where Xo --~" X n + l ~- 0

(c) xo = (--1 --1)
(d) f = 0

B r o y d e n b a n d e d func t ion [8]
(a) n var iable , m = n

(b)/~(x) = x,(2 + 5x~) + 1 - Y, xj(1 + xj)
] E J,

where J , = (j : j # i, max(l , i - mz) - < j -< min(n , i + mu)}
and m r - - 5 , m . = l

(c) Xo = (- 1 , . . . , - 1)
(d) f - - 0

(32) L i n e a r f u n c t i o n - - f u l l r a n k [unpub l i shed]
(a) n variable, m _> n

(b) ~ (x) = x , - x~ - 1 , l _ ~ i ~ n
m j

(33)

(34)

- - - x~ - 1 , n < i < _ m
m j= l

(C) Xo= (1 ,1)
(d) f = m - n at (- 1 , . . . , - 1)

L i n e a r f u n c t i o n - - r a n k 1 [unpub l i shed]
(a) n variable, m >__ n

(b) f ,(x) --- i - 1

(c) Xo--- (1 , 1)

m (m 1)
a t a n y po in t where ~ jx~ =

3
(d) f - - 2 ~ + 1) j-1 2m +--'-----i

L i n e a r f u n c t i o n - - r a n k 1 w i th zero c o l u m n s a n d rows [unpub l i shed]
(a) n var iable , m >_ n
(b) f l (x) = - 1 , fro(x) = - 1

n--1

(c) xo = (1 , 1)

m 2 + 3m - 6 m-1
(d) f = at a ny po in t where ~ j x 1 =

2(2m - 3) j-2

ACM Transact ions on Mathematmal Software, Vol 7, No 1, March 1981.

3

2m -- 3

Testing Unconstrained Optimization Software • 29

(35) Chebyquad function [11]
(a) n v a r i a b l e , m >_ n

(b) f,(x) =-1
n j - i

where 7", is
and hence,

f~ T,(x) dx = 0 for i odd,

-1
f~ T,(x) dx = (i 2 _ 1) for i even

T,(x~) - f ~ T,(x) dx

the ith Chebyshev polynomial shifted to the interval [0, 1]

(c) x0 = (5) where 5 = j / (n + 1)
(d) f = 0 for m = n , l < _ n _ 7 , and

f = 3 . 5 1 6 8 7 . . . 10 -a for m = n = 8
f = 6 . 5 0 3 9 5 . . . 10 -3 for m = n = 1 0

n = 9

For ease of reference, we list the functions appearing in the three test problem
collections. Note that the number in parentheses after the name of the function
refers to the number of the function in the main list. Also note that some of the
basic subroutines of Section 2 can be used to test algorithms from more than one
problem area. For example, GRDFCN effectively defines a collection of nonlinear
equation problems and therefore can be used to test nonlinear equation solvers,
while SSQFCN and SSQJAC can be used together to test unconstrained mini-
mization algorithms.

Systems of Nonlinear Equations
1. Rosenbrock function (1)
2. Powell singular function (13)
3. Powell badly scaled function (3)
4. Wood function (14)
5. Helical valley function (7)
6. Watson function (20)
7. Chebyquad function (35)
8. Brown almost-linear function (27)
9. Discrete boundary value function (28)

10. Discrete integral equation function (29)
11. Trigonometric function (26)
12. Variably dimensioned function (25)
13. Broyden tridiagonal function (30)
14. Broyden banded function (31)

Nonlinear Least Squares
1. Linear function--full rank (32)
2. Linear function--rank 1 (33)
3. Linear function--rank i with zero columns and rows (34)
4. Rosenbrock function (1)
5. Helical valley function (7)
6. Powell singular function (13)

ACM Transactions on Mathematmal Software, Vol. 7, No 1, March 1981.

30 • J.J. Mor6, B. S. Garbow, and K. E. Hillstrom

7. Freudenstein and Roth function (2)
8. Bard function (8)
9. Kowalik and Osborne function (15)

10. Meyer function (10)
11. Watson function (20)
12. Box three-dimensional function (12)
13. Jennrich and Sampson function (6)
14. Brown and Dennis function (16)
15. Chebyquad function (35)
16. Brown almost-linear function (27)
17. Osborne i function (17)
18. Osborne 2 function (19)

Unconstrained Minimization
1. Helical valley function (7)
2. Biggs EXP6 function (18)
3. Gaussian function (9)
4. Powell badly scaled function (3)
5. Box three-dimensional function (12)
6. Variably dimensioned function (25)
7. Watson function (20)
8. Penalty function I (23)
9. Penalty function II (24)

10. Brown badly scaled function (4)
11. Brown and Dennis function (16)
12. Gulf research and development function (11)
13. Trigonometric function (26)
14. Extended Rosenbrock function (21)
15. Extended Powell singular function (22)
16. Beale function (5)
17. Wood function (14)
18. Chebyquad function (35)

4. TESTING I

With the basic subroutines and the test functions described in Sections 2 and 3,
we have the tools for testing unconstrained nonlinear optimization algorithms. In
this section we mention some of the possible tests that can be carried out.

Suppose, for example, that we want to test a nonlinear least squares algorithm
SOLVER on a given test function. This can be done by the following program
outline.

EXTERNAL FCN
READ (,) NPROB, N, M, NTRIES
FACTOR = 1.0
DO K = 1, NTRIES

CALL INITPT(N, X, NPROB, FACTOR)
CALL SOLVER(FCN, M, N, X)
FACTOR -- 10.0 * FACTOR

ACM Transactions on Mathematmal Software, Vol 7, No 1, March 1981

(4.1)

Testing Unconstrained Optimization Software

Table I

• 3 1

x. 10x, 100x~

Prob lem Scaling N F E V N J E V N F E V N J E V N F E V N J E V

1 I n m a l 12 9 34 29 FC FC
Adapt ive 11 8 20 15 19 16
C o n t m u o u s 12 9 14 12 176 141

2 Initial 19 17 81 71 365 315
Adapt ive 18 16 79 71 348 307
Cont inuous 18 16 63 54 FC FC

3 I n m a l 8 7 37 36 14 13
Adap t we 8 7 37 36 14 13
Con t inuous 8 7 FC FC FC FC

4 Initial 268 242 423 400 FC FC
Adapt ive 268 242 57 47 229 207
Cont inuous FC FC FC FC FC FC

The choice of the integer NTRIES depends on the function defined by NPROB
and on how stringently we want to test SOLVER. If the function contains rapidly
growing subfunctions, such as exponentials, then NTRIES = 1 is probably all
that should be allowed. For other functions, NTRIES = 3 may be a reasonable
setting; this tests SOLVER with starting vectors of xs, 10xs, and 100xs, where x~
is the standard starting vector. The vectors x~ and 100x~ are regarded as being
close to and far away from the solution, respectively; it is not unusual for
algorithms to succeed with x~ but to fail with 100x~.

In (4.1), SOLVER calls an interface subroutine FCN. The calling sequence for
FCN should be identical to the calling sequence of the function subroutine in
SOLVER; its main purpose is to call the testing functions with the appropriate
value of problem number. For example, if the calling sequence of the function
subroutine in SOLVER is

FCN(M, N, X, FVEC, FJAC, LDFJAC, IFLAG),

then the body of FCN could be

COMMON/REFNUM/NPROB, NFEV, NJEV
IF IFLAG = 1
L CALL SSQFCN(M, N, X, FVEC, NPROB)

NFEV = NFEV + 1
IF IFLAG = 2
L CALL SSQJAC(M, N, X, FJAC, LDFJAC, NPROB)

NJEV = NJEV + 1

Note that the COMMON block REFNUM transmits the variable NPROB and
provides counters for the number of function and Jacobian evaluations required
by SOLVER.

Nothing that has been said is intrinsic to the nonlinear least squares problem;
the same type of driver can be used for nonlinear equations or unconstrained
minimization. We emphasize that the test results provided by (4.1) can be quite
revealing if NTRIES is set properly. For example, to compare the choices of
scaling strategy, Table I was presented in [19]. In this table "FC" means failure
to converge within 1000 function evaluations.

ACM Transactions on Mathematmal Software, Vol 7, No 1, March 1981

32 J. J. Mord, B. S. Garbow, and K. E. Hillstrom

Table II. Summary of 28 Calls to NLSQI

NPROB N ~ NFEV NJEV INFO FINAL L2 NORM

I ~ 10 3 2 I 0.2236068D 01
I 5 50 3 2 1 0.670820~D 01
2 5 10 3 2 I 0.1~63850D 01
2 ¢ 50 3 2 I 0.3482633D 01
3 5 10 3 2 I 0.1909727D 01
3 5 50 3 2 I 0.3691729D 01

2 2 18 14 1 0.0
5 3 3 12 9 I 0.9195638D-32
6 4 ~ 68 62 1 0.9523~8D-35
7 2 2 17 10 1 0 . 6 9 9 8 8 7 5 D 01
8 3 15 7 6 1 0.9063596D-01
9 q 11 23 21 1 0 . 1 7 5 3 5 8 ~ D - 0 1

10 3 16 136 120 1 0 . 9 3 7 7 9 4 5 D 01
11 6 31 9 8 1 0 . 4 7 8 2 9 5 9 D - 0 1
11 9 31 9 8 1 0 . 1 1 8 3 1 1 5 D - 0 2
11 12 31 10 9 1 0 . 2 1 7 3 1 0 ~ D - O q
12 3 10 8 7 1 0 . 7 2 1 1 1 1 0 D - 1 6
13 2 10 25 14 1 0 . 1 1 1 5 1 7 8 D 02
l q 4 20 315 282 1 0 . 2 9 2 9 5 4 3 D 03
15 1 8 1 1 1 0 . 1 8 8 6 2 3 8 D 01
15 8 8 qq 2~ 1 0 . 5 9 3 0 3 2 4 D - 0 1
15 9 9 11 8 1 0.330~872D-15
15 10 10 24 lq I 0.8064710D-01
16 10 10 17 15 1 0.8987~08D-15
16 30 30 20 15 1 0.2170133D-lq
16 q0 40 19 lq 1 0.1254229D-12
17 5 33 19 16 1 0.7392~93D-02
18 11 6S 18 lq 1 0.2003440D O0

It is clear from this table that the adaptive scaling strategy is best in these four
examples, and that we could not have reached this conclusion if we had only
considered the standard starting points.

We have shown how to use the basic subroutines to test different versions of
the same algorithm, and in this case comparisons are straightforward. However,
these subroutines will inevitably be used to test and compare different algorithms.
Comparisons are then more difficult because the two algorithms will usually have
different stopping criteria, and it may not be immediately clear how much of the
success of the algorithm is due to its stopping criteria. However, the effect of the
stopping criteria can be measured by running the program with different toler-
ances or by looking at the progress of the iteration.

To illustrate the use of the basic subroutines in the testing of algorithms,
consider two nonlinear least squares subroutines NLSQ1 and NLSQ2. The names
have been changed, but it should be realized that the development of each of
these codes has received considerable attention; both of them appear in optimi-
zation libraries. These subroutines have an output parameter that indicates the
status of the computation, and in Tables II and III we have used the parameter
INFO to report this information. If the subroutine claims success, then INFO is
set to 1; otherwise it is set to 0.

ACM Transactions on Mathematical Software, Vol 7, No 1, March 1981

Testing Unconstrained Optimization Software

Table III. Summary of 28 Calls to NLSQ2

33

NPROB N B NFEV NJEV INFO FINAL L2 NOR~

1 5 10 3 2 | 0 . 2 2 3 6 0 6 8 D 01
1 5 50 3 2 1 0 . 6 7 0 8 2 0 4 D 01
2 5 10 11 10 1 0 . 1 4 6 3 8 5 0 D 01
2 5 50 11 10 1 0 . 3 4 8 2 6 3 0 D 01
3 5 10 13 12 1 0 . 1 9 0 9 7 2 7 D 01
3 5 50 13 12 1 0 . 3 6 9 1 7 2 9 D 01
4 2 2 18 14 1 0 . 0
5 3 3 12 9 1 0 . 3 7 3 1 6 5 1 D - 2 2
6 4 4 23 22 1 0 . 7 2 1 2 6 3 ~ D - 1 2
7 2 2 17 15 1 0 . 6 9 9 8 8 7 5 D 01
8 3 15 7 6 1 0 . 9 0 6 3 5 9 6 D - 0 1
9 4 11 18 15 1 0 . 1 7 5 3 5 8 4 D - 0 1

10 3 16 174 133 1 0 , 9 3 7 7 9 ~ 5 D 01
11 6 31 10 9 1 0 . 4 7 9 2 9 5 9 D - 0 1
11 9 31 6 5 1 0 . 1 1 8 3 1 1 5 D - 0 2
11 12 31 7 6 1 0 . 2 1 7 3 1 0 4 D - 0 4
12 3 10 7 6 1 0 . 1 8 0 4 1 1 2 D - 1 5
13 2 10 17 9 1 0 . 1 1 1 5 1 7 8 D 02
14 4 20 377 325 1 0 . 2 9 2 9 5 4 3 D 03
15 1 8 1 1 0 0 . 1 8 8 6 2 3 8 D 01
15 8 8 31 21 1 0 . 5 9 3 0 3 2 ~ D - 0 1
15 9 9 10 7 1 0 . 1 1 6 8 5 2 2 D - 0 7
15 10 10 16 11 1 0 . 8 0 6 4 7 1 0 D - 0 1
16 10 10 15 9 1 0 . 1 6 0 6 q 5 2 D - 1 2
16 30 30 33 1~ 1 0 . 3 0 2 1 1 2 8 D - 1 0
16 40 40 8 4 1 0 . 1 0 0 0 0 0 0 D 01
17 5 33 167 117 1 0 . 7 3 9 2 4 9 3 D o 0 2
18 11 65 15 13 1 0 o 2 0 0 3 4 4 0 D 00

We first ran these algorithms with the standard starting points; the results are
shown in Tables II and III. The following points are worthy of mention.

Ca) There are three problems (10, 14, 17) in which NLSQ2 required more than
100 function evaluations. On each of these problems NLSQ1 required fewer
function evaluations.

(b) For problem 15 with n = 1, the standard starting point is a critical point.
NLSQ1 claimed success on this problem, while NLSQ2 classified this problem
as a possible failure.

(c) The results for problem 16 with n = 40 are not comparable because the
algorithms converged to different local minima.

(d) A look at the progress of the iteration shows that both algorithms were
converging at the same rate on problem 6, but differences in convergence
criteria caused NLSQ1 to work much harder.

(e) Problems 2 and 3 are rank-deficient linear problems, and the differences in
performance can be traced to the fact that NLSQ1 uses orthogonal transfor-
mations to solve the linear least squares subproblems, while NLSQ2 uses
Cholesky decomposition on the normal equations.

if) On the remainder of the problems both algorithms required only a small
number of function evaluations {fewer than 50).

ACM Transactions on Mathematmal Software, Vol 7, No I, March 1981

34 • J.J. More, B. S, Garbow, and K. E. Hillstrom

The conclusion from Tables II and III is that, although the use of standard
starting points reveals some differences, none of these differences are significant.
This is not the case when NLSQ1 and NLSQ2 are run on the full set of starting
points. These results appear in Tables IV and V, and the main differences are
now as follows.

(a) NLSQ1 only fails (failure is identified by the size of the final /2 norm) on
problem 10, while NLSQ2 fails three timesmonce on problem 5 and twice on
problem 10. Moreover, for both failures on problem 10, the INFO value of
NLSQ2 incorrectly claims success.

(b) Although this information does not appear in the tables, NLSQ1 does not
generate any overflows, while NLSQ2 produces overflows on problem 16 with
n = 10 and 30. The overflows for n = 30 are generated by the function
subroutine and occur on the first iteration; they are due to a large initial step.
The overflows for n = 10 are generated by NLSQ2 and occur toward the
middle of the iteration.

(c) On all of the problems where NTRIES was set to 3 (problems 4, 5, 6, 7, 8, 9,
10, 11, 14, 15 with n = 1, and 16 with n = 10), the differences in performance
between NLSQ1 and NLSQ2 are most pronounced for the farthest starting
point, and here NLSQ1 is clearly superior to NLSQ2. For the standard
starting point the algorithms perform very similarly, while for the interme-
diate starting point NLSQ1 seems to perform slightly better than NLSQ2.
These observations are also based on a detailed examination of the progress
of the iteration. These results show that Tables IV and V are not unduly
influenced by the stopping criteria. The only exceptions occur when the
problem has a continuum of solutions, and in these cases (problems 8 and 9
where the final 12 norms are 4.174 . . . and 0.03205 . . . , respectively), the
convergence criteria of NLSQ2 are clearly inadequate.

It should now be clear that on the basis of the above testing, NLSQ1 is a better
piece of software than NLSQ2. Again we point out that the development of
NLSQ1 and NLSQ2 received considerable attention; had this not been the case,
then our testing would have uncovered more drastic differences.

5. TESTING II

The test functions defined in Section 3 represent a basic set; in order to further
test optimization software, it is desirable to modify this basic set to yield related
problems. For example, consider the nonlinear least squares problem defined by
a function ~', which is related to a function F from the basic set by the change of
scale

F (x) = a F (E x) , :~o = E-lXo (5.1)

where a is a positive scalar and E is a diagonal matrix with positive entries.
A very desirable attribute of an optimization algorithm is scale invariance. This

requires that for the above problems the algorithm should generate iterates that
satisfy

• ~k = :X-lxk, k > O.

ACM Transactions on Mathematmal Software, Vol. 7, No. 1, March 1981.

Testing Unconstrained Optimization Software • 35

N~BOB

Table IV. Summary of 54 Calls to NLSQ1

N ~ NfEV NJEV INFO FINAL L2 NORM

1 5 10 3 2 1 0 . 2 2 3 6 0 6 8 D 01
1 5 50 3 2 1 0 . 6 7 0 8 2 0 4 D 01
2 5 10 3 2 1 0 . 1 4 6 3 8 5 0 D 01
2 5 50 3 2 1 0.3482630D 01
3 5 10 3 2 1 0 . 1 9 0 9 7 2 7 D 01
3 5 50 3 2 1 0 . 3 6 9 1 7 2 9 D 01
4 2 2 18 14 1 0 . 0
4 2 2 8 5 1 0 . 0
4 2 2 6 4 1 0 . 1 3 9 4 7 0 0 D - 1 5
5 3 3 12 9 1 0 . 9 1 9 5 6 3 8 D - 3 2
5 3 3 21 16 1 0 . 1 1 9 7 3 4 9 D - 3 4
5 3 3 19 16 1 0 . 7 0 6 2 2 5 0 D - 2 9
6 q q 68 62 1 0 . 9 5 2 3 4 4 8 D - 3 5
6 4 q 62 61 1 0 . 9 5 a S 8 2 5 D - 3 3
6 4 q 69 65 1 0 . 1 4 2 9 ~ 6 8 D - 3 2
7 2 2 17 10 1 0 . 6 9 9 8 8 7 5 D 01
7 2 2 22 13 1 0 . 6 9 9 8 8 7 5 D 01
7 2 2 25 17 1 0.6998875D 01
8 3 15 7 6 1 0.9063596D-01
8 3 15 50 49 1 0 . 4 1 7 4 7 6 9 D 01
8 3 15 28 27 1 0 . 4 1 7 4 7 6 9 D 01
9 q 11 23 21 1 0 . 1 7 5 3 5 8 4 D - 0 1
9 4 11 93 85 1 0 . 3 2 0 5 2 1 9 D - 0 1
9 q 11 3~3 312 1 0 . 1 7 5 3 5 8 4 D - 0 1

10 3 16 136 120 1 0 . 9 3 7 7 9 4 5 D 01
10 3 16 800 652 0 0 . 7 1 5 6 1 5 9 D 03
10 3 16 279 245 1 0 . 9 3 7 7 9 4 5 D 01
11 6 31 9 8 1 0 . 4 7 8 2 9 5 9 D - 0 1
11 6 31 15 14 1 0 . 4 7 8 2 9 5 9 D - 0 1
11 6 31 16 15 1 0 . 4 7 8 2 9 5 9 D - 0 1
11 9 31 9 8 1 0 . 1 1 8 3 1 1 5 D - 0 2
11 9 31 19 15 1 0 . 1 1 8 3 1 1 5 D - 0 2
11 9 31 18 15 1 0 . 1 1 8 3 1 ~ 5 D - 0 2
11 12 31 10 9 1 0 . 2 1 7 3 1 0 4 D - 0 4
11 12 31 14 12 1 0 . 2 1 7 3 1 0 4 D - 0 4
11 12 31 34 28 1 0 . 2 1 7 3 1 0 4 D - 0 4
12 3 10 8 7 1 0 . 7 2 1 1 1 1 0 D - 1 6
13 2 10 25 14 1 0 . 1 1 1 5 1 7 8 D 02
14 4 20 315 282 1 0 . 2 9 2 9 5 4 3 D 03
14 4 20 73 61 1 0 . 2 9 2 9 5 4 3 D 03
14 4 20 328 300 1 0 . 2 9 2 9 5 4 3 D 03
15 1 8 1 1 1 0 . 1 8 8 6 2 3 8 D 01
15 1 8 30 29 1 0 . 1 8 8 4 2 4 8 D 01
15 1 e 48 47 1 0 . 1 8 8 4 2 4 8 D 01
15 8 8 44 24 1 0 . 5 9 3 0 3 2 4 D - 0 1
15 9 9 11 8 1 0 . 3 3 0 4 8 7 2 D - 1 5
15 10 10 24 14 1 0 . 8 0 6 ~ 7 1 0 D - 0 1
16 10 10 17 15 1 0 . 8 9 8 7 4 0 8 D - 1 5
16 10 10 13 8 1 0 . 1 7 0 8 9 9 8 D - 1 4
16 10 10 44 42 1 0 . 5 6 2 3 5 0 2 D - 1 5
16 30 30 20 15 1 0 . 2 1 7 0 1 3 3 D - 1 4
16 q0 40 19 14 1 0 . 1 2 5 4 2 2 9 D - 1 2
17 5 33 19 16 1 0 . 7 3 9 2 4 9 3 D - 0 2
18 11 65 18 14 1 0 . 2 0 0 3 4 4 0 D G0

If an algorithm is scale invariant, it need not perform well on a problem; however,
its performance will not change with the scaling of the problem. On the other
hand, the performance of a scale-dependent algorithm usually deteriorates when
it is applied to a badly scaled function R.

ACM Transactions on Mathematlcal Software, Vol. 7, No. I, March 1981

36 J J Mor~, B S Garbow, and K E Hdlstrom

Table V Summary of 54 Calls to NLSQ2

NPROB N M NFEV NJEV INFO FINAL L2 NORM

1 5 10 3 2 1 0.2236068D 01
1 5 50 3 2 1 0.670820~D 01
2 5 10 11 10 1 0.1463850D 01
2 5 50 11 10 1 0.3482630D 01
3 5 10 13 12 1 0.1909727D 01
3 5 50 13 12 1 0.3691729D 01
4 2 2 18 l i 1 0.0
4 2 2 6 4 1 0.0
q 2 2 6 4 1 0 .0
5 3 3 12 9 1 0 .3731651D-22
5 3 3 34 27 1 0 .2734634D-17
5 3 3 800 685 0 0.4494176D 03
6 4 4 23 22 1 0 .7212634D-12
6 4 4 26 25 1 0 .1126973D-11
6 4 4 29 28 1 0.1760897D-11
7 2 2 17 15 I 0.6998875D 01
7 2 2 16 14 1 0.6998875D 01
7 2 2 28 26 I 0.6998875D 01
8 3 15 7 6 I 0.9063596D-01
8 3 15 148 50 1 0.4174769D 01
8 3 15 61 6 1 0 .4174769D 01
9 4 11 18 15 1 0 .1753584D-01
9 4 11 122 95 1 0 .3205219D-01
9 4 11 470 382 1 0 .175358~D-01

10 3 16 174 133 1 0.9377945D 01
10 3 16 43 13 1 0.3765455D 05
10 3 16 16 2 1 0.6237599D 05
11 6 31 10 9 1 0 .4782959D-01
11 6 31 16 15 1 0 .4782959D-01
11 6 31 19 18 1 0 .4782959D-01
11 9 31 6 5 | 0 .1183115D-02
11 9 31 13 12 1 0 .1183115D-02
11 9 31 43 31 1 0 .1183115D-02
11 12 31 7 6 1 0 .2173104D-04
11 12 31 36 21 1 0 .2173104D-04
11 12 31 47 31 1 0 .2173104D-04
12 3 10 7 6 1 0 .1804112D-15
13 2 10 17 9 1 0.1115178D 02
14 4 20 377 325 1 0.29295~3D 03
14 4 20 824 686 1 0.2929543D 03
14 4 20 890 760 1 0.2929543D 03
15 1 8 1 1 0 0.1886238D 01
15 1 8 29 28 1 0.1884248D 01
15 1 8 56 55 1 0.18842~8D 01
15 8 8 31 21 1 0 .5930324D-01
15 9 9 10 7 1 0 .1168522D-07
15 10 10 16 11 1 0°8064710D-01
16 10 10 15 9 1 0 .1606452D-12
16 10 10 22 18 1 0 .3501853D-14
16 10 10 637 570 1 0 .4630529D-10
16 30 30 33 14 1 0 .3021128D-10
16 40 40 8 4 1 0.1000000D 01
17 5 33 167 117 1 0 .7392493D-02
18 11 65 15 13 1 0.2003440D 00

For unconstrained minimization, the change of scale analogous to (5.1) is

t (x) = af(F~x).

If f comes from our basic set, the minimum of t is still nonnegative, so it may

ACM Transactions on Mathematmal Software, Vol. 7, No. 1, March 1981

Testing Unconstrained Optimization Software • 37

also be worthwhile to choose fl so that

[(x) = ~f(Xx) + /~
/

has a negative minimum. For nonlinear egdations , it is interesting to consider the
more general change of scale /

$'(x) =/XlF(X2x) (5.2)

where both ZA and X2 are diagonal matrices with positive entries.
It is very easy to arrange the above tests by suitable modifications of the

interface function FCN. For example, for (5.1) the body of FCN would be

DO J -- 1,N
Z(J) = SIGMA(J) • X(J)

IF IFLAG -- 1
I CALL SSQFCN(M, N, Z, FVEC, NPROB)

DO I = 1,M
] .. FVEC{I) = ALPHA. FVEC(I)

IF IFLAG = : 2
L ALL SSQJAC(M, N, Z, FJAC, LDFJAC, NPROB)

DO J = 1,N
L DO I = 1,M

[__ FJAC(I, J) = ALPHA* FJAC(I, J) • SIGMA(J)

In the above program outline, we assume that FCN has assigned storage space to
the one-dimensional arrays Z and SIGMA. The elements of SIGMA can either be
generated once and passed to FCN via COMMON, or they can be generated each
time FCN is called. We have found that setting

F5(2 j - n - 1)]
SIGMA(J) = 10.* L]'n ~'1~ " (5.3)

(if n = 1 no scaling is performed) is adequate for investigating the scaling
properties of algorithms.

To illustrate the type of results that can be obtained, consider two subroutines
for the solution of systems of nonlinear equations, NEQ1 and NEQ2. As in
Section 4, we have selected these two subroutines (with names changed) from
optimization libraries.

We first ran these algorithms with the standard starting points; the results are
shown in Tables VI and VII. It is not our intention to compare these results very
carefully, but the following points are worthy of mention.

(a) NEQ2 fails on problem 6 with n = 9 and quits near the solution of problem
2, while NEQ1 succeeds on both problems.

(b) Problem 7 with n = 8 is a system of nonlinear equations with no solution, and
thus both algorithms fail.

(c) NEQ2 quits near the solution of problem 8 with n = 40, while NEQ1 finds a
point that minimizes the sum of squares that is not a solution to the system
of nonlinear equations.

These results seem to favor NEQ1, but they are far from conclusive.
We next ran these algorithms on the scaled problem (5.2) where ~1 is the

identity matrix and ~2 is chosen by {5.3); the results are shown in Tables VIII

ACM Transactions on Mathematical Software, Vol. 7, No. I, March 1981

38 J J Mor4, B S Garbow, and K E Hillstrom

Table VI. Summary of 22 Calls to NEQ1

N~ROB N NFEV INFO FINAL L2 NORM

1 2 24 I 0 . 1 0 5 1 2 4 2 D - 1 1
2 4 32 1 0 . 5 2 7 9 8 9 7 D - 1 0
3 2 182 1 0 . 1 1 5 1 5 2 1 D - 0 9
q 4 94 1 0.39935709-13
5 3 27 I O. 2753458D-12
6 6 95 1 O. 9830624D-10
6 9 135 1 0. 1307264D- 10
7 5 16 1 0 . 2 6 3 0 1 7 8 D - 1 0
7 6 28 1 0.Iq70389D-12
7 7 23 1 0.307~985D-10
7 8 114 0 0.7483098D-01
7 9 52 1 0.6368168D-11
8 10 31 1 0 . 9 0 ~ 9 1 8 0 D - 1 4
8 30 74 1 0.1094541D-11
8 40 182 0 0.1000000D 01
9 10 15 1 0.1697678D-10

10 1 6 1 0 . 8 5 4 8 7 1 7 D - 1 3
10 10 15 1 0 . 5 4 2 2 0 2 1 D - 1 0
11 10 4~ 1 0 . 9 2 7 2 2 5 3 D - 1 0
12 10 55 I 0.1722142D-11
13 10 23 1 0.7622868D-I0
14 10 33 I 0.8251833D-10

TableVII. Summaryof22CallstoNEQ2

NP~CB N NFEV INtO ~INAL 12 NORM

I 2 24 I 0.0
2 4 89 0 0.3879041D-09
3 2 89 I 0.3630099D-10
4 q 33 1 0.31~76C9D-11
5 3 34 1 0.1z38056D-10
6 6 ~2 I 0.1118730D-I0
6 9 600 0 0.2094271D 00
7 ~ 16 I 0.1981472D-12
7 6 35 I 0.7459022D-I0
7 7 28 I 0.2546015D-11
7 8 139 0 0.5933~94D-01
7 9 34 I 0.4694295D-10
8 10 29 1 0.1763058D-I0
8 3C 184 1 0.2126396D-12
8 40 451 0 0.2813878D-04
9 10 33 I 0.8672105D-10

10 I 6 1 0.8548717D-13
10 10 16 I 0.3420128D-11
11 10 ~2 1 0 . 3 2 8 0 1 8 0 D - 1 0
12 10 69 1 0 . 8 4 3 5 9 8 2 D - 1 3
13 10 25 1 0 . 5 3 0 6 9 1 5 D - 1 1
14 10 34 1 0 . 7 9 1 9 6 5 0 D - 1 0

ACM Trarsact,ors on Mathematical Software, Vol 7, No. I, March 1981

Testing Unconstrained Optimization Software • 39

Table VIII. S u m m a r y of 22 Calls to NEQ1

N~HCB N NFEV IN~C FINAl L2 NOR~

I
2
3
4
5
6
6
7
7
7
7
7
8
8
d
9

10
10
11
12
13

2 24 I 0.2779025D-14
4 32 1 0.505045~D-10
2 29 C 0.1014940D-93

I~8 1 0.233351~D-10
3 ~5 I 0.5030085D-1~
6 ql 1 0.7532181D-12
9 57 I 0.86185~7D-12
5 22 1 0.86991q9D-10
6 29 1 0.281965~D-11
7 30 I 0.263908~D-08
8 55 C 0.1495160D 00
9 43 0 0 . 1 q 1 6 5 3 3 D O0

10 33 0 0.9882763D O0
30 101 1 0.83~7604D 02
40 204 1 3 .1000000D 01
10 15 1 0 . 3 5 3 5 2 0 ~ D - 1 0
1 6 1 0.85~8717D-13

IC 16 1 0.2355356D-12
10 31 0 0.8q11753D-01
10 31 C 0.22qO213D 07
10 23 I O.q~65230D-08
10 29 I O. qO91723D-06

Table IX. S u m m a r y of 22 Calls to NEQ2

NPRCB N NFEV INFO FINAL L2 NORM

1
2
3
4
5
6
6
7
7
7
7
7
8
8
8
9

10
10
11
12
13
l q

2 39 0 0.1977266D 01
a 55 0 0.884852~D 01
2 37 0 0.9997400D O0
q 56 0 0 .61909q3D O~
3 12 0 0 . 4 9 7 5 1 0 8 D 01
6 11~ 0 0 .6368151D 01
9 107 0 0 . 2 2 6 1 7 0 2 D 02
5 5~ 0 0.2015743D O0
6 61 0 0.1675853D 00
7 71 0 0.2078739D O0
8 72 0 0.1595835D O0
9 77 0 0.1~93q51D 00

10 80 0 0.1142024D 01
30 180 0 0. I094029D 01
40 274 0 0.11180~7D 01
10 66 0 0.3517726D-01

1 6 1 0 . 8 5 4 8 7 1 7 D - 1 3
10 66 0 0.2~95601D O0
10 86 0 0.6825777D-01
10 53 0 0.3289782D 01
10 129 0 0.3500787D 01
10 89 O 0.1675228D 02

ACM Transactions on Mathematical Software, Vol, 7, No. 1, March 1981.

40 J.J. More, B. S. Garbow, and K. E. H)llstrom

and IX. It is now clear that NEQ1 is much less susceptible to changes in scale
than NEQ2 and is thus the superior routine. We might add that the tests on the
full set of starting points do not change this conclusion.

To close this section w~ note that the routines NLSQ1 and NLSQ2 compared
in Section 4 are both invariant with respect to scale changes, and thus the tests
of this section would not affect their relative performance.

REFERENCES

1. BARD, Y. Comparison of gradient methods for the solution of nonlinear parameter estnnation
problems SIAM J. Numer. Anal. 7 (1970), 157-186.

2. BEALE, E.M.L. On an iterative method of finding a local mlmmum of a function of more than
one variable. Tech. Rep. No. 25, Statistical Techniques Research Group, Princeton Umv.,
Prmceton, N.J., 1958.

3. BIGGS, M.C. Minimization algorithms making use of non-quadratic properties of the objective
function. J Inst. Math Appl 8 (1971), 315-327.

4. Box, M.J. A comparison of several current optimization methods, and the use of transformations
in constrained problems. Comput. J 9 (1966), 67-77.

5. BROWN, K.M. A quadratmaUy convergent Newton-hke method based upon Gausslan ehrmna-
tion. SIAM J. Numer. Anal. 6 (1969), 560-569.

6. BROWN, K.M., AND DENNIS, J.E. New computational algorithms for minimizing a sum of squares
of nonlinear functions. Rep. No. 71-6, Yale Univ , Dep. Comput. Scmnce, New Haven, Conn.,
March 1971.

7. BROYDEN, C.G. A class of methods for solving nonlmear simultaneous equations. Math Comput
19 (1965), 577-593.

8. BROYDEN, C.G. The convergence of an algorithm for solvmg sparse nonlinear systems. Math.
Comput. 25 (1971), 285-294.

9. COLVILLE, A.R. A comparative study of nonlinear programming codes. Rep. 320-2949, IBM
New York Scientific Center, 1968.

10 Cox, R A. Comparison of the performance of seven optimization algorithms on twelve uncon-
strained optimization problems. Ref. 1335CNO4, Gulf Research and Development Company,
Pittsburg, Jan. 1969.

11. FLETCHER, R. Function minimization without evaluating derlvatives--A review. Comput. J. 8
(1965), 33-41.

12. FLETCHER, R., AND POWELL, M.J.D. A rapidly convergent descent method for minn-nization
Comput. J. 6 (1963), 163-168.

13. FREUDENSTEIN, F., AND ROTH, B. Numerical solutions of systems of nonlinear equations. J
A C M 10, 4 (Oct. 1963), 550-556.

14. GILL, P E , MURRAY W, AND PITFIELD, R.A. The nnplementat ion of two revtsed quasi-Newton
algorithms for unconstrained optnnizatmn. Rep. NAC 11, National Phys. Lab., April 1972, pp. 82-
83.

15. HILLSTROM, K.E. A stmulatlon test approach to the evaluation of nonlinear optLmtzatlon
algorithms. A C M Trans. Math. Softw. 3, 4 (1977), 305-315.

16. JENNRICH, R.I., AND SAMPSON, P.F. Applicatmn of stepwise regression to nonlinear estimatmn.
Technometrtcs 10 (1968), 63-72.

17. KOWALIK, J S , AND OSBORNE, M.R Methods for Unconstramed Optimtzatton Problems.
Elsevmr North-Holland, New York, 1968

18. MEYER, R.R. Theoretmal and computational aspects of nonlinear regression. In Nonhnear
Programmmg, J. B. Rosen, O. L. Mangasanan, and K. Rlt ter (Eds), Academic Press, New York,
1970, pp. 465-486.

19. MOR~, J J. The Levenberg-Marquardt algorithm. Implementation and theory In Numerical
Analysts, G. A. Watson (Ed.), Lecture Notes tn Mathemattcs 630, Sprmger-Verlag, New York,
1977, pp. 105-116.

20. MoR~, J.J., AND COSNARD, M.Y. Numerical solutmn of nonlinear equatmns. A C M Trans. Math.
Softw 5, 1 (March 1979), 64-85.

ACM Transactions on Mathematical Software, Vol 7, No 1, March 1981

Testing Unconstrained Optimizat ion Software • 41

21. OSBORNE, M.R. Some aspects of nonlinear least squares calculations. In Numerical Methods
for Nonhnear Opt~m~zatwn, F. A. Lootsma (Ed), Academic Press, New York, 1972, pp 171-189.

22. POWELL, M.J.D. A hybrid method for nonlinear equations. In Numer~calMethods for Nonlinear
Algebraic Equatmns, P. Rabinowitz (Ed), Gordon & Breach, New York, 1970, pp. 87-114

23. POWELL, M.J.D. An iterative method for finding stationary values of a function of several
variables. Comput. J. 5 (1962), 147-151.

24. ROSENBROCK, H.H. An automatm method for finding the greatest or least value of a function.
Comput. J. 3 (1960), 175-184.

25. SPEDICATO, E. Computational experience with quas]-Newton algorithms for minimization prob-
lems of moderately large size Rep. CISE-N-175, Segrate (Milano), 1975.

Received September 1978; revised May 1979; accepted July 1979.

ACM Transactlons on Mathematical Software, Vol 7, No I, March 198L

