
Testing Vision-Based Control Systems Using Learnable
Evolutionary Algorithms

Raja Ben Abdessalem, Shiva Nejati,
Lionel C. Briand

SnT Centre, University of Luxembourg
{benabdessalem,nejati,briand}@svv.lu

Thomas Stifter
IEE S.A., Luxembourg
thomas.stifter@iee.lu

ABSTRACT

Vision-based control systems are key enablers of many autonomous

vehicular systems, including self-driving cars. Testing such systems

is complicated by complex and multidimensional input spaces. We

propose an automated testing algorithm that builds on learnable

evolutionary algorithms. These algorithms rely on machine learn-

ing or a combination of machine learning and Darwinian genetic

operators to guide the generation of new solutions (test scenarios

in our context). Our approach combines multiobjective population-

based search algorithms and decision tree classi�cation models to

achieve the following goals: First, classi�cation models guide the

search-based generation of tests faster towards critical test scenarios

(i.e., test scenarios leading to failures). Second, search algorithms

re�ne classi�cation models so that the models can accurately char-

acterize critical regions (i.e., the regions of a test input space that

are likely to contain most critical test scenarios). Our evaluation

performed on an industrial automotive automotive system shows

that: (1) Our algorithm outperforms a baseline evolutionary search

algorithm and generates 78% more distinct, critical test scenarios

compared to the baseline algorithm. (2) Our algorithm accurately

characterizes critical regions of the system under test, thus identi-

fying the conditions that are likely to lead to system failures.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Search-based software engineering;

KEYWORDS

Search-based Software Engineering, Evolutionary algorithms, Soft-

ware Testing, Automotive Software Systems

ACM Reference Format:

Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand and Thomas Stifter.

2018. Testing Vision-Based Control Systems Using Learnable Evolutionary

Algorithms. In ICSE ’18: ICSE ’18: 40th International Conference on Software

Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3180155.3180160

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180160

1 INTRODUCTION

Autonomous or self-driving vehicles are just around the corner.

Increasingly more companies are ramping up their self-driving

technologies and teams. Many automotive companies take on-road

test initiatives to drive their �eets of autonomous vehicles on real

roads. However, there is a large di�erence between building a few

cars to drive under controlled conditions versus large scale produc-

tion of millions of vehicles that have to operate under realistic and

sometimes critical conditions [23]. On-road testing of autonomous

cars is typically restricted to a small number of vehicles driven by

professional safety drivers during speci�c hours on some designated

roads with speci�c speed limits. Such testing is often expensive and

time-consuming. It is further impractical to perform a full-�edged

on-road vehicle-level testing after every change to self-driving

software systems. To ensure safety of self-driving technologies,

vehicle-level testing alone is neither enough nor practical. There-

fore, it needs to be complemented by testing methods performed

on computer software simulators [4, 21].

In this paper, we focus on simulation-based testing of vision-

based control systems. In the automotive domain, they are referred

to as Advanced Driver Assistance Systems (ADAS), and are main

enablers of self-driving cars. Examples of ADAS include automatic

parking, night vision and collision avoidance systems. Simulation

platforms for ADAS [21] allow engineers to run a much larger

number of test scenarios compared to vehicle-level testing without

being limited by conditions enforced during on-road testing.

Themain di�culty with simulation-based testing of ADAS is that

the space of test input scenarios is complex and multidimensional.

Engineers require techniques that allow them to explore complex

test input spaces and to identify critical test scenarios (i.e., failure-

revealing test scenarios).

Similar to existing work [5, 9, 10, 30], we rely on evolutionary

search techniques [25] to help engineers explore the complex input

space of ADAS and to identify critical test scenarios. It is argued

that for testing at the system level, search-based techniques are

best suited [38]. They provide e�ective and �exible guidance for

test generation, going beyond test generation based on structural

coverage that is not often e�ective or scalable for system testing.

Evolutionary algorithms work by iteratively sampling the input

space, selecting the �ttest scenarios (critical test scenarios in our

work), and evolving the �ttest using genetic search operators to gen-

erate new scenarios [25]. The scenarios are expected to eventually

move towards the �ttest regions in the input space. These algo-

rithms are able to e�ectively guide the generation of test scenarios

towards the most critical ones and can provide useful results re-

gardless of speci�c time constraints and the size of the input space.

https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3180155.3180160

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Raja Ben Abdessalem, Shiva Nejati,

Lionel C. Briand and Thomas Sti�er

Even though evolutionary search algorithms often scale well to

large input spaces, their ability to e�ectively identify critical test

scenarios may diminish as the search space increases in size and

dimensions. This is mostly because the search may be stuck in local

optima in less critical parts of the input space [25].

In this paper, we provide an algorithm to improve e�ectiveness

of the evolutionary search for large and multidimensional input

spaces. Our algorithm builds on learnable evolution models, a ma-

chine learning-guided form of evolutionary computation [27, 37].

Speci�cally, we propose to use the set of scenarios generated at

intermediary search iterations to build decision tree classi�cation

models [35]. Decision trees learn the characteristics of the critical

test scenarios and identify critical regions in an input space (i.e., the

regions of a test input space that are likely to contain most critical

test scenarios). We then focus the subsequent search iterations on

the critical regions, generating and evolving more critical test sce-

narios within those regions using genetic operators. We iteratively

build decision trees followed by search iterations focused on critical

regions identi�ed by the trees. The process stops when we run out

of our search time budget. Our algorithm, in addition to guiding the

search towards the critical test scenarios faster, produces a decision

tree model that identi�es the critical regions of the system under

test. The critical region characterizations help engineers understand

the conditions on input variables that may lead to failures.

The contributions of this paper are summarized below:

- We propose a lightweight formalism for ADAS (i.e., vision-

based control systems used in self-driving cars). Our formalism

speci�es ADAS input and output variables and their critical behav-

iors. Our formalism is developed based on our analysis of di�erent

ADAS examples (see [13]) as well as the characteristics of a widely-

used, industrial ADAS simulation tool [21].

- We propose a system testing algorithm that combines evolu-

tionary search algorithms and decision tree classi�cation models.

Our algorithm has two main objectives, which are important in the

context of testing ADAS systems: First, classi�cation models guide

the search-based generation of tests faster towards critical test sce-

narios. Second, search algorithms re�ne classi�cation models so

that the models can accurately characterize critical regions.

- Our evaluation performed on an industrial ADAS shows that:

(1) Our algorithm outperforms a baseline evolutionary search al-

gorithm, and generates 78% more distinct, critical test scenarios

compared to the baseline algorithm. (2) Based on our interviews

with three engineers at our partner company IEE [20], the critical

region characterizations obtained by our algorithm, while being

understandable and intuitive, help engineers debug their systems,

identify hardware changes to increase ADAS safety, and specify

conditions that are likely to lead to ADAS failures.

The paper is structured as follows: Section 2 motivates our work.

Section 3 provides an ADAS formalization. Section 4 describes our

approach. Section 5 evaluates our approach. Section 6 compares

our work with the related work, and Section 7 concludes the paper.

2 MOTIVATING CASE STUDY
Figure 1 shows an overview of an ADAS example referred to as the

Automated Emergency Braking (AEB) system. Its main function is

to identify pedestrians in front of a vehicle and to avoid collision

(FoV)

“Brake-request”

Decision making

Vision
(Camera)

Sensor

Brake
Controller

Objects’
position

Field of view

Figure 1: An example of a vision-based control system: Au-

tomated Emergency Braking (AEB) system.

by applying the brake when it is necessary. AEB has three main

components: (1) The Sensor Component. This component identi�es

the position and speed of objects in a cone-shaped area in front

of a vehicle (i.e., the �eld of view). It also computes the time to

collision (TTC) that measures the time required for a vehicle to hit

an object if both continue with the same speed and do not change

their paths [31]. When an object is detected in front of a vehicle

and when the TTC is below a de�ned threshold, the object position

is sent to the vision component. (2) The Vision (Camera) Component.

This component detects object types and shapes after receiving their

positions from the sensor component. Speci�cally, they determine

whether the object is a pedestrian (human or animal), a car, a tra�c-

sign, etc. Then, the system is able to decide whether braking is

needed and sends a command to the brake control component when

it is necessary. (3) The Braking Control Component. This component

applies the braking request.

To simulate AEB, we use the PreScan simulator [21]. PreScan

is a widely-used, commercial ADAS simulator in the automotive

sector and has been used by IEE. It allows us to de�ne and exe-

cute scenarios capturing various road tra�c situations and di�er-

ent pedestrian-to-vehicle and vehicle-to-vehicle interactions. In

addition, using PreScan, one can vary road-topologies, weather

conditions and infrastructures in test scenarios.

Figure 2 shows a domain model capturing the test input space

and the output of AEB. Based on our analysis, we categorize the

AEB input variables into two categories:

I. Static input variables. The values of these variables are �xed

during ADAS simulation and they include: (1) Di�erent road types

(e.g., straight, curved or ramped). For the curved and ramped roads,

we specify the curve radius and the ramp height, respectively.

(2) Di�erent weather types: normal, rainy and snowy. For each

of the snowy and rainy weather types, we specify the level of pre-

cipitation. For each weather type, we may or may not have fog with

di�erent density levels. Finally, we specify a visibility range, i.e., the

distance at which the objects can be clearly seen. As Figure 2 shows,

we have de�ned enumerations for the road radius and height, the

level of precipitation for rain and snow, fog density, and visibility

range. According to the domain experts in IEE, these enumerations

provide a desired level of granularity for analysis, and hence, static

variables do not need to be real or integer.

II. Dynamic (mobile) objects. They indicate objects that change

their positions during ADAS simulation, i.e., pedestrians and ve-

hicles. For AEB, we consider two mobile objects: one pedestrian

and one vehicle, and assume linear trajectories for them. These as-

sumptions are meant to reduce the complexity of test scenarios and

were suggested by the domain experts. For the vehicle, we require

to know its initial speed (vc0). The pedestrian has four variables

Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

- visibility:

VisibilityRange

- fog: Boolean

- fogColor:

FogColor

Weather

- frictionCoeff:

Real

Road1

- v
0

: Real

Vehicle

- : Real

- : Real

- : Real

- :Real

Pedestrian

- simulationTime:

Real

- timeStep: Real

Test
Scenario

1

1

- ModerateRain

- HeavyRain

- VeryHeavyRain

- ExtremeRain

«enumeration»
RainType

- ModerateSnow

- HeavySnow

- VeryHeavySnow

- ExtremeSnow

«enumeration»
SnowType

- DimGray

- Gray

- DarkGray

- Silver

- LightGray

- None

«enumeration»
FogColor

1

WeatherC
{{OCL} self.fog=false

implies self.visibility = “300”

and self.fogColor=None}

Straight

- height:

RampHeight

Ramped

- radius:

CurvedRadius

Curved

- snowType:

SnowType

Snow

- rainType:

RainType

Rain

Normal

- 5 - 10 - 15 - 20

- 25 - 30 - 35 - 40

«enumeration»
CurvedRadius (CR)

- 4 - 6 - 8 - 10 - 12

«enumeration»
RampHeight (RH)

- 10 - 20 - 30 - 40 - 50

- 60 - 70 - 80 - 90 - 100

- 110 - 120 - 130 - 140

- 150 - 160 - 170 - 180

- 190 - 200 - 210 - 220

- 230 - 240 - 250 - 260

- 270 - 280 - 290 - 300

«enumeration»
VisibilityRange

- : TTC: Real

- : certaintyOfDetection:

Real

- : braking: Boolean

AEB Output

- : Real

- : Real

Output functions

Mobile
object

Position
vector

- x: Real

- y: Real

Position
1 11

1

1

Static input

1

Output

1
1

Dynamic input

x
p

0

y
p

0

v
p

0

θ
p

0

v
c

0

v3

v2

v1

F1

F2

Figure 2: The AEB domain model.

Range = [120..250]

Range = [32..50]

Range = [50..76]

θ
p

0

x
p

0

y
p

0

Range = [40..160]

Range = [60..95]

Range = [2..16]

θ
p

0

x
p

0

y
p

0

Range = [40 ..160]

Range = [30 ..85]

Range = [24 ..36]

θ
p

0

x
p

0

y
p

0

Curved road Ramped road Straight road

Figure 3: The ranges of the pedestrian position (x
p
0 , y

p
0) and

orientation (θ
p
0) for di�erent road topologies.

characterizing its initial position along x and y axes and relative

to the position of the vehicle (x
p
0 ,y

p
0), its orientation angle (θ

p
0)

and its initial speed (v
p
0). The dynamic objects variables are �oat.

Figure 3 shows the ranges for the pedestrian initial position and

orientation variables when the road is curved, ramped and straight,

respectively. The ranges for vehicle and pedestrian speed variables

are [1km/h..90km/h] and [1km/h..18km/h], respectively.

In addition to variable ranges, the valid inputs of ADAS are de-

termined by constraints de�ned over the input variables. These

constraints are either de�ned on static input variables, or they spec-

ify how value assignments to static variables impact the ranges of

the mobile object variables. An example of the constraints de�ned

over AEB static variables is shown using the OCL language [17]

in Figure 2 (see WeatherC-OCL). The constraint states that when

there is no fog, the visibility range is set to maximum. The con-

straints that relate static variables of AEB to ranges of mobile object

variables are captured in Figure 3. Speci�cally, the �gure speci�es

the valid ranges for pedestrian position and orientation variables

corresponding to di�erent road topologies.

ADAS simulations have two outputs: I. Position vectors for mo-

bile objects (i.e., position vectors for the vehicle and the pedestrian

in the AEB case study). The position vector related to each mobile

object stores the position of that object at each simulation time step.

II. Function speci�c output variables: Each ADAS, depending on its

function, produces some outputs. For example, AEB produces three

outputs corresponding to its three main components: (1) Time to

collision (TTC) generated by the sensor component and discussed

earlier. (2) certaintyOfDetection generated by the vision component

which is a percentage value indicating the probability that the de-

tected object is a pedestrian. (3) Braking that indicates whether a

braking request has been triggered.

The following describes the main AEB critical (or failure) behav-

ior extracted from the AEB requirements: “AEB detects a pedestrian

in front of the car with a high degree of certainty, but an accident

happens where the car hits the pedestrian with a relatively high speed

(i.e., more than 30km/h)". We denote this critical behavior by CB,

and refer to any AEB simulation scenario exhibiting this behavior

as a critical test scenario of AEB.

The test input space of AEB is large and multidimensional. As

we will specify in Section 3, it consists of four enumeration (static)

and �ve �oat (dynamic) variables. Considering only the static AEB

variables, their total number of value assignments is 11,242. Further,

AEB simulations (and in general ADAS simulations) are computa-

tionally expensive. This is because the underlying simulator (e.g.,

PreScan) builds on high-�delity mathematical models and takes a

relatively large amount of time to run (e.g., on average, each AEB

simulation takes 1.2 min). Our goal is to provide an e�ective algo-

rithm that, within a reasonable testing time budget: (1) generates

AEB critical test scenarios (i.e., those exhibiting CB), and (2) identi-

�es under what conditions on the AEB input variables such critical

scenarios are more likely to occur. The latter will provide engineers

with critical region characterizations, allowing them to better un-

derstand the conditions under which AEB fails to behave correctly.

3 ADAS FORMALIZATION
In this section, we formalize an ADAS system and its environment.

Our formalization is meant to help de�ne our algorithm precisely,

and to demonstrate how our work can be applied to other ADAS

systems. Our formalization is developed based on our analysis

of di�erent ADAS examples [13] and the input and con�guration

variables of the PreScan tool [21]. Generic descriptions of our ADAS

examples can be found on the Bosch website [7].

De�nition 3.1. We de�ne an ADAS as a tuple (S ,O , I ,D,C), where

- S = {s1, . . . ,sn } is a set of variables specifying (immobile) static

environment aspects.

- O is a set of mobile objects (pedestrians and vehicles).

- I = {i1, . . . ,im } is a set of variables specifying initial states of

the mobile objects in O . Each variable in I is related to one mobile

object in O , while each mobile object o ∈ O is related to one or

more variables in I .

-D is a set of domains of values for variables in S∪I . In particular,

D is partitioned into DS and DI (D = DS ∪ DI) such that DS =

{D1, . . . ,Dn } is a set of �nite value sets to variables in S , while

DI = {D
′
1, . . . ,D

′
m } is a set of in�nite value sets to variables in I .

Speci�cally, D j is the set of values for sj ∈ S , and D
′
j is an interval

[min...max] of real values specifying the values that i j ∈ I can take.

- C is a set of boolean propositional constraints over S ∪ I . The

set C is partitioned into CS and CI such that constraints in CS are

de�ned on �nite-domain variables in S , and constraints inCI relate

�nite-domain variables in S to in�nite-domain variables in I .

Example 3.1. We formalize AEB in Figure 1 as follows:

- Static variables (S): s1 (precipitation), s2 (fogginess), s3 (road

shape) and s4 (visibility range).

-Mobile objects (O): o1 (vehicle) and o2 (pedestrian).

- Dynamic variables (I): vc0 (initial speed of vehicle), v
p
0 (initial

speed of pedestrian), x
p
0 (initial position of pedestrian on the x-

axis), y
p
0 (initial position of pedestrian on the y-axis) and θ

p
0 (the

orientation of pedestrian).

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Raja Ben Abdessalem, Shiva Nejati,

Lionel C. Briand and Thomas Sti�er

- The domain of s1 is the union of RainType and SnowType enu-

merations in Figure 2 as well as a value for normal weather. Variable

s2 takes values from the FogColor enumeration. The domain of s3
is the union of RampedHeight and CurvedRadius enumerations

and a value for the straight road. Variable s4 takes values from

the VisibilityRange enumeration. The ranges for dynamic variables

were discussed in Section 2.

- The constraints over static variables (CS) relate the level of fog

(s2) to the visibility range (s4). An example of a CS constraint is:

(s2 = “DimGray”⇒ s4 = 10∨ . . .∨ s4 = 100). The constraints over

static and dynamic variables (CI) relate the shape of the road (s3)

to di�erent ranges for x
p
0 , y

p
0 and θ

p
0 (see Figure 3). An example

of a CI constraint is: (s3 = “RH4” ∨ . . . ∨ s3 = “RH12” ⇒ DxP0
=

[60..95] ∧ DyP0
= [2..16] ∧ Dθ P0

= [40..160]).

We denote by Z ⊆ D1 × . . .×Dn ×D
′
1 × . . .×D

′
m the set of value

assignments to variables in S ∪ I satisfying all the constraints in C .

An ADAS simulation function Σ takes as input a value assignment

z ∈ Z and a value T ∈ N indicating the simulation duration (i.e.,

the number of simulation steps). The output of Σ is (1) a set U of

output vectors indicating the position and speed of mobile objects

at each simulation time step, and (2) a set V of (time-independent)

output variables. Speci�cally,U captures the dynamic behavior of

ADAS and the environment (i.e., how mobile objects move over

time). Each position vector u ∈ U corresponds to one and only

one mobile object o ∈ O and is a function u : {0,1, . . . ,T } → R3

whereu (t) (t ∈ {0, . . . ,T }) is a triple (x ,y,v) indicating the position

(x ,y) and the speed v of the mobile object related to u at time t .

The set V determines the function-speci�c outputs produced by

decision-making components of an ADAS.

Example 3.2. AEB generates two position vectors (U): u1 (for

vehicle) and u2 (for pedestrian); and three decision-making outputs

(V): (1) TTC denoted by v1, (2) certaintyOfDetection denoted by v2,

and (3) braking denoted by v3 (see Figure 2).

To specify critical behaviors of ADAS, we de�ne (auxiliary) func-

tions over the dynamic system outputsU . For example, let u1 and

u2 be position vectors generated for AEB over simulation time T .

We de�ne two functions: (1) F1 (u1,u2) that computes the minimum

distance between the pedestrian (u2) and the �eld of view of the

vehicle (u1), and (2) F2 (u1,u2) that computes the speed of the car

at the time of collision, and returns −1 if collision does not occur.

We formalize the AEB critical behavior CB described in Section 2.

Given AEB outputs U = {u1,u2} and V = {v1,v2,v3}, we de�ne

CB(U ,V) as follows:
CB(U ,V) = (F1 (u1,u2) < 50cm) ∧ (v2 > 0.5) ∧ (F2 (u1,u2) > 30km/h) (1)

The CB property states that: a pedestrian is in front of a car

(F1 (u1,u2) < 50cm), is detected by AEB with a high certainty

(v2 > 0.5), and the car hits the pedestrian with a speed higher

than 30km/h (F2 (u1,u2) > 30km/h). The constant values 50cm, 0.5

and 30km/h are taken from the AEB speci�cation. An AEB test

scenario generating U and V is critical if and only if CB(U ,V) is

true.

4 SEARCH GUIDED BY CLASSIFIERS
In this section, we describe our ADAS testing algorithm that com-

bines multi-objective search and decision tree classi�cation models.

4.1 Multi-objective search
The formalization of ADAS critical behaviors depends on several

ADAS outputs. For example, formalizing the CB behavior (see equa-

tion (1)) relies on three AEB outputs F1, F2 andv2. We cast the prob-

lem of computing ADAS critical test scenarios as a multi-objective

search optimization problem [25] where the ADAS outputs speci-

fying its critical behaviors act as the search �tness functions. We

use the Non-dominated Sorting Genetic Algorithm version 2 (NS-

GAII) [16, 25], which has been previously applied to several soft-

ware engineering problems includingADAS testing [5]. TheNSGAII

algorithm generates a set of solutions forming a Pareto nondomi-

nated front [16, 25]. A dominance relation over solutions is de�ned

as follows: A solution x dominates another solution y if x is not

worse than y in all �tness values, and x is strictly better than y in at

least one �tness value. The output of NSGAII is a non-dominating

(equally viable) set of solutions, representing best-found trade-o�s

among �tness functions. In our work, NSGAII generates a number

of ADAS critical test scenarios by maximizing or minimizing the

ADAS outputs characterizing its critical behavior.

We do not present the details of the NSGAII algorithm due to lack

of space. To learn more about this widely-used algorithm, see [25].

Here, we discuss how we tailor NSGAII to ADAS testing:

Representation. A feasible solution is a vector of values to static

variables s1, . . . ,sn and dynamic variables i1, . . . ,im of the ADAS

under analysis such that each vector satis�es the constraints in C .

Each such vector de�nes an ADAS test scenario. Simulating each

vector generates outputs U and V that can be used to compute

�tness functions.

Initial population. An initial population for our search algorithm

is a set P consisting of vectors of ADAS test scenarios. We aim

to generate P by selecting a diverse set of vectors from the input

space. We generate P with size q as follows: First, we generate q

vectors of value assignments to static variables s1, . . . ,sn using t-

wise combinatorial testing [24] such that (1) theCS constraints hold,

and (2) the pairwise coverage of variables s1 to sn is maximized.

We use the PLEDGE tool [19] for this purpose. Second, we use an

adaptive random search algorithm [25] to generate a large number

(> q) of value assignments to dynamic variables i1, . . . ,im . Adaptive

random search is an extension of the naive random search that

attempts to maximize the Euclidean distance between the points

selected in the input space. Third, for each static variable vector,

we select a dynamic variable vector such that the constraints CI
(i.e., constraints between static and dynamic variables) hold. If for

some static variable vector v we cannot �nd such dynamic variable

vector among the existing randomly generated pool, we perform

some more iterations of (adaptive) random search within the value

ranges accepted by the CI constraint for v . The initial population

set P is complete when every static variable vector is matched to

one dynamic variable vector. Note that in our ADAS formalization,

we do not have any constraint among the dynamic variables.

Fitness Functions. Fitness functions are de�ned based on the

ADAS outputs specifying its critical behavior. For the AEB case

study, �tness functions are the two functions F1 and F2, and the

output variablev2. These are used to formalize the critical behavior

of AEB (the CB behavior in Section 3). To generate critical test

scenarios, we maximize F2 andv2, and minimize F1. This is because

Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

for scenarios exhibiting CB, the values of F2 andv2 should be larger

than a threshold, and F1 should be smaller than a threshold.

Genetic operators. The genetic operators of NSGAII should be

de�ned such that the generated test scenario vectors satisfy the

CS and CI constraints. Here, we provide crossover and mutation

operators that respect pairwise CS constraints, and CI constraints

relating one static variable to one or more dynamic variables. The

constraints of the ADAS systems we have studied in our work [13]

conform to these conditions. Speci�cally, in all of these systems,

the CS constraints relate the weather properties (e.g., fog-level (s2)

to visibility range (s4)), and the CI constraints relate di�erent road

shape types (s3) to the ranges of dynamic variables x
p
0 , y

p
0 , and θ

p
0 .

Selection:Weuse a binary tournament selectionwith replacement

that has been used in the original implementation of NSGAII [16].

Crossover: To avoid violating theCS constraints, crossover is not

applied to the static segments of the vectors. That is, our crossover

operator is applied to dynamic segments of the vectors only (i.e.,

(i1, . . . ,im)). To avoid violating the CI constraints, we match pairs

of vectors with the same value for the static variables participating

inCI (e.g., the same value for s3 in the AEB case study). If we do not

�nd any match for some parent vector, we match two vectors with

the smallest Euclidean distance between the variables participating

in the CI constraints. We then use Simulated Binary Crossover

operator (SBX) [6, 14] that has been previously applied to vectors

of �oat variables. The di�erence between o�springs generated by

SBX and their parents is controlled by a distribution index (η): The

o�springs are closer to the parents when η is large, while with

a small η, the di�erence between o�springs and parents will be

larger [15]. In this paper, we chose a high value for η (i.e., η = 20)

based on existing guidelines [14]. Given that η is large, even when

parents do not have the same values for the static variables in CI ,

the values of the dynamic variables in each of the two o�springs are

likely to fall within the valid ranges of their respective parent vector.

Hence, the CI constraints are likely to still hold after applying SBX

in such situations. If the resulting values are out of variable ranges

after crossover, we cap them at the max or min of the ranges when

they are closer to the max or min, respectively.

Mutation: Mutation is applied after crossover to static and dy-

namic variables with a probability (mutation rate). To avoid viola-

tion of the CI constraints, we do not mutate static variables partici-

pating in the CI constraints. Note that since the initial population

is generated by maximizing pairwise coverage of static variables,

di�erent value combinations of the static variables inCI are already

present in the initial population. Except for static variables in CI ,

all other static and dynamic variables can be mutated. We mutate

a static variable not appearing in CS by randomly changing its

value within its valid range. For a pair si and sj of static variables

appearing in a CS constraint we de�ne a closed mutation operator

as follows: after mutating si (respectively sj), we identify the set of

values for sj (respectively si) consistent with the new value of si
(respectively sj), and randomly change sj (respectively si) to one of

those values. To mutate a dynamic variable, we shift the variable by

a value selected from a normal distribution with mean µ = 0 and a

small variance. Similar to the crossover operator, if the resulting

values are out of variable ranges, we cap them at the max or min of

the ranges when they are closer to the max or min, respectively.

All points

Count 1200

“non-critical” 79%

“critical” 21%

“non-critical” 59%

“critical” 41%

Count 564 Count 636

“non-critical” 98%

“critical” 2%

Count 412

“non-critical” 49%

“critical” 51%

Count 152

“non-critical” 84%

“critical” 16%

Count 230(A) Count 182

v
p

0 >= 7.2km/h v
p

0 < 7.2km/h

θ
p

0 < 218.6
◦

θ
p

0 >= 218.6
◦

RoadTopology(CR = 5,
Straight,RH = [4− 12](m))

RoadTopology
(CR = [10− 40](m))

(a)

“non-critical” 31%

“critical” 69%

“non-critical” 72%

“critical” 28%

All points

Count 3367

“non-critical” 58%

“critical” 42%

“non-critical” 43%

“critical” 57%

Count 2198 Count 1169

“non-critical” 88%

“critical” 12%

Count 338

“non-critical” 17%

“critical” 83%

Count 1860

“non-critical” 47%

“critical” 53%

(B)

“non-critical” 42%

“critical” 58%

Count 1438 Count 422

“non-critical” 64%

“critical” 36%

Count 553

“non-critical” 29%

“critical” 71%

Count 885

“non-critical” 51%

“critical” 49%

(C)

“non-critical” 37%

“critical” 63%

Count 548 Count 337

“non-critical” 73%

“critical” 27%

(D)

x
p

0 >= 37.4 ∧RoadTopology
(Straight,

RH = [4− 12])

x
p

0 < 37.4∧RoadTopology
(Straight,

θ
p

0 < 232.5
◦

θ
p

0 >= 232.5
◦

x
p

0 < 33x
p

0 >= 33

θ
p

0 >= 185.6
◦

θ
p

0 < 185.6
◦

y
p

0 < 57.7y
p

0 >= 57.7

∧

∧

∧∧

∧

∧ RoadTopology

RoadTopology

RoadTopologyRoadTopology

RoadTopology

RoadTopology

(Straight,

(CR = [5− 40])

(CR = [5− 40])

(CR = [5− 40])

(CR = [5− 40])

(Straight,

CR = [5− 40],

CR = [5− 40])

CR = [5− 40])

(b)

CR = [5− 40])

Figure 4: Decision trees generated our approach for the AEB

system: (a) An initial decision tree, and (b) A decision tree

obtained after some iterations of the NSGAII-DT algorithm.

4.2 Decision tree learning
Decision tree learning is a supervised learning classi�cation tech-

nique [1, 35]. Supervised learning techniques are trained based

on labeled data, and are divided into regression and classi�cation

techniques where the goal is to predict real-valued and categorical

outputs, respectively. In this paper, we use classi�cation decision

trees. In this paper, we use boolean functions such as CB (see equa-

tion (1) in Section 3) to label each ADAS test scenario as critical

or non-critical. Alternatively, we could characterize the critical

behavior as a real-valued function and use regression trees instead.

In contrast to other learning techniques (e.g., SVM), decision tree

boundaries are parallel to the dimensions of the input space and

expressible in terms of linear conditions over input variables. This

makes decision tree boundaries understandable by practitioners,

and has been a main reason why we selected them in our work.

Figure 4 shows two decision trees generated for the AEB case

study. The input data for building decision trees is a set of AEB

test scenario vectors. The label for each scenario is computed by

�rst simulating the scenario and then labeling it either as critical or

non-critical by applying the CB function to the scenario simulation

outputs. A decision tree model is built by partitioning the set of

labeled test scenarios in a stepwise manner aiming to create parti-

tions with increasingly more homogeneous labels (i.e., partitions

in which the majority of scenarios are labeled either as critical or

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Raja Ben Abdessalem, Shiva Nejati,

Lionel C. Briand and Thomas Sti�er

non-critical). For example, the tree in Figure 4(a) shows that out of

the 636 scenarios that use a straight, ramped or curved (with CR =

5) road, 98% were not critical (did not exhibit CB).

The tree leaves containing more than 50% critical scenarios (i.e.,

leaves A to D in Figure 4) are critical regions. For example, out

of the total of 1200 scenarios, 230 of them are classi�ed in the

critical region (A), and 69% of them are critical. Each critical region

is speci�ed by conjoining the conditions appearing on the path

from the root to the critical region. For example, the critical region

A is characterized as follows: vP0 ≥ 7.2km/h ∧ θP0 < 218.6° ∧

(s3 = “CR10” ∨ . . . ∨ s3 = “CR40”).

At each (non-leaf) node, a decision tree partitions the data in

that node based on a condition on only one variable. However, due

to theCS andCI constraints, a decision tree condition on a variable

v may additionally constrain variables other than v but related to

v via CS or CI . As discussed in Section 4.1, our genetic operators

respect the CS and CI constraints. Hence, when our search algo-

rithm applies these operators to a speci�c critical region (as we

will discuss in Section 4.3), the operators automatically handle both

the constraints explicitly identi�ed by the tree and the additional

constraints implied byCS orCI . However, as critical region charac-

terizations are among outputs of our approach, we explicate these

additional constraints in outputs presented to engineers. For exam-

ple, in Figure 4(b), the conditions in gray color are not generated

by the decision tree but are implied by the AEB constraints.

We note that, in this paper, we do not use decision trees to predict

whether a given ADAS scenario is critical or not (i.e., the decision

trees are not used as predictor models). We exclusively use the

decision trees: (1) to better guide the search, and (2) to characterize

the critical regions of the ADAS input space. Further, to avoid

over�tting in the trees generated by our approach, in Section 5.3,

we de�ne a stopping criterion to control the tree expansion such

that the number of vectors in each tree leaf does not fall below a

certain threshold.

4.3 NSGAII guided by decision trees
Algorithm 1 shows our proposed algorithm, NSGAII-DT, that gener-

ates critical test scenarios and critical regions for ADAS. NSGAII-DT

receives as input an ADAS speci�cation, a set of (quantitative) �t-

ness functions, a boolean label function indicating whether a test

scenario is critical or not, and a parameter д indicating the number

of search iterations we perform in each critical region. The output

of NSGAII-DT is a set of the critical test scenarios and the critical

regions R1, . . . ,Rk of the ADAS input space.

NSGAII-DT starts with an initial and randomly selected popu-

lation set P (line 2). Each iteration of NSGAII-DT consists of the

following main steps: First, it performs a number of (genetic) search

iterations usingNSGAII in critical regions of the input space (lines 6–

10). Speci�cally, for each critical region Ri , the setQ of the elements

insideRi is passed as the initial population to NSGAII alongwith the

parameterд (i.e., the number of search iterations to be applied in Ri).

We further pass Ri and C to NSGAII. In particular, Ri speci�es the

ranges of input variables valid for the critical region under search.

Provided with the variable ranges and the constraints (i.e., the setC),

our mutation and crossover operators described in Section 4.1 can

generate new vectors within the region Ri . Note that in the �rst iter-

ation, the only critical region is the entire input space (R1 in line 4).

Algorithm 1: NSGAII-DT

Input: - (S,O, I , D,C): An ADAS speci�cation

- F1, . . . , Fl : Search �tness functions

- label: A boolean function to label scenarios as critical/non-critical

- д: Number of search iterations to be applied at each critical leaf

Result: - criticalScenarios: A set of critical test scenarios

- R1, . . . , Rk (⊆ D1 × . . . × Dn × D
′
1 × . . . × D′m): A set of critical

regions

1 begin
2 Select an initial population set P randomly.

/*Each p ∈ P is a vector of values for (s1, . . . , sn, i1, . . . , im) */

3 k ← 1; Best ← ∅

4 R1 ← D1 × . . . × Dn × D
′
1 × . . . × D′m

/*R1 is the entire search space and includes all elements in P */

5 repeat
6 for i = 1 to k do
7 Q ← P ∩ Ri
8 B,Q ′ ← NSGAII(д,Q, F1, . . . , Fl , Ri ,C)

/*Inputs passed to NSGAII:

д: the number of search iterations applied to each critical leaf;

Q : the set of scenarios used as the initial population of NSGAII;

F1, . . . , Fl : search �tness functions;

Ri : the critical leaf in which we want to run NSGAII; and

C : the ADAS constraints.

Outputs received from NSGAII:

Q ′: all the solutions generated during search; and

B : best solutions generated by NSGAII.*/

9 P ← P ∪Q ′

10 Best ← B ∪ Best

11 rank1, . . . , rankt ← ComputeRanks(Best)

12 criticalScenarios ← rank1
13 (P+, P−) ← ComputeLabel (label, P) /*P+ : non-critical,

P− : critical*/

14 Build a decision tree Tree based on (P+, P−)

15 Let R1, . . . , Rk characterize the leaves of Tree where P− has a higher

probability than P+

/* For each region Ri = d1 × . . . × dn × d
′
1 × . . . × d ′m ,

we have: ∀j ∈ {1, . . . , n } ⇒ dj ⊆ D j , and ∀j ∈ {1, . . . ,m },

∃min ∈ D′j , ∃max ∈ D′j s.t. min < max ∧ d ′j = [min..max]*/

16 until search time has run out

NSGAII returns two sets:Q ′ and B whereQ ′ is the set of all scenar-

ios and B is the set of most critical scenarios computed by NSGAII.

Second, NSGII-DT identi�es the scenarios on the best Pareto

front rank computed so far (lines 11–12). In particular, it identi�es

the best Pareto front rank in set Best (i.e., the set of all best solutions

generated by all invocations of NSGAII). Third, NSGII-DT builds a

decision tree based on the labeled set of all the scenarios generated

up to that point (lines 13–14). Speci�cally, it computes the label for

each p ∈ P , partitions P into P+ (the non-critical set) and P− (the

critical set), and builds a decision tree based on the labeled data.

Fourth, it updates the set of desired input space regions in which

subsequent search iterations are performed (line 15). Speci�cally,

it identi�es the critical leaves R1, . . . ,Rk of the tree such that the

probability of failure P− is higher than that of non-failure P+. Each

Ri is a sub-region of the ADAS input space and is speci�ed as the

conjunction of the conditions on the tree paths leading to the leaves

containing more elements from P− than from P+.

NSGAII-DT can be stopped when we run out of time. Alterna-

tively, we can stop NSGAII-DT when all the tree leaves classify

critical scenarios with a high probability (e.g., more than 95%) or

Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

when the �tness functions do not improve for the scenarios in the

criticalScenarios set compared with the previous iteration.

For example, the decision trees in Figure 4 are computed by

applying NSGAII-DT to the AEB case study. Figure 4(a) shows an

initial tree, and Figure 4(b) shows a tree after a few search iterations.

The tree in Figure 4(b) containsmore conditions, and identi�es three

critical regions B, C and D, instead of one such region in Figure 4(a).

Further, the regions B, C and D are considerably more speci�c than

region A as they prune the domains of the input variables more.

We note three important aspects of NSGAII-DT: (1) In ADAS

testing, the most time-consuming part of the search is running sim-

ulations to compute �tness functions. NSGAII-DT does not increase

the number of simulations compared to NSGAII. The �tness values

computed by the NSGAII search (line 8) are reused at line 13 to

label the new elements. (2) To rebuild the tree in line 14, we use all

the scenarios generated and simulated by NSGAII (i.e., Q ′). Since

computing simulations is expensive and to build more accurate

trees, we try to reuse as much as possible the simulation outputs

computed by NSGAII. (3) In our work, we run NSGAII in leaves

that classify critical scenarios with a probability lower than 95%.

This is to use search time budget exploring the critical parts in the

input space about which we have less certainty regarding criticality.

These are parts of the space where the tree may need to be re�ned.

5 EVALUATION

In this section, we present the result of our evaluation performed

on the AEB case study.

5.1 Research Questions
RQ1. Does the decision tree technique help guide the evolutionary

search and make it more e�ective? The most important criterion for

a search algorithm to be e�ective in the context of ADAS testing is

that it should be able to generate critical test scenarios, in partic-

ular, in large and multidimensional search spaces. To answer this

question, we determine whether NSGAII-DT (i.e., our proposed al-

gorithm that is guided by both decision trees and genetic operators)

is able to generate scenarios that are more critical compared to those

obtained by the NSGAII algorithm (i.e., the baseline evolutionary

search algorithm).

RQ2. Does our approach help characterize and converge towards

homogeneous critical regions? After evaluating the ability of NSGAII-

DT in generating critical test scenarios in RQ1, we evaluate the

critical regions. In particular, in RQ2, we investigate whether the

decision trees generated by NSGAII-DT are able to precisely char-

acterize critical regions in ADAS input spaces and increasingly do

so better over NSGAII-DT iterations.

At the end of Section 5.4, we provide qualitative insights into

the bene�ts of our approach from the perspective of practitioners.

5.2 Metrics
To answerRQ1, we compare the Pareto fronts generated byNSGAII-

DT and NSGAII using three well-known quality indicators for

evaluating multi-objective search results [22]: Hypervolume (HV),

Generational Distance (GD), and Spread (SP). To compute the qual-

ity indicators, following existing guidelines in the literature [34],

we compute a reference Pareto front as the union of all the non-

dominated solutions obtained from all runs of NSGAII-DT and

NSGAII. The HV quality indicator [39] measures the size of the

space covered by the members of a Pareto front generated by a

search algorithm. The higher this size, the better the results of the

algorithm. The GD quality indicator [32] measures the Euclidean

distance between members of a Pareto front and the nearest so-

lutions on a reference Pareto front. The lower the value of GD,

the more optimal the Pareto front solutions. The SP quality indi-

cator [16] measures the extent of spread among the members of a

Pareto front generated by a search algorithm [16]. The lower the

SP values, the better spread out the search outputs.

To answer RQ2, we use the RegionSize, the GoodnessOfFit and

the GoodnessOfFit-crt metrics de�ned below.

RegionSize measures the size of the critical regions as a percent-

age of the size of the entire input space. It is used to determine

whether the critical regions become smaller and more speci�c over

NSGAII-DT iterations. Let D1 to Dn and D ′1 to D ′m be the dimen-

sions of the input space (as de�ned in Section 3). Recall from the

NSGAII-DT algorithm (line 15 in Algorithm 1) that the dimensions

of a region Ri are characterized by d1 × . . . × dn × d
′
1 × . . . × d

′
m

such that d1 to dn are respectively (�nite) subsets of D1 to Dn , and

d ′1 to d
′
n are respectively sub-intervals of the intervals D ′1 to D ′m .

We de�ne RegionSize(Ri) as follows:

RegionSize(Ri) =
∏n

j=1
|dj |

|Dj |
×
∏m

j=1

max (d′j)−min(d′j)

max (D′j)−min(D′j)

RegionSize for the entire input space is equal to one, and the

lower RegionSize(R), the smaller the region R. For example, for the

tree in Figure 4(a), we have RegionSize(A) = 0.25, and for that in

Figure 4(b), we have RegionSize(B) = 0.02, RegionSize(C) = 0.03

and RegionSize(D) = 0.03, implying that the size of critical regions

are reduced over subsequent iterations of NSGAII-DT. As discussed

in Section 4.2, in our work, input variable domains are reduced

in two ways: by the explicit conditions on tree edges and due to

ADAS constraints, i.e., the gray conditions in Figure 4(b). In order

to accurately compute RegionSize (e.g., for B-D in Figure 4(b)), we

consider both explicit and implicit domain reductions.

GoodnessOfFit is used to determine how well the trees gener-

ated during the search �t to the set of scenarios sampled during

the search. Similarly, GoodnessOfFit-crt determines goodness of �t

for critical scenarios only. Each decision tree is built based on a

labeled set P+ ∪ P− of elements (see line 14 in Algorithm 1). The

GoodnessOfFit of each decision tree is the number of elements in

P+ ∪ P− that are correctly classi�ed by the tree (either as critical or

non-critical) divided by |P+ ∪ P− |. Similarly, the GoodnessOfFit-crt

for each tree is the number of elements in P− that are correctly

classi�ed by the tree (as critical) divided by |P− |. Note that since

we do not use the classi�cation trees as prediction models, we do

not evaluate them based on cross validation with test sets. Instead,

we assess how well the trees characterize critical scenarios, while

avoiding over�tting as discussed in Sections 5.3 and 5.4.

5.3 Experiment Design

We applied both NSGAII-DT and NSGAII to the AEB case study

introduced in Section 2. For both algorithms, we set the (initial)

population size to 100, the mutation rate to 0.11, and the crossover

rate to 0.6. Speci�cally, the mutation rate is 1/l where l is the

chromosome size (nine in our work). The search parameter values

are consistent with existing guidelines [3].

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Raja Ben Abdessalem, Shiva Nejati,

Lionel C. Briand and Thomas Sti�er

We set the search time to 24 hours. Based on our experiments,

the HV, GD and SP quality indicator values for both NSGAII and

NSGAII-DT start to stabilize and reach a plateau within the search

time budget of 24h. Further, according to domain experts, longer

search time budgets are not practical in the context of ADAS testing.

To build NSGAII-DT decision trees, we use the Classi�cation and

Regression Trees (CART) [8] algorithm. We control the decision

tree size (depth) by setting the value of minimum split parameter

(msp) to 10% of the size of the underlying data set. Our goal is thus to

avoid over�tting and obtain reasonable estimates in ADAS critical

regions captured by the tree leaves labeled critical. Moreover, we

require that splitting a node reduces the miss-classi�cation error of

decision trees by at least 1%.

Within the 24h search time budget, NSGAII performed, on aver-

age, 22 search iterations (generations). Note that the NSGAII-DT

algorithm consists of two nested loops: The outer loop that gener-

ates decision trees (lines 5–16 in Algorithm 1), and the inner loop

that invokes NSGAII for critical input space regions (lines 6–10

in Algorithm 1). We refer to each iteration of the outer loop as

tree generation. Corresponding to each tree generation, NSGAII is

invoked one or more times depending on the number critical tree

leaves. We set the number of search iterations performed by each

NSGAII invocation to �ve (i.e., we set д = 5 in Algorithm 1). By

setting д = 5, NSGAII-DT performed between �ve to seven tree

generations in 24h (i.e., each run of NSGAII-DT generated between

�ve to seven trees). Further, on average, NSGAII-DT performed 30

search iterations (i.e., NSGAII iterations) in 24h. Note that in our

experiments, each run of NSGAII-DT performed more search itera-

tions than each run of NSGAII. This is because, in our experiments

and within the 24h search time budget, most search iterations of

NSGAII-DT are applied to population sets smaller than the initial

population set, while all search iterations of NSGAII are applied

to a �xed-size population set equal to the size of the initial popu-

lation. We reran each of the NSGAII and NSGAII-DT algorithms

for 15 times to account for their randomness. We have made our

experimental results available at [13].

5.4 Results
RQ1. Figure 5 shows the HV, GD and SP values computed based

on the outputs of NSGAII-DT and NSGAII. We show the results at

every four-hour time interval starting at 2h as well as the results

at the end of the search time limit (i.e., at 24h). Note that, on aver-

age, simulating the elements in the initial population takes about

2h. Hence, the results at 2h are those obtained for the randomly

selected initial population and prior to any search iteration. As

shown in the �gure, the HV, GD and SP values for NSGAII-DT are

consistently better than those for NSGAII. Further, after executing

the algorithms for about 22h, both NSGAII-DT and NSGAII con-

verge towards their respective Pareto optimal solutions (i.e., for

each algorithm, the di�erences in HV, GD and SP average values

between 22h and 24h are negligible).

Following existing guidelines [2], to statistically compare HV,

GD and SP values, we use the nonparametric pairwise Wilcoxon

rank sum test [12] and the Vargha-Delaney’s Â12 e�ect size [33].

The level of signi�cance (α) is set to 0.05. Table 1 reports the sta-

tistical test results comparing NSGAII-DT and NSGAII at 24h. For

H
V

0.0

0.4

0.8

G
D

0.05

0.15

0.25

S
P

2

0.6

1.0

1.4

6 10 14 18 22 24
Time (h)

NSGAII-DT

NSGAII

Figure 5: Comparing HV, GD and SP values obtained by NS-

GAII and NSGAII-DT.

Table 1: Statistical test results for NSGAII-DT and NSGAII at

24h (the format is: metric (p-value / Â12)).

HV (0.01 / 0.9), GD (0.07 / 0.3), SP (0.01 / 0.1)

HV and SP comparisons, the p-values are less than 0.05, and the

Â12 values show large e�ect sizes. The di�erences between the

GD distributions of NSGAII-DT and NSGAII are not statistically

signi�cant, although the e�ect size value is in the medium range.

However, as shown in Figure 5, the medians and averages of the

GD values obtained by NSGAII-DT are lower (i.e., better) than the

medians and averages of the GD values obtained by NSGAII.

Finally, we evaluate the results of NSGAII-DT and NSGAII based

on the number of distinct, critical test scenarios generated by each

algorithm. Recall that an AEB test scenario is a vector in the AEB

input space (i.e., a vector of values to four static and �ve dynamic

variables). Also, an AEB test scenario is critical if its simulation

outputs satisfy the CB property (equation (1) in Section 3). Two

AEB test scenarios are distinct if they di�er in the value of at least

one static variable or in the value of at least one dynamic variable

with a signi�cant margin.

Over the 15 runs, NSGAII generates 708 distinct AEB test scenar-

ios among which 411 are critical. In contrast, over the 15 runs,

NSGAII-DT generates 1045 distinct AEB test scenarios among

which 731 are critical. This result shows that, within the same

search time budget, on average, NSGAII-DT provides 78% more

distinct, critical test scenarios compared to NSGAII, enabling the

engineers to better identify the limitations of AEB.

The answer to RQ1 is that, NSGAII-DT signi�cantly outperforms

NSGAII. Further, on average, NSGAII-DT generates 78% more

distinct, critical test scenarios compared to NSGAII.

RQ2. To answer this question, we focus on assessing the critical

regions characterized by NSGAII-DT (i.e., the algorithm that is

shown, in RQ1, to outperform NSGAII). We further note that NS-

GAII, or any search algorithm for that matter, has never been used

to characterize critical regions and cannot be used as a baseline of

comparison for this research question.

Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

G
o
o
d
n
e
s
s
O
fF
it

R
e
g
io
n
S
iz
e

1 5 642 3

0.40

0.50

0.60

0.70

tree generations

(b)

 0.80

71 5 642 3

0.00

0.05

0.10

0.15

tree generations

(a)

0.20

7

G
o
o
d
n
e
s
s
O
fF
it
-c
rt

1 5 642 3

0.30

0.50

0.70

tree generations

(c)

 0.90

7

Figure 6: Evaluating the critical regions: (a) the RegionSize,

(b) the GoodnessOfFit, and (c) the GoodnessOfFit-crt values.

50

69

36320

θ

y
p

0

x
p

0

~
v

c

0

Curved road (radius
)

Conditions

(b) Region B

x
p

0
2 [32− 36](cm)

y
p

0
2 [50− 69](cm)

θ
p

0
2 [240◦ − 250◦]

vc
0
> 36km/h

vp
0
>= 6.1km/h

r 2 [15− 40](m)

50

76

36320

θ

y
p

0

x
p

0

~
v

c

0

rr

(a) Region A

Conditions

Curved road (radius
)

x
p

0
2 [32− 36](cm)

vc
0
> 36km/h

r 2 [15− 40](m)

vp
0
< 6.1km/h

y
p

0
2 [50− 76](cm)

θ
p

0
2 [120◦ − 250◦]

Figure 7: Examples of critical regions for the AEB case study

Figure 6(a) shows the RegionSize values for the critical regions

obtained from the decision trees generated by NSGAII-DT. Recall

that NSGAII-DT performs �ve to seven tree generations within

the 24h search time limit. In our experiments, each decision tree

generated by NSGAII-DT had between one and three critical leaves

(i.e., critical regions). As shown in the �gure, the critical regions

generated by NSGAII-DT become monotonically smaller (i.e., more

speci�c) over successive tree generations. In particular, the critical

regions obtained from the �rst decision trees are on average 17.2%

of the size of the entire input space, while the �nal trees generated

by NSGAII-DT are on average 3.5% of the input space.

Figures 6(b) and 6(c) show theGoodnessOfFit and theGoodnessOfFit-

crt values for NSGAII-DT decision trees, respectively. As shown in

the �gure,GoodnessOfFit increases from 57% to 77%, andGoodnessOfFit-

crt increases from 50% to 89% over the maximum seven tree gen-

erations of NSGAII-DT. These results show that the decision trees

generated by NSGAII-DT, compared to those generated based on

random initial populations, accurately classify on average 20%more

critical and non-critical scenarios, and almost 40% more critical sce-

narios. Hence, NSGAII-DT, over its successive tree generations, pro-

duces decision trees that �t noticeably better to critical scenarios.

The answer to RQ2 is that the RegionSize, GoodnessOfFit and

GoodnessOfFit-crt values monotonically improve across di�erent

tree generations, con�rming that the generated critical regions

consistently become smaller, more homogeneous and more pre-

cise over successive tree generations of NSGAII-DT. In particular,

the trees generated by NSGAII-DT, compared to those generated

based on the initial randomly selected populations, �t on average

to 40% more critical AEB test scenarios.

Bene�ts fromapractitioner’s perspective.Here, we investigate

whether practitioners are able to use and bene�t from our approach.

In particular, we intend to know whether the critical regions com-

puted by our approach are understandable, informative, and useful

to practitioners. To do so, we draw on the qualitative re�ections

of two semi-structured interview [36] sessions that we conducted

with three senior engineers at IEE. The re�ections are based on

the comments the engineers made in two two-hour meetings with

the researchers. The engineers were selected from three di�erent

groups at IEE working on di�erent aspects of ADAS development

and testing. We have been collaborating with one of these engineers

on the research and the case study presented in this paper. The two

other engineers, however, did not have any interaction with the

researchers prior to the interview sessions. Further, they were not

involved in our research nor in the development of the AEB case

study or any of our other ADAS examples.

To perform the interviews, we selected, among the decision trees

generated by NSGAII-DT in our experiments, the one with the high-

est goodness of �t. The selected tree characterized three critical

regions in the AEB input space. We created visually-enhanced rep-

resentations of the three regions, showing the regions individually

without any reference to the tree structure. Figures 7(a) and (b)

illustrate the representations for two of the regions. The conditions

specifying each region are shown on the left side of each region dia-

gram. Furthermore, some of these conditions (i.e., those on the road

type, and the initial position and orientation of the pedestrian) are

visually shown on the right side of each diagram. RegionA speci�es

the AEB input scenarios where a car (speed > 36.6km/h) drives on

a curved road with a radius between 15m to 40m, while a pedestrian

starts walking from a point inside the dashed gray rectangle with a

trajectory between 120° and 250° and crosses the road with a low

speed (< 6.1km/h). Region B speci�es similar scenarios as those in

A except that the pedestrian walks with a high speed (>= 6.1km/h)

within a much narrower trajectory and starts crossing the road

from a slightly smaller area compared to the one in A.

During the meetings, we presented the critical regions to the

engineers, and asked the following questions: (1) Are you able

to understand the conditions specifying the regions? (2) Based on

your domain knowledge, do you think the regions specify situations

where AEB is more likely to fail (i.e., exhibits CB)? (3) How can you

utilize the knowledge you gain from the characterizations of the

regions to analyze AEB? These questions aim to assess, respectively,

comprehension, intuitiveness and usefulness of the critical region

characterizations generated by our approach.

Regarding comprehension and intuitiveness, the engineers noted

that the characterizations of the regions are understandable and

consistent with their intuition. For example, regions A and B in-

dicate that scenarios containing curved roads are more likely to

exhibit CB. This is because, on such roads, pedestrians appear rel-

atively late in the camera’s �eld of view and will be detected late

by AEB, hence leaving little time to apply the brake. The regions

further show that the probability of CB is higher when the car speed

is higher than 36.6km/h. Finally, the regions show that, in addition

to the road and vehicle characteristics, CB likely happens due to

pedestrian dynamics. Speci�cally, critical scenarios are more likely

when pedestrians walk from particular areas on the sidewalk, or as

shown in B, running pedestrians with a particular trajectory (θ) are

more likely to escape accidents if they do not run towards the car.

Regarding the usefulness of our approach, the engineers noted

that the information captured by these regions can help them in

the following ways: (1) Debugging the system or the simulator. The

region characterizations, particularly when they do not match the

domain knowledge, may point to errors in the system or the simu-

lator. For example, in our early results, curved roads did not appear

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Raja Ben Abdessalem, Shiva Nejati,

Lionel C. Briand and Thomas Sti�er

as critical regions. Our investigation showed that due to an error

in the AEB sensor output (i.e., the TTC output), which resulted in

some scenarios that actually led to collision to be wrongly labeled

as non-critical. Further, the pedestrian dynamic situations iden-

ti�ed as critical may point to weaknesses in pedestrian tracking

algorithms [29] typically used in ADAS. (2) Identifying changes to

hardware components to help increase ADAS safety. For example, in

our work, we assume AEB contains one camera located at the front

center of the car with a speci�c value for its �eld of view. Regions

A and B indicate that a di�erent type of camera with a larger �eld

of view or two cameras, although more expensive, may help detect

pedestrians faster and better on curved roads. (3) Identifying proper

warnings to drivers. Some of ADAS critical behaviors may not be

avoidable due to real world and physical constraints. Nevertheless,

our approach enables car makers to be aware of such situations

and consider mitigation strategies. For example, regions A and B

indicate that AEB may not be fully trusted on curved roads in resi-

dential zones where it is more likely for pedestrians to cross roads.

In such situations, a warning message may be shown to drivers to

reduce their speed (e.g., to lower than 30km/h).

5.5 Threats to validity

Tomitigate the Internal validity risks caused by confounding factors,

we compared NSGAII-DT and NSGAII under identical parameter

settings. Further, we present a detailed formal description of our

case study and search algorithm, and provide all the parameter set-

tings to facilitate reproducibility. Our case study is a real ADAS. The

simulation data is obtained based on an industrial and widely-used

ADAS simulation tool. To assess usefulness of our approach, we

conducted two semi-structured interview sessions with three engi-

neers from di�erent groups at IEE with varying types of expertise

related to ADAS development.

Conclusion validity is related to random variations and inap-

propriate use of statistics. To mitigate these threats, we have fol-

lowed standard guidelines in search-based software engineering [3]

and ran the search algorithms 15 times. Further, we use the non-

parametric pairwise Wilcoxon Paired Signed Ranks test and Vargha

and Delaney’s Â12 for statistical testing and e�ect sizes.

The main threat to construct validity concerns unsuitable or

incorrect metrics. To compare multi-objective search algorithms we

use standard quality indicators (i.e., HV, GD, SP). Further, we assess

the decision trees generated by our approach using our formally

de�ned RegionSize and the standard GoodnessOfFit metrics.

Regarding the external validity threats, we note that we provide

in Section 3 a precise formalization of the ADAS systems to which

our testing approach is applied. Our ADAS formalism builds on our

experiences of studying di�erent ADAS systems as well as the char-

acteristics of the PreScan simulator. Our testing approach applies

to any ADAS system that conforms to our formalism presented in

Section 3. Finally, we note that ADAS systems comprise an impor-

tant and growing industry sector with pressing needs regarding

testing and veri�cation.

6 RELATED WORK

Search-based testing has received signi�cant attention in recent

years [18, 26]. However, due to the functional complexity of most

real-world systems, it has been less applied to system testing and

more often to unit testing [11, 26]. Search-based system testing has

been previously used to automate test generation for ADAS [11].

For example, it has been applied to a vehicle-to-vehicle braking

assistance [9], an autonomous parking [10] and a pedestrian de-

tection system [5]. Bühler and Wegener [9, 10] base their testing

on a single-objective search algorithm, while Ben Abdessalem et.

al. [5] use a multi-objective search algorithm. In contrast to our

work, none of these approaches consider (static) environment vari-

ables in the test input space, and they vary only mobile objects’

variables in test scenarios. Hence, these approaches are not able to

automatically explore di�erent environment conditions (e.g., di�er-

ent road types and weather conditions). Further, the above-cited

work focuses on identifying individual critical simulation scenarios

only. In our work, we deal with a considerably larger test input

space that includes environment variables. Further, we provide a

novel search-based testing algorithm that, in addition to identifying

individual critical scenarios, characterizes critical regions of the

ADAS test input space. Finally, our formalism in Section 3 is able

to capture the ADAS systems used by Bühler and Wegener [9, 10]

and Ben Abdessalem et. al. [5] as they are among the ADAS used

as a basis of our formalism.

In the context of machine learning, multi-objective optimiza-

tion algorithms have been used to improve supervised learning

techniques where the aim is to improve prediction accuracy of the

resulting classi�ers [28]. Our work is related to software testing

and uses decision trees to guide the search-based generation of tests

faster towards the most critical regions. Our NSGAII-DT algorithm

can be seen as an instance of the Learnable Evolution Model algo-

rithms [27]. These algorithms rely on machine learning, instead

of the Darwinian genetic operators, to generate new populations

(i.e., to guide evolutions). Our algorithm employs a combination of

genetic operators and guidance through classi�ers to evolve pop-

ulations and is the �rst such algorithm applied to ADAS testing.

7 CONCLUSIONS
We proposed a simulation-based testing algorithm for vision-based

control systems such as ADAS. Our algorithm builds on learnable

evolution models and uses classi�cation decision trees to guide

the generation of new test scenarios within complex and multidi-

mensional input spaces. Our approach is evaluated on an industrial

ADAS. The results indicate that our classi�cation-guided search

algorithm outperforms a baseline evolutionary search algorithm

and generates 78% more distinct, critical test scenarios compared to

the baseline algorithm. Our approach, further, characterizes critical

regions of the ADAS input space. Based on our interviews with

domain experts, such characterizations are accurate and help en-

gineers debug their systems. They further help engineers identify

environment conditions that are likely to lead to ADAS failures as

well as hardware changes that can increase ADAS safety.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme (grant agreement No 694277) and from

IEE S.A. Luxembourg.

Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Ethem Alpaydin. 2010. Introduction to Machine Learning (2nd ed.). MIT Press,

Cambridge, Massachusetts, USA.
[2] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests

for assessing randomized algorithms in software engineering. Software Testing,
Veri�cation and Reliability 24, 3 (2014), 219–250.

[3] Andrea Arcuri and Gordon Fraser. 2011. On Parameter Tuning in Search Based
Software Engineering. In Proceedings of the International Symposium on Search
Based Software Engineering (SSBSE’11). Springer, Berlin, Heidelberg, 33–47.

[4] Assia Belbachir, Jean-Christophe Smal, Jean-Marc Blosseville, and Dominique
Gruyer. 2012. Simulation-driven validation of advanced driving-assistance sys-
tems. Procedia-Social and Behavioral Sciences 48 (2012), 1205–1214.

[5] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2016.
Testing advanced driver assistance systems using multi-objective search and
neural networks. In Proceedings of the International Conference on Automated
Software Engineering (ASE’16). IEEE, Singapore, 63–74.

[6] Hans-georg Beyer and Kalyanmoy Deb. 2001. On self-adaptive features in real-
parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computa-
tion 5, 3 (2001), 250–270.

[7] Bosch. 2017. Driving safety systems for passenger cars. (Aug. 2017). Retrieved
August 24, 2017 from https://goo.gl/4LSl3H

[8] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classi�cation
and Regression Trees. Wadsworth, Belmont, CA, U.S.A.

[9] Oliver Buehler and Joachim Wegener. 2005. Evolutionary functional testing of a
vehicle brake assistant system. In Proceedings of the Metaheuristics International
Conference (MIC’05). -, Vienna Austria, 157–162.

[10] Oliver Bühler and Joachim Wegener. 2004. Automatic testing of an autonomous
parking system using evolutionary computation. Technical Report. SAE Technical
Paper.

[11] Oliver Bühler and Joachim Wegener. 2008. Evolutionary functional testing.
Computers & Operations Research 35, 10 (2008), 3144–3160.

[12] J. Anthony Capon. 1991. Elementary Statistics for the Social Sciences: Study Guide.
Wadsworth Publishing Company, Belmont, CA, USA.

[13] Experiments data. 2017. Experiments data. (aug 2017). https://sites.google.com/
site/adasexperimentsdata/

[14] Kalyanmoy Deb and Ram Bhushan Agrawal. 1995. Simulated binary crossover
for continuous search space. Complex systems 9, 2 (1995), 115–148.

[15] Kalyanmoy Deb and Hans-georg Beyer. 2001. Self-Adaptive Genetic Algorithms
with Simulated Binary Crossover. Evolutionary Computation 9, 2 (2001), 197–221.

[16] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 182–197.

[17] Object Management Group. 2017. Object Constraint Language (OCL). (Aug.
2017). Retrieved August 24, 2017 from http://www.omg.org/spec/OCL/

[18] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based
software engineering: Trends, techniques and applications. Comput. Surveys 45,
1 (2012), 11.

[19] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le
Traon. 2013. PLEDGE: a product line editor and test generation tool. In Proceed-
ings of the International Software Product Line Conference co-located workshops
(SPLC’13). ACM, New York, NY, USA, 126–129.

[20] IEE. 2017. International Electronics & Engineering. (aug 2017). Retrieved August
24, 2017 from https://www.iee.lu/

[21] TASS International. 2017. PreScan simulation of ADAS and active safety. (Aug.
2017). Retrieved August 24, 2017 from https://www.tassinternational.com/

prescan
[22] Joshua D. Knowles, Lothar Thiele, and Eckart Zitzler. 2006. A Tutorial on the

Performance Assessment of Stochastic Multiobjective Optimizers. Technical Report.
Computer Engineering and Networks Laboratory of Zurich.

[23] Philip Koopman and Michael Wagner. 2016. Challenges in autonomous vehicle
testing and validation. SAE International Journal of Transportation Safety 4, 1
(2016), 15–24.

[24] D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo. 2004. Software Fault
Interactions and Implications for Software Testing. IEEE Transactions on Software
Engineering 30, 6 (2004), 418–421.

[25] Sean Luke. 2013. Essentials of Metaheuristics (second ed.). Lulu, Fairfax, Virginie,
USA. Available for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[26] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
Testing Veri�cation and Reliability Journal 14, 2 (2004), 105–156.

[27] Ryszard S Michalski. 2000. Learnable evolution model: Evolutionary processes
guided by machine learning. Machine learning 38, 1 (2000), 9–40.

[28] Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Car-
los Artemio Coello Coello. 2014. A Survey of Multiobjective Evolutionary Algo-
rithms for Data Mining: Part I. IEEE Transactions on Evolutionary Computation
18, 1 (2014), 4–19.

[29] Vasanth Philomin, Ramani Duraiswami, and Larry Davis. 2000. Pedestrian
tracking from a moving vehicle. In Proceedings of the IEEE Intelligent Vehicles
Symposium (IV’2000). IEEE, Dearborn, MI, USA, 350–355.

[30] Mugur Tatar. 2016. Test and Validation of Advanced Driver Assistance Systems
Automated Search for Critical Scenarios. ATZelektronik worldwide 11, 1 (2016),
54–57.

[31] Richard van der Horst and Jeroen Hogema. 1993. Time-to-collision and collision
avoidance systems. In Proceedings of the workshop of the International Cooperation
on Theories and Concepts in Tra�c Safety (ICTCT’93). -, Salzburg, Austria, 109–
121.

[32] David A. Van Veldhuizen and Gary B. Lamont. 1998. Multiobjective evolutionary
algorithm research: A history and analysis. Technical Report. Air Force Institute
of Technology.

[33] András Vargha and Harold D. Delaney. 2000. A critique and improvement of
the CL common language e�ect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[34] Shuai Wang, Shaukat Ali, Tao Yue, Yan Li, and Marius Liaaen. 2016. A Practical
Guide to Select Quality Indicators for Assessing Pareto-Based Search Algorithms
in Search-Based Software Engineering. In Proceedings of the International Confer-
ence on Software Engineering (ICSE’16). ACM, New York, NY, USA, 631–642.

[35] Ian H.Witten, Eibe Frank, and Mark A. Hall. 2011. Data Mining: Practical Machine
Learning Tools and Techniques (3rd ed.). Morgan Kaufmann Publishers Inc., USA.

[36] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer-Verlag,
Berlin Heidelberg.

[37] Janusz Wojtusiak and Ryszard S Michalski. 2004. The LEM3 implementation of
learnable evolution model: user’s guide. In Proceedings of the Machine Learning
and Inference Laboratory, George Mason University, (MLI’04). Citeseer, Fairfax,
Virginie, USA, 04–05.

[38] Andreas Zeller. 2017. Search-Based Testing and System Testing: A Marriage in
Heaven. In Proceedings of the International Workshop on Search-Based Software
Testing (SBST’17). IEEE, Piscataway, NJ, USA, 49–50.

[39] Eckart Zitzler and Lothar Thiele. 1999. Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE Transactions on
Evolutionary Computation 3, 4 (1999), 257–271.

https://goo.gl/4LSl3H
https://sites.google.com/site/adasexperimentsdata/
https://sites.google.com/site/adasexperimentsdata/
http://www.omg.org/spec/OCL/
https://www.iee.lu/
https://www.tassinternational.com/prescan
https://www.tassinternational.com/prescan

	Abstract
	1 Introduction
	2 Motivating Case Study
	3 ADAS Formalization
	4 Search Guided by Classifiers
	4.1 Multi-objective search
	4.2 Decision tree learning
	4.3 NSGAII guided by decision trees

	5 Evaluation
	5.1 Research Questions
	5.2 Metrics
	5.3 Experiment Design
	5.4 Results
	5.5 Threats to validity

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

