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Abstract. Researchers and practitioners are still trying to find effective ways to model and test Web
applications. This paper proposes a system-level testing technique that combines test generation based
on finite state machines with constraints. We use a hierarchical approach to model potentially large Web
applications. The approach builds hierarchies of Finite State Machines (FSMs) that model subsystems of
the Web applications, and then generates test requirements as subsequences of states in the FSMs. These
subsequences are then combined and refined to form complete executable tests. The constraints are used
to select a reduced set of inputs with the goal of reducing the state space explosion otherwise inherent in
using FSMs. The paper illustrates the technique with a running example of a Web-based course student
information system and introduces a prototype implementation to support the technique.
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1 Introduction

Web applications currently make up one of the largest growth areas in software. Web applications do not
just give us new types of applications, but provide an entirely new way to deploy software applications to
end users. Web applications employ a number of new languages, technologies, and programming models,
and are used to implement highly interactive applications that have very high quality requirements. Modern
Web applications are sophisticated, interactive programs with complex GUIs and numerous back-end soft-
ware components that are integrated in novel and interesting ways. Analyzing, modeling and testing these
applications present a number of new challenges to software developers and researchers.

Web applications are much more complicated than simple HTML Web pages, and consist of more than
just the front-end graphical user interfaces that users see. Instead, HTML is used to build GUIs as front-
ends to arbitrarily complicated back-end software applications. Nielsen [23] claimed that in 1995, Web
applications were almost 100% interfaces (HTML), almost 90% interfaces in 1998, but by 2000 only about
50% of Web applications were the interface. The back-end software has been growing in size and complexity
in relation to the user interfaces, and is continuing to do so.

One technological challenge is that Web software applications are inherently heterogeneous in nature.
Software components run on diverse hardware and software platforms, are written in diverse languages, are
based on diverse programming models, and combine new components, old components, and third party-
produced Components Off The Shelf (COTS). A single Web application can be built with components
written in many different languages, including procedural, OO, interpreted, and hybrid languages like JSP.
The user’s side includes browsers, embedded scripting languages, and applets; the server side includes HTML,
CGI, Java Server Pages (JSPs), Java Servlets, and .NET technologies. They all interact with various software
components, middleware, and database servers. These other components may be on the server, the client,



or other computers “behind” the server. This heterogeneity introduces complexities in the integration that
are difficult to model and evaluate.

The heterogeneous nature of the software and the distributed deployment introduces complexities in the
software that must be handled during testing. At a more profound level, Web applications have the ability
to produce different GUIs “on demand” in response to user inputs, user state, and server state. Traditional
GUTI applications have entirely static GUIs, and traditional GUI testing strategies do not address some of
the dynamic complexities that our techniques try to address.

The heterogeneous nature of Web applications also influences the way software components are coupled.
The term software coupling has been in use since at least the 1970s, with general acceptance that “less”
coupling is better. Wu, Offutt and Du [33] defined Web software coupling as follows. The term method
generically refers to methods, procedures, subprograms and functions. A program exhibits tight coupling if
dependencies among the methods are encoded in the logic of the methods. That is, if A calls B, a change in
A might require the logical structure of B to be changed. A program exhibits loose coupling if dependencies
among the methods are encoded in the structure and flows of data among the methods, including definitions
in the callers and uses in the callees. So, for example, if A calls B, a change in A might result in the structure
of the data changing, which in turn requires changes in the way B uses data items that are defined in A.
This is the kind of coupling normally seen when data abstraction and information hiding is employed.

A program exhibits extremely loose coupling (ELC) if dependencies among the methods are encoded
entirely in the contents of the data being transmitted, not in the structure. If A sends data to B, a change
in A might change the contents of the data that B uses, but not the structure of the data.

The N-tier structure of most Web applications encourage ELC, and the heterogeneous nature of the
software makes ELC crucial to the success of the applications. Developers often have no contact other than
an agreement or understanding of the input or output specifications of the other component (for example,
through an API). Components are modified, inserted, and replaced without full understanding of connected
components. Software components can now even be reconfigured dynamically as new Web services appear or
other components are taken offline. This extremely loose and dynamic coupling provides powerful abstraction
abilities to the developers, but makes the analysis required for testing extremely difficult.

1.1 Problems in Testing Web Applications

This paper defines a Web page to be information that can be viewed in a single browser window. A Web
page may be stored as a static HTML file, or it may be dynamically generated by software such as a JSP or
a Java Servlet. A Web site is a collection of Web pages and associated software components that are related
semantically by content and syntactically through links and other control mechanisms. Web sites can be
dynamic and interactive. A Web application is a program that runs in whole or in part on one or more
Web servers and that can be run by users through a Web site.

The literature on testing Web applications is still scarce and there is no widespread agreement on how
to categorize the technical problems. An important factor influencing Web applications is how the different
pieces are connected. We make our initial attempts to categorize testing in terms of the following connections.

1. Static links (HTML — HTML): Most of the early literature on Web testing focused on link validation.
Note that this does not address any software or dynamic issues.

2. Dynamic links (HTML — software): HTML forms send data to software components that process the
data. One issue with testing dynamic links is that data must be found or created for the forms.

3. Dynamically created HTML (software — HTML): Web software typically responds to the user with
HTML documents. The contents of the HTML documents often depend on inputs, which complicates
testing.

4. User/time specific GUIs (software + state — HTML): HTML documents whose contents and form are
determined by not just inputs, but some state of the server, such as the data or time, the user, or
session information.



5. Operational transitions (user): Transitions that the user introduces into the system outside of the
control of the HTML or software. Operational transitions include use of the back button, the forward
button, and URL rewriting.

6. Software connections: This includes connections among back-end software components, such as method
calls and forwarding among Web components.

7. Off-site software connections: Some Web applications will access software components that are available
at a remote site. This type of connection, while powerful, is difficult to test because little is known
about the off-site software.

8. Dynamic connections: Both the J2EE platform and .NET allow new Web components to be installed
dynamically during execution, and the Web application can detect and use the new components. J2EE
uses Java reflection and Javabeans to accomplish this. This type of connection is especially difficult
to test because the tester does not know how the components will behave before deployment and
execution.

This paper addresses the problem of black box system or application testing of Web applications. Our
approach applies test criteria to a structured model of the application. Tests for entire Web applications
are created by composing sub-tests derived from models of lower level abstractions of the applications. The
primary focus is on the state dependent behavior of Web applications.

Finite state machines (FSM) provide a convenient way to model software behavior in a way that avoids
issues associated with the implementation. Several methods for deriving tests from FSMs have also been
proposed [5, 8, 25]. Theoretically, Web applications can be completely modeled with FSMs, however, even
simple Web pages can suffer from the state space explosion problem. There can be a large variety of possible
inputs to text fields, a large number of options on some Web pages, and choices as to the order in which
information can be entered. Factors such as these mean that a finite state machine can become prohibitively
large, even for a single page. Thus, an FSM-based testing method can only be used if techniques are found to
generate FSMs that are descriptive enough to yield effective tests yet small enough to be practically useful.

The technique in this paper, FSMWeb, addresses the state explosion problem with a hierarchical collection
of aggregated FSMs. The bottom level FSMs are formed from Web pages and parts of Web pages called
logical Web pages, and the top level FSM represents the entire Web application. Application level tests
are formed by combining test sequences from lower-level FSMs. To allow the combined test sequences to
be meaningful, constraints on parameter values that are propagated from earlier parts of the sequence are
expressed.

This research does not, as yet, address all the dynamic aspects of Web applications. From the problem
list above, the research in this paper addresses items 1, 2, 3, 4 and 6, has the potential to address item
5 if the tester chooses, and does not address the last two. Items 1, 2, 3, and 6 are addressed directly by
our FSM model. Item number 4, user/time specific GUIs, is addressed by basing the lowest level FSMs on
“logical” instead of complete Web pages. Item number 5, operational transitions, can be addressed if the
tester chooses to explicitly model those transitions. However, this is expensive within an FSM model and
thus this technique may not be appropriate for addressing operational transitions.

Section 2 introduces a small example Web application that is used to illustrate our concepts. Our hybrid
approach for generating tests for Web applications consists of two phases. The first phase, described in
Section 3, builds a representation of the application to be tested that is suitable for test generation purposes.
The second phase, described in Section 4, generates tests from this representation. Test generation itself has
several stages. It starts with generating sequences of actions. Actions are also labeled with parameters and
specific constraints on parameters. Parameter values are resolved in the second step, subject to test coverage
criteria for parameter values and applicable constraints. Section 5 describes an architecture for a tool set
that supports this approach and describes choices for automation. It also describes the automation approach
for our research prototype. Section 6 describes other research that is related to Web software testing and
testing based on FSMs and Section 7 offers concluding remarks.



2 An Example Web Application: CSIS

This research addresses the testing of Web applications from an external view. The Web provides a new
mechanism to deploy software and there are a number of differences between Web application deployment
and traditional deployment methods (including bundling with operating systems, “shrink-wrap” software,
and contract software). Web applications are deployed across a network and they can exhibit unusual
flows of control. The structure of the software design is usually different from traditional software, the
software components are integrated in different ways, the components communicate in unusual ways, and
Web applications use new software technologies such as session management. This research addresses external
testing issues related to the unique user-level deployment and software design structure.

We have developed a small Web-based application to illustrate the FSMWeb technique. The Course
Student Information System (CSIS) helps manage data associated with a college class by offering views for
the professor, a teaching assistant (TA), and the students. CSIS supports several services for each user. Users
first go through a login screen, where they enter a password that identifies them as a student, professor, or
TA. They can then enter a PIN to see personal data. The services that CSIS provides are listed in Table 1.

Table 1: CSIS Services.

Student

Professor

Teaching Assistant (TA)

Information form

View grades

Email TA

Email professor

Submit homework

View course information

View student information
Post grades

Email class

Email student

Email TA

Download homework

Post grades

Email class

Email student

Email professor
Download homework
View Course information

Post course information

After students log in, a Java Servlet generates a blank form. They can fill out the form and submit the
data to be stored in an XML file, or they can enter their name and PIN to retrieve their old information.
They can then update and save that information. Each screen has a toolbar of link-buttons to access the
other services, including Information (I), Grades (G), Email TA (ETA), Email Professor (EP), Homework (H),
and Course information (C).

The professor can retrieve information on all students in a tabular format, get a list of email addresses
formatted for creating a mail alias, or an HTML file with links to each student’s class Web page. The
professor’s services are primarily provided by Servlets and Java Server Pages that work through a Java Bean
to retrieve the data from an XML file.

This example, although small, includes several of the challenging elements that are typical of Web ap-
plication software. Several different types of software (HTML, JavaScript, Java Servlet, Java Beans, JSPs)
communicate in a very loose and flexible way. A small problem in the JavaScript on one HTML page can,
through the way the data is transmitted, have unforeseen affects on a seemingly unrelated JSP. This kind
of coupling brings new challenges in building models of Web applications for testing purposes. The CSIS
example is used to illustrate the FSMWeb method in Sections 3 and 4.

As a first step in analyzing the CSIS Web application, we express logical views of the application based
on users. Other views of the software are possible, and implications of this choice are discussed in Section
7. Figure 1 shows some of the logical views for the student services. CSIS has two levels of access. The
password identifies a user’s role as student, professor or TA, and the PIN identifies a user’s identity. Thus,
the password provides access to one of the three logical views and the PIN provides access to data.

The Services box in Figure 1 represents the six student services from Table 1, and two services are
elaborated, View grades and Info form. The Info Form allows the students to Retrieve their existing
data (RT), Reset the form (RS), Submit New data (SN), and Submit an Update (SU). If the student wants



to retrieve existing data, a last name and a PIN must be entered. The View Grades service also asks the
students to enter a last name and a PIN. If valid, the grades are shown. The boxes in Figure 1 are rough
approximations of screens, with the six buttons on the bottom of View grades and Info form providing
shortcut links for the Services menu.

Entry Portal Professor view
F—————
Password .

>
TA view .

Student view#

Services Grad
View Grades orades
Info Form
View grades LName
Email TA > >
Email Prof PIN
Submit homework
View course information
Y
Info Form

Logical web pages

Retrieve (RT) Reset button (RS)
LName

Submit New (SN) Submit Update (SU)

LName LName

FName FName

Major Major

Other Other

URL URL

EMail EMail

D EEE)

Figure 1: Student Information System Logical View.

3 Modeling Web Applications

Our approach to testing Web applications proceeds in two phases. Phase 1 builds a model of the Web
application. This is done in four steps: (1) the Web application is partitioned into clusters, (2) logical Web
pages are defined, (3) FSMs are built for each cluster, and (4) an Application FSM is built to represent the
entire Web application. Phase 2 then generates tests from the model defined in Phase 1; test generation is
described in Section 4.



3.1 Partitioning into Clusters and Logical Web Pages

A common problem with deriving tests from finite state machines is that the complexity of the software
can result in a state space explosion. Also, the typical heavy user interaction of Web applications results in
large numbers of user choices, each of which can be modeled as a transition in the FSM. With client-side
programming such as JavaScripts, the number of user choices is further increased. Thus, if FSMs are to be
used to model Ul-intensive software in general, and Web applications in particular, it is necessary to avoid
or manage the state space explosion problem. This research avoids the state space explosion problem by
successively partitioning Web applications into clusters, each of which is composed of Web pages and other
clusters.

As with any hierarchical decomposition, the tester must consider different types of information at different
levels of abstraction. It is possible that design documentation will already exist that can be used to support
this activity, but for now we assume the decomposition is the tester’s job and leave the use of pre-existing
documentation to future research. It may also be possible to define rules that are strict enough to allow
clusters to be identified automatically; this topic is also left as future research. Depending on the size and
complexity of the Web application, the number of decomposition levels may be large or small.

We use the general term cluster to refer to collections of software modules and Web pages that implement
some logical function. The first step in decomposition will be to partition the Web application into clusters.
At the highest level, clusters should be abstractions that implement functions that can be identified by users.
At lower levels, clusters should be cohesive software modules and Web pages that collectively work together
to implement a portion of a user level function. At the bottom level, clusters may be individual Web pages
and software modules that represent single major functions themselves. Clusters can be identified from the
site navigation layout, coupling relationships among the components, and design information.

It should be obvious that this process is not only subjective, but can have a major impact on the
quality of the resulting tests. This is both an opportunity and a problem; an opportunity for experienced,
well educated test engineers to have a positive impact on the software, and a problem leading to lack of
repeatability and weak testing if the decomposition is done poorly. We hope to experimentally evaluate how
much of a difference this makes, and in the future explore techniques to reduce the amount of subjectivity.

This process is illustrated with CSIS. At the design level, CSIS has three subsystem clusters, one for each
type of user (students, teachers, and teaching assistants). The lower level clusters within each subsystem
cluster can be grouped around the services in Table 1. The student services can be further partitioned by
type of service (Info Form versus View Grades).

Many Web pages contain more than one HTML form, each of which can be connected to a different
back-end software module. To facilitate testing of these modules, Web pages are modeled as multiple Logical
Web Pages (LWP). An LWP is either an entire physical Web page or the portion of a Web page that accepts
data from the user through an HTML form and then sends the data to a specific software module. LWPs
can be automatically extracted because each separate form on a Web page is defined by an HTML Form tag.
The back-end software that processes the form data is declared in the Form Action attribute, and client-side
software (such as JavaScripts) are referred to in individual Form input fields.

Modeling LWPs allows problem number 4 in Section 1.1, user/time specific GUIs, to be addressed.
Although a Web page may vary in structure when dynamically created in response to state, the individual
LWPs will not vary in structure. The only changes will be in which LWPs and in what order they appear
to the user. Thus, this part of the FSM will remain constant even when HTML is created dynamically.

As an example, a Web page may have a form that accepts a user name and a password for logging in.
This would constitute a logical Web page. We characterize an LWP by the set of inputs that lead to an
action on the part of the Web application. The inputs include the data fields, selection buttons, radio boxes,
and submit buttons (in the case of server-side execution) or user events (in the case of client-side scripting).
Thus LWPs are described in terms of sets of related inputs and actions. At this time, LWPs are identified
by hand but it will be relatively simple to extract LWPs by parsing the HTML.

After a Web application A has been partitioned into clusters, the next step is to derive a Finite State
Machine (FSM) for each cluster. First, FSMs are generated from the bottom-level clusters that only contain



software modules and Web pages (that is, no clusters). Next, aggregate FSMs are constructed for high-level
clusters, in which each FSM from constituent clusters is represented by a single node (state). Ultimately, an
Application Finite State Machine (AFSM) will define a finite state model of the entire Web application.

To simplify test generation, each FSM is assumed to have only one initial and one final node. If a link
or other navigation is found from a Web page w; in a cluster C, to a Web page or software module w; in
another cluster Cp, then an edge is added from the node that represents C, in the aggregate FSM, n,, to the
node that represent Cj, np. Later in the analysis (in Subsection 3.3), we annotate edges with information
that propagates across clusters.

If an FSM has multiple entry or exit points, “dummy” initial or final nodes are added to ensure the
single-entry, single-exit property. Thus, the edge in the aggregate graph from n, to n; is technically from
the final node in C,, to the initial node in C%. This has ramifications for test composition, which are discussed
in Section 4. (Most importantly, no input is needed to traverse edges into the dummy final nodes or edges
out of the dummy initial nodes.)

The final result of this partitioning will be a collection of autonomous (separate but interacting) finite
state machines with the following two properties. First, they are small enough to efficiently allow test
sequences to be generated. Second, they clearly define the information that propagates among the FSMs.
This partitioning allows the partial test sequences to be aggregated into an overall test sequence.

3.2 Partitioning CSIS

Figure 1 illustrates part of the logical view of CSIS. The edges in Figure 1 represent HTML links. Table 1
summarizes the services provided by CSIS. The services are divided into services for three groups of users,
which suggests a top level partitioning based on Web pages related to student services (S.5), professor services
(PS), TA services (T'S), and the login screen as a single Web page Wy. The dummy Web page off models
the action of logging off the CSIS system for all services. The valid navigation among the elements of this
partition is shown in Figure 2. At this point, the tester may want to add additional invalid or unexpected
transitions to the graph. While it is possible to add all possible transitions (forming a completely connected
graph), this may be too expensive and unnecessary, so it is expected that the tester would choose transitions

that would improve testing.

Figure 2: Aggregate FSM With Partition and Top Level Navigation.

This top level partitioning yields subsystem clusters (five for CSIS), which are then further divided into
clusters and Web pages. The entry portal at the top of Figure 1 in Section 2 is represented by Wy, as
described above. Table 2 shows a partitioning of physical and logical Web pages for the student services
in Figure 1. The basic strategy is to build an aggregate FSM for student services around the six types of
student services plus the buttons that select those services. Each service and button will be used to form
a node in the aggregate student services FSM, which may subsequently be subdivided into a more detailed
FSM at a lower level of abstraction.

Navigation among the SS-FSM clusters is shown in Figure 3. The six student services are shown as
separate nodes, which connect to the two service selector nodes. The first selector node, SS1, is the Web



Table 2: Clusters and Nodes For SS-FSM.

Node | Cluster Explanation

SS1 Select Service 1 Menu of named services

SS2 Select Service 2 List of navigation buttons for services at the bottom of
student service pages

I Info Form Physical Info Form page without service navigation but-
tons at bottom

G Grades View Grades and Grades pages

ETA Email TA Pages related to sending email to TA

EP Email Prof Pages related to sending email to professor

H Submit homework | Pages related to sending homework

C View course info Pages related to course materials

page for service selection in Figure 1, and the second, SS2, is the set of service selection buttons at the
bottom of each page that allows student services to be activated (there are two pages in Figure 1 of this
type). The edges show possible navigation among the services.

Figure 3: Cluster and Navigation for Student Services.

As an example of building the lowest level FSMs, we show how to construct the FSM for the Info Form
service I and the View Grades service G. Table 3 shows the nodes and logical Web pages related to (I).
These appeared in Figure 1 as the square boxes Retrieve (RT), Reset button (RS), Submit New (SN), and
Submit Update (SU). This service can be entered from either of the two Select Service facilities (the Services
page (SS1) or the Service navigation buttons (552)).

Table 3: Nodes for Info Form-FSM.

Node LWP Explanation

from SS1/2 | From Select Service 1/2 | Connection from either service selection facility

to SS2 To Select Service 2 Connection to list of navigation buttons for services at the
bottom of student service pages

RT Retrieve Retrieve student info

RS Reset Reset student info data in database

SN Submit New Submit new student info

SU Submit Update Submit updated information

Figure 4 shows the navigation among the logical Web pages that represent the Info Form service. The



navigation is based on the following design decisions for the underlying CSIS:
e Reset cannot be the first action.

e The student cannot leave this service as the first action after a reset; the student must enter information
first.

e The student cannot leave this services as the first action after a retrieve; the student must perform
some other action before leaving (for example, submit an update).

Obviously, other choices for which navigation is allowable could be defined, but this initial set is used to
illustrate the testing technique.

Figure 4: Logical Web Pages and Navigation for Info Form Cluster.

We define logical Web pages and navigation among them for the View Grades cluster in a similar way.
View Grades consists of two logical Web pages, the physical Web page View Grades in Figure 1 and the
physical Web page Grades. In addition, connections to and from student services selectors are added, just
like in the prior FSM for Information services. Table 4 summarizes these nodes and corresponding logical
Web pages. Figure 5 shows navigation among the nodes.

Table 4: Nodes for View Grades-FSM.

node LWP Explanation

from SS1/2 | From Select Service 1/2 | Connection from either service selection facility

to SS2 To Select Service 2 Connection to list of navigation buttons for services at the
bottom of student service pages

A% View Grades Authentication for viewing grades

G Grades Grade display

Figure 5: Logical Web Pages and Navigation for View Grades Cluster.



3.3 Annotating FSMs and Logical Web Pages

The partitioning of the logical Web pages results in a hierarchical collection of finite state machines. At the
lowest level, logical Web pages are represented by nodes in FSMs that model behavior of software modules
and Web pages. Edges represent transitions among logical Web pages and software modules. Each cluster
in turn forms a node in a higher level FSM that models behavior of clusters. Edges in both levels of FSMs
are annotated with inputs and constraints that may be associated with the transition.

3.3.1 Input Selection Constraints for Logical Web Pages

Logical Web pages are described via the sets of related inputs and actions. In addition, there may be rules on
the inputs. For example, some inputs may be required and others may be optional. A user may be allowed
to enter inputs in any order, or a specific order may be required. Table 5 shows input constraints of both
types; other constraints may be defined in future work. A precise definition of our language used to express
the constraints is given in a BNF grammar in Appendix A.

Table 5: Constraints on Inputs.
Input Choice Order
Required (R) Sequence (S)
Required Value (R(parm=value)) | Any (A)
Optional (O)
Single Choice (C1)
Multiple Choice (Cn)

A possible set of input constraints for logging on would be: R (user-name, password, submit) and S(user-
name, password, submit). This means that the three required inputs can be entered in order. If password and
user name can be entered in any order, the constraint for sequencing would be S(A (user-name, password),
submit). Single constraints (C1) mean that a single input must be selected from a set of choices and multiple
choice constraints (Cn) mean that multiple inputs must be selected from a set of choices.

Inputs also can be of a variety of types, including text (from single digits to single lines to large files),
buttons (from single button to choices from a set of buttons), links, etc. Table 6 shows a list of the types of
inputs found in Web applications (based on HTML Form elements).

Table 6: Types of Inputs.

Text Non-text
digit links

line buttons

email radio button
phone drop-down list
URL check boxes
multi-line

file

Figure 6 shows the login constraints, under the assumption that user name and password may be entered
in any order. The advantage of these kinds of constraints can be observed from this example. Figure 6 only
has two nodes. Without the constraints, the FSM would have five nodes, as in Figure 7, which has explicit
transitions to represent the two different orderings. In effect, the transitions introduce a simple type of
controlled non-determinism into the FSM. The savings in FSM size are even more pronounced for optional,
single, and multiple choice sets of inputs.

For example, if an LWP requires choosing two of three buttons a, b, and ¢ in no required order, the
annotated FSM consists of two nodes and one edge with the annotation C2(a, b, ¢); A(a, b, ¢). If the
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corresponding FSM with single inputs is used, then we can have the inputs a followed by b or ¢, b followed
by a or ¢, or ¢ followed by a or b. This FSM would have 10 nodes and 9 edges as shown in Figure 8.
Similarly, having three required inputs R(a, b, ¢), again without any required order, results in an FSM with
two nodes and one edge, while the corresponding FSM with single inputs would require 16 nodes with 15
edges. In addition to allowing FSMs to be smaller, generating input values based on these constraints is
simpler, more straightforward, and more flexible with respect to changing test objectives than with a larger

FSM representation.
R (user-name, password, submit)
1 > 2
S (A (user-name, password), submit)

Figure 6: Annotated FSM for Login.

submit

Figure 8: FSM for Three Button Ul With no Constraint Annotation.

Each cluster identified during partitioning is supplied to a tool that creates an annotated FSM. We
assume that the clusters are small enough so that it is possible to efficiently generate test sequences from
the FSM automatically.

3.3.2 FSM Info Form and View Grades

Table 7 shows all annotations on the FSM transitions for the student information form of Figure 4. The
FSM transition constraints for the View Grades service of Figure 5 are shown in Table 8. In the transition
annotation tables, the leftmost column identifies transitions by their pre- and post-nodes. The second column
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identifies the constraints, the third encodes each set of constraints in an input alphabet (), and the fourth
column (£2) lists the post-node, or output. The post-nodes are used to provide a partial test oracle for the
test input.

The first row is a transition from SS1 (the Select Service 1 cluster) to SN (the Submit New cluster).
The input alphabet codes are assigned arbitrarily as a matter of convenience: as a reference for the full
constraint in the constraint columns (column 2). The outputs are the target states of the transitions.

Table 7: Annotations for Info Form FSM Transitions.

Transition | Constraints X1 Q

(SS1/2, SN) | R (Lname, Fname, major, other, URL, email, phone, buttonSN) a | SN
S (A (Lname, Fname, major, other, URL, email, phone), buttonSN)

(SS1/2, RT) | R (Lname, PIN, buttonRT) b | RT
S (A (Lname, PIN), buttonRT)

(SS1/2, SU) | R (Lname, Fname, major, other, URL, email, phone, buttonSU) ¢ | SU
S (A (Lname, Fname, major, other, URL, email, phone), buttonSU)

(RT, RS) R (buttonRS) d | RS

(RS, RT) R (Lname, PIN, buttonRT) b | RT
S (A (Lname, PIN), buttonRT)

(RT, SU) R (Lname, Fname, major, other, URL, email, phone, buttonSU) c | SU
S (A (Lname, Fname, major, other, URL, email, phone), buttonSU)

(RS, SU) R (Lname, Fname, major, other, URL, email, phone, buttonSU) c | SU
S (A (Lname, Fname, major, other, URL, email, phone), buttonSU)

(RS, SN) R (Lname, Fname, major, other, URL, email, phone, buttonSN) a | SN
S (A (Lname, Fname, major, other, URL, email, phone), buttonSN)

(SN, SS2) none e | SS2

(SU, SS2) none e | SS2

Table 8: Annotations for View Grade FSM Transitions.

Transition | Constraints | Q

(SS1, V) none e |V

(V, G) R (Lname, PIN, buttonV) f |G
S (A (Lname, PIN), buttonV)

(G, SS2) none e | SS2

3.4 Propagating Inputs Among FSMs

Aggregate FSMs (AFSMs) combine FSMs from lower levels of abstractions. Thus a node in an AFSM
represents either (1) an entire FSM at the next lower level in the hierarchy, or (2) a logical web page.
Arcs represent possible transitions between lower level FSMs and logical web pages. Annotations on the
transitions represent input constraints and information that needs to propagate between lower level FSMs.
Two types of information can be propagated:

1. Continue-use input values: Inputs for which values have been selected and must continue to be used in
the successor FSM. For example, a username and password that is entered in one cluster must be passed to
the next cluster and the same values must be used. If continue-use inputs have constraints, they must also
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propagate. If these relationships are defined implicitly in a database, they will be obtained automatically,
else they will be derived from semantic descriptions of the software.

2. Single-use inputs: Inputs for which values may have been selected but for which the same values cannot
be selected again. Single-use inputs represent selection without replacement. For example after a student’s
data that was deleted from the class data base in one part of the application (for example, the Admin FSM),
the student’s name cannot be used in a subsequent FSM to assign grades. Another example is if students
may select which paper to present in class from a set, each paper may be selected at most once. If a value
is marked as single-use once, it cannot be used again during the same test.

Turning to the CSIS example, assume that the login function is in the first cluster. Edges to follow-on
clusters should be annotated with “user-name” as a continue-use input. Thus, the functions and inputs are
constrained by the services it provides to this particular user. If a node in an aggregate FSM is also a logical
web page, we also need to annotate the edge with input constraints applicable to the inputs of the logical
web page.

3.5 Aggregate FSMs for CSIS

Table 9 lists the input selection constraints and the propagation rules for the Student Services aggregate
FSM of Figure 3. The menu in SS1 has the same functionality as the button-menu in SS2, and the menu
entries in SS1 correspond to the buttons in SS2. For convenience, Table 9 uses the shortened version from
SS2 (for example “Info Form” in SS1is “I” in SS2). The columns ¥ and 2 in Table 9 represent the inputs
and outputs of the lower level FSMs. As before, ¥ is the input alphabet and €2 is the output alphabet.

To turn the top level navigation diagram into an Application FSM, we need to define the constraints on
inputs and the propagation rules among its nodes. The top level AFSM of Figure 2 represents the login
procedure and an automatic transfer to the correct services for each type of user. Three classes of users are
identified by three types of passwords: professor password (PPWD), student password (SPWD), and TA
password (TPWD). The user enters a password and presses a submit button. For each transition in Figure
2, Table 10 shows the corresponding inputs and input constraint rules, their encoding as an input alphabet
(for abbreviation), and the corresponding output state. Table 10 also lists the propagation rules for value
generation. The only transitions with value propagation rules are transitions from login to the services. No
propagation rules are needed for sign-off. Even for the login propagation rules, they will only be needed if
the password is needed later.

4 An Approach to Testing Web Applications

The annotated FSMs and aggregate FSMs are used to generate tests. We first focus on generating tests
as sequences of transitions, and consider values for inputs separately. A test sequence is a sequence of
transitions in an FSM and the associated constraints. Assume FSM f has test sequences Sy¢i, S¢2, ... Sfn.
Furthermore, suppose FSM f appears in an aggregate FSM as node f, and there is an edge in the FSM from
node f to node g with annotation A.

Partial aggregate test sequences are generated as follows. Each test sequence from FSM f is attached to
each test sequence from FSM ¢, with annotation A in the middle. Formally, if test sequence j from FSM f
is S¢;, and test sequence k from FSM g is Sy;, then a partial aggregate test sequence is Sy;; A; Sgr. Full
aggregate test sequences are created by combining partial aggregate sequences. Assume the aggregate FSM
has a test sequence of nodes f1, f2, ..., fn, with annotations Ao Ass, ..., A,—_1, and the FSMs from the
nodes in the aggregate FSM test sequence have test sequences Sy1 5, Sy2.j, ...y Sfn,j. Then the aggregate
test sequence is Sy1 ;5 A2s; Sr2,j; A23; s An—1in; Spn,j-

Recall from Section 3.1 that we assume that all FSMs have single initial and single final nodes, and
furthermore that dummy nodes are sometimes added to FSMs to ensure this property. This technique fits
into the scheme for generating partial aggregate test sequences quite elegantly. If FSM f has two “real” final
nodes f, and f,, then a dummy final node is added, f,, with incoming edges from f, and f,. Edges (fz, f:)
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Table 9: Annotations for Student Services Aggregate FSM Transitions.
Transition | Constraints | Q
(SS1, 1) R(I) g |1
continue-use (Lname, PIN)

(SS1, G) R(G) h | G

(SS1, ETA) | R(ETA) i | ETA

(SSI,EP) | R(EP) i |EP

(SS1, H) R(H) k | H

(SS1, C) R(C) 1 | C

(I, SS2) continue-use (Lname, PIN) | m | SS2

(SS2, 1) R() n |1
continue-use (Lname, PIN)

(G, SS2) continue-use (Lname, PIN) | m | SS2

(SS2, G) R(G) o |G
continue-use (Lname, PIN)

(ETA, SS2) | continue-use (Lname, PIN) | m | SS2

(SS2, ETA) | R(ETA) p | BTA
continue-use (Lname, PIN)

(EP, SS2) continue-use (Lname, PIN) | m | SS2

(SS2, EP) R(EP) q | EP
continue-use (Lname, PIN)

(H, SS2) continue-use (Lname, PIN) | m | SS2

(SS2, H) R(H) r | H
continue-use (Lname, PIN)

(C, SS2) continue-use (Lname, PIN) | m | SS2

(8S2, C) R(C) s | C
continue-use (Lname, PIN)

Table 10: Annotations for Top Level AFSM Transitions.

Transition Constraints Y| Q
(Wo, SS) R (pwd € SPWD, submit) |t | SS
S (pwd, submit)

continue-use (pwd)
(Wo, PS) R (pwd € PPWD, submit) | u | PS
S (pwd, submit)
continue-use (pwd)
(Wo, TS) R (pwd € TPWD, submit) | v | TS
S (pwd, submit)
continue-use (pwd)
(SS, off), (PS, off) | R (logout) x | off
(TS, off)

and (fy, f.) have no annotation, but any test sequence for f that would naturally have ended with f, now
ends with (fs, f.) and any test sequence that would have ended with f, now ends with (f,, f).
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Sequences of transitions for cluster and aggregate FSMs are generated by applying standard graph criteria
such as all nodes or all edges [2, 5, 8, 25]. Because the graphs being used are FSMs, it is also important to
test for invalid transitions. Test sequences that contain invalid transitions are not expected to reach final
nodes in the FSM, so this step is not applied until the final application test sequences are constructed.

A difficult question is then how many and which test sequences from the lower level FSMs should be
combined to form the test sequences for the aggregate FSMs. If an aggregate FSM test sequence has n nodes,
and each node fi represents an FSM that has M; test sequences, then there can be up to My * Ma * ... x M,
aggregate test sequences, or O(M™), where M is the average number of FSM test sequences.

This exponential number will almost certainly be too many to use for testing in most cases, thus we
must choose FSM test sequences to combine. The combination strategies given in Chapter 3 of Ammann
and Offutt [2] can be used. The each choice criterion [1, 2] requires that each FSM test sequence is used in
at least one aggregate FSM test sequence. This results in M aggregate FSM test sequences, where M is the
maximum number of FSM test sequences. The base choice criterion [1, 2] requires that the tester identify
a key “base choice” from each collection of FSM test sequences. Then a base aggregate test sequences
is formed by combining all the base choice FSM test sequences. Subsequent aggregate test sequences are
formed by holding all but one base choice test sequence constant and substituting all other test sequences
for the non-constant test sequence. This results in My + Ms + ... + M,, — n + 1 aggregate test sequences,
or O(M #n), where M is the average number of FSM test sequences. The base choice could be the most
commonly used sequence of actions, the shortest, or the longest. The base choice can be selected by the
tester or automatically.

Whether to use the each choice or base choice criterion can be decided based on the tester’s assessment
of the cost and benefit tradeoff. Base choices are chosen by the tester according to experience and domain
knowledge, or randomly if the tester decides it does not matter. Once base choices are identified, aggregate
test sequences are generated automatically.

4.1 Test Sequences for CSIS

For the running CSIS example, we apply transition coverage to the FSMs, generating test sequences to
cover each transition. A test sequence is a sequence of FSM edges and their annotations (constraints). Test
sequences for the Info Form and View Grades FSMs are shown in Tables 11 and 12. The first column
indicates which edges are covered, the second column indicates the constraint sequence (using the input
alphabet defined in the ¥ columns in Tables 7 through 10). Thus, the first sequence in Table 11 for the Info
Form FSM covers edges (SS1/2,SN) and (SN, SS2) from Table 7 and the FSM in Figure 5, and uses the test
sequence of constraints “ae”.

The test sequences for View Grades is shown in Table 12. Note that “e” is a null constraint (the
corresponding transition in the FSM has no constraint), so the constraints shown are all for the constraint
labeled “f.”

These sequences ultimately will be substituted into the aggregate sequences for the aggregate FSM. For
the CSIS example, this is the FSM for Student Services. A transition cover for the Student Services FSM
(Figure 3 and Table 9) is given as:

Transition Cover P
SS1; g; I; m; SS2; n; I; m; SS2
SS1; h; G; m; SS2; o; G; m; SS2
SS1; i; ETA; m; S52; p; ETA; m; S52
SS1; j; EP; m; SS2; q; EP; m; SS2
SS1; k; H; m; SS2; r; H; m; SS2
SS1; I; C; m; S582; s; C; m; SS2

Note that this aggregation sequence includes not merely a sequence of inputs, but also the states. This
identifies generated output for a partial oracle, and also identifies the FSM to which the sequence belongs.
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Table 11: Test Sequences for Info Form FSM.

Edge Sequence | Constraint | Constraint
Sequence
(SS1/2, SN) ae R(Lname, Fname, major, other, URL, email, phone, buttonSN)
(SN, SS2) S(A(Lname, Fname, major, other, URL, email, phone), buttonSN)
(SS1/2, RT) bdae R(Lname, PIN, buttonRT)
(RT, RS) S(A(Lname, PIN), buttonRT)
(RS, SN) R(buttonRS)
(SN, SS2) R(Lname, Fname, major, other, URL, email, phone, buttonSN)
S(A(Lname, Fname, major, other, URL, email, phone), buttonSN)
(SS1/2, RT) bdbce R(Lname, PIN, buttonRT)
(RT, RS) S(A(Lname, PIN), buttonRT)
(RS, RT) R(buttonRS)
(RT, SU) R(Lname, PIN, buttonRT)
(SU, SS2) S(A(Lname, PIN), buttonRT)
R(Lname, Fname, major, other, URL, email, phone, buttonSU)
S(A(Lname, Fname, major, other, URL, email, phone), buttonSU)
(SS1/2, RT) bdce R(Lname, PIN, buttonRT)
(RT, RS) S(A(Lname, PIN), buttonRT)
(RS, SU) R(buttonRS)
(SU, SS2) R(Lname, Fname, major, other, URL, email, phone, buttonSU)
S(A(Lname, Fname, major, other, URL, email, phone), buttonSU)
(SS1/2, SU) ce R(Lname, Fname, major, other, URL, email, phone, buttonSU)
(SU, SS2) S(A(Lname, Fname, major, other, URL, email, phone), buttonSU)

The aggregation sequence is based on the input constraint abbreviations of Table 9. This means that each

Table 12: Test Sequences for View Grades FSM.

Edge Sequence | Constraint | Constraint

Sequence
(SS1/2,V) efe R(Lname, PIN, buttonV)
(V, G) S(A(Lname, PIN), buttonV)
(G, SS2) C1(services)

input needs to be replaced with the corresponding constraint in Table 9.

For each node in the student services aggregate sequence, the test sequences for the lower level FSMs
must be substituted. For example, node I appears twice in the first transition sequence for P. Node I is
covered by the five test sequences given in Table 11. If the each choice criterion defined in Section 4 is used,
then each occurrence of I will be replaced by each of the five test sequences, resulting in five tests total. If
the base choice criterion is used, then assume the first test sequence “ae” is chosen as base. Then nine total

aggregate test sequences will be generated.

As a more detailed example, we will perform the substitution for the second path in P. This means
substituting test sequences in Table 12 for both occurrences of G. This results in the following path (using
the abbreviations for the constraints and showing the test sequence for G in boldface): T = (h; efe;

m; SS52; o; efe; m; S52). Table 13 shows the sequence with actual input constraints.
At the top level FSM, the transition cover set yields the paths
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Table 13: Aggregate Test Sequence Example for Testing Student Services.

FSM-id | Symbol | Constraints

SS h R(G)

G e none

G f R(Lname, PIN, buttonV)
S(A(Lname, PIN), buttonV)

G e none

SS m continue-use (Lname, PIN)

SS 0 R(G)

G e none

G f R(Lname, PIN, buttonV)
S(A(Lname, PIN), buttonV)

G e none

SS m continue-use (Lname, PIN)

Transition Cover P =
Wo; t; SS; x; of f
Wo; w; FS; ; of f
Wo; v; T'S; x; of f

Substituting the test sequence in Table 13 for SS yields the full test input constraint sequence:

R (pwd = SPW D, submit)

S (pwd, submit)

continue-use (pwd)

R (G)

R (Lname, PIN, buttonV)

S (A (Lname, PIN), buttonV)
continue-use (Lname, PIN)
R (G)

R (Lname, PIN, buttonV)

S (A (Lname, PIN), buttonV)
continue-use (Lname, PIN)
R (logout)

One of the goals of this approach was to reduce the size and complexity of the individual FSMs and
consequently the number and size of their paths. For this example, consisting of the student services, view
grades, and InfoForm services, there are 5+ 1 + 5 = 11 test sequences of very small length, as the tables
showed. A total of 67 inputs needed to be selected. Many of these inputs are of the same type (for example,
Lname and PIN), but occur in constraints along different paths. We find this to be encouraging, since the
paths and FSMs are small compared to the number of inputs to be selected.

4.2 Selecting Inputs

The test sequences define test requirements by encoding the critical design and test criteria decisions. To
be used to test software, they have to be instantiated with specific values. Our test value selection for a
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sequence T3 is based on random selection. We then discuss the impact of other test objectives, including
covering all permutations of sequencing options, and input value partitions.

Let T; be a test sequence. It contains state identifier s for cluster FSMs, constraints ¢, and AFSM
annotations A. We process from the beginning of the sequence, skipping states and processing constraints
based on one of the following four types:

1.

Required inputs: Select from valid values, subject to relationships in the database and any restrictions
due to active annotations that can either require that a particular value be propagated or exclude that
value from consideration. Selection can be random, with or without replacement, or driven by other
considerations such as small, medium, or large values, or value partitions.

Optional inputs: Randomly select which of the optional inputs are to be assigned values, then select
valid values for them as above.

Single choice of input: Randomly select a choice with or without replacement. A valid value is chosen
based on the type of input (for example, text field or “submit” button).

Multiple choice: Randomly select how many and which choices, with or without replacement. Valid
values are also selected based on the type of input.

At this point, the values for the inputs have been selected, but not the order in which they will be entered.
This depends on the existing sequencing constraints.

1.

2.

Any order: Select a permutation of inputs covered by the Any constraint. This may be done with or
without replacement, randomly, and/or in a particular order.

Sequence required: Put the input values in the required order.

AFSM annotations A are also processed by type:

1.
2.
3.

continue-use (x): The active value for input x is the currently active value.
single-use (x): Remove the currently active value from the valid values.

inputs not propagated: Annotation constraints for inputs that were active in the prior FSM sequence
should be inactivated unless they appear in the continue-use or single-use list. This allows the
values to be used again, but does not force them to be used.

Input value selection need not be random. It is also possible to generate input values by covering partitions
or by applying sequencing options (for example based on requiring certain permutations).

The result of this phase is a collection of ordered sets of inputs to be applied to the Web application.
They can be applied by a human or through an automated test execution tool.

For the sequence of input constraints developed for the CSIS system, these rules for input selection result
in the following;:

pwd = SPWD select type = student services
submit push submit button
View grades push view grades button
LName = “Andrew” random selection from database
PIN = “0109” lookup of PIN for “Andrew”
G select grades option

see grades
LName = “Andrew” continue-use old values
PIN = “0109” continue-use old values
logout log off system
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5 Automated Tool Support

An important aspect of any testing method is the degree to which it is possible or desirable to automate by
developing test support tools. Three phases of the FSMWeb method can be automated: (1) building the
model of the system under test, (2) defining test criteria for both the finite state machines and the input
selection, and (3) generating the test sequences. Test execution and output validation are handled separately.
Figure 9 shows the architecture of the proof of concept tool.

Test Model Test Criteria
® FSMs
® FSMs e Inputs ® AFSM @ Inputs
© AFSM @ Constraints ® Coverage criteria | @ Partition criteria
test database @ Path aggregation |® Selection criteria
criteria

Test Generation

1. Paths
2. Path aggregation
3. Input value selection

|

Input Sequences

Figure 9: Tool Architecture.

5.1 Test Model

The test model consists of the LWPs clustered into FSMs based on a partitioning of the Web application,
the AFSM, and all the constraints on input selection. It also encompasses the database of test input values.
The tool automates four tasks:

1. Identify of LWPs and input selection constraints.

DO

. Identify connections between LWPs, leading to an (unpartitioned) connectivity model for LWPs.
3. Partition the connectivity model.

4. Build test value database.

The first three require preprocessing the user interface code to extract inputs and their types. User
interfaces for Web applications can be written in any of a number of languages, including HTML, XML and
Java. The fourth depends to some degree on whether the Web application already has a database associated
with it or not. If it does, we need to populate it with values. If it does not, we need a tool to help build one.
More detail on how to build a test value database were given by Ran et al. [28]. For each of these tasks,
there are options related to the degree of automation:
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1. User controlled. This means that automation is in the form of an editor that allows testers to define
what set of Web page inputs form an LWP, set connections between them, and tags LWPs that
form a cluster. Many drawing tools (like xfig, visio, or Rational) allow larger objects to be built by
grouping smaller ones together. The testers also need an input constraint editor to define constraints
for connections between LWPs.

2. Full Automation. A more automated method would be to parse source files such as HTML, XML,
and Java and identify sequences of inputs that lead to actions and/or transitions to other parts of the
Web application. The parser can also extract LWPs and transitions between them. Partitioning can
be done automatically through min-cut algorithms or based on coupling measures and thresholds. For
example, the coupling measure may count the number of incoming edges to a node for an LWP. If
the count is higher than a specified threshold, the nodes with edges leading to this LWP must be in
the same cluster as the LWP. While these can automatically partition the application, this may not
be a good fit with a functional partition. In addition, it would not create the role-based partition we
used in the example in which services are clustered by type of user, even though some of them are the
same. Defining constraints automatically would require determining semantics of inputs of each LWP.
For some types of inputs this may be more difficult.

3. Combination. In combination mode, tools choose initial candidate LWPs, links, and clusters, and the
user then refines the tools’ choices. The underlying philosophy would be to automate what is easy to
automate and to leave things that are difficult to automate for the user to define.

The current prototype falls under category 1, user controlled. However, the FSMs and AFSM are stored
in a defined XML format and in the future we plan to write a parser to generate FSMs and AFSMs directly
from the program source.

5.2 Test Criteria

As described in Section 4, the tester needs to choose the test criteria. The most obvious for the FSM test
sequences are node and edge, although others such as roundtrip [5] or edge-pair [25] could be used.

Criteria for aggregating FSM test sequences also need to be chosen. The cost/benefit tradeoffs of each
choice versus base choice in Section 4 provide another opportunity for the tester to calibrate the amount of
testing done.

5.3 Test Generation
Test generation uses both the test model and the test criteria. Generation proceeds in three steps:

1. Path selection for each FSM and the AFSM based on the coverage criterion sought. This is easily
automatable via existing graph algorithms. Path selection algorithms that do not end in an end state
require the addition of a proper sequence to an end state. Otherwise, the sequence cannot be aggregated
properly with the follow-on test sequence in the aggregate test sequence.

2. Path aggregation criteria are also easily automatable.

3. Input selection. Input constraints determine what inputs to select and in which order. Partitions and
partition related criteria specify sets of values from which to select. Entries in the database allow
semantically correct values to be selected when two values are related (like user name and password).
One issue is satisfiability of constraints and criteria during selection. Some constraints, particularly
the combination of constraints that appear when test sequences are aggregated, are very difficult to
satisfy and others are infeasible. The existance of infeasible test requirements is a problem in all test
techniques and are handled either by approximating (ignoring difficult-to-satisfy requirements) or by
having the tester solve them by hand. Most practical situations use a combination of both.
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We have developed a research prototype in Java to support these ideas. It has a graphical editor to input
the FSMs and the constraint descriptions. It also generates expected outputs in the form of the next state
(LWP) to serve as a simple test oracle. Path generation currently includes edge coverage and roundtrip. We
are still working on perfecting input selection. Input selection is currently based on using an input value
database [28]. The resulting sequences of test inputs are made executable by transforming them into an
Evalid script. Evalid is a script and script execution tool by Software Research Associates [21].

It is possible that some test sequences are infeasible. This can happen due to an incorrect model, due
to a defect in the Web application, or due to not being able to satisfy the input constraint. While we have
seen examples of the first two in our empirical work, we have yet to encounter the last.

6 Related Work

This section surveys some of the previous work in testing Web applications and generating tests with finite
state machines.

6.1 Test Support for Web Applications

Much of the literature on testing Web applications is in the commercial sector and tests non-functional
aspects of the software. An extensive listing of existing Web test support tools is on a Web site maintained
by Hower [13]. The list includes link checking tools, HTML validators, capture/playback tools, security test
tools, and load and performance stress tools. These are all static validation and measurement tools, none of
which support functional testing or black box testing. This project addressed problem 1 in Section 1.1.

Kung, Liu, and Hsia [16, 17] developed a test generation method based on multiple models of the appli-
cations under test. The models include Object Relation Diagrams, Object State Diagrams, a Script Cluster
Diagram, and a Page Navigation Diagram. This model assumes that the source is available, whereas our
research does not. Also, this paper uses an enhanced Finite State Machine that includes representation of
test constraints and does not need multiple types of diagrams. Unlike Kung et al. [16, 17], we also represent
the FSM via logical, rather than physical Web pages and solve potential state space explosion problems
through partitioning and a different approach towards input description on the edges of the FSM. This
research addressed problems 1 and 6 in Section 1.1.

Lee and Offutt [19] describe a system that generates test cases using a form of mutation analysis. It
focuses on validating the reliability of data interactions among Web-based software components. Specifically,
it considers XML based component interactions. This approach tests Web software component interactions,
whereas our current research is focused on the Web application level. This research addressed problem 7 in
Section 1.1.

Ricca and Tonella [29] proposed a UML model of Web application for high level abstraction. The model is
based entirely on static HTML links and does not incorporate any dynamic aspects of the software. Any Web
application can be seen as an instance of the UML model. The model is supported by a tool that creates a
static graph based on HTML links and another that creates tests comprised of sequences of URLs. Although
the paper claims that the tools can “guarantee that all paths in a Web site” are covered, assumptions about
data inputs and lack of information about dynamically created links clearly limit the paths that are covered.

Yang et al. [34, 35] present an architecture for test tools that is directed towards testing Web applications.
The architecture consists of five subsystems including test development, test measurement, test execution,
test failure analysis and test management. From the paper, it is not clear whether the test architecture
includes new tools or whether it is meant to incorporate existing tools. The FSM modeling-based tool
proposed in this paper satisfies the test development and test measurement portion of Yang et al.’s test
architecture.

Jia and Liu [15] proposes an approach for formally describing tests for Web applications using XML. A
prototype tool, WebTest, was also developed. Their XML approach could be combined with the test criteria
proposed in this paper by expressing the tests in XML.
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Benedikt, Freire and Godefroid [3] presented VeriWeb, a dynamic navigation testing tool for Web appli-
cations. VeriWeb explores sequences of links in Web applications by nondeterministically exploring action
sequences, starting from a given URL. Excessively long sequences of links are limited by pruning paths in a
form of path coverage. VeriWeb creates data for form fields by choosing from a set of name-value pairs that
are initialized by the tester. VeriWeb is the most similar work to the ideas presented in this paper. The
primary difference is in the graphs that are used and the technique applied to reduce their size. VeriWeb’s
testing is based on graphs where nodes are Web pages and edges are explicit HTML links, and the size of
the graphs is controlled by a pruning process. Our technique relies on FSM models of the Web application
and uses aggregation abstraction of the FSMs to control the size. Thus Benedikt, Freire and Godefroid’s
research addressed problems 1 and 2 in Section 1.1.

6.2 Test Generation Via Finite State Machines

Test generation via Finite State Machines (FSM) has a long and rich history. Some of the earliest papers
were in the 1970s [5, 12, 14, 27]. The primary focus of these papers was on using FSMs to generate tests
for telecommunication systems that are described in standard finite automata, although much of the work
pertained to general graphs. Huang [14] suggested covering each edge (“branch”) in the FSM, and Howden
[12] suggested covering complete trips through the FSM, but without looping. Chow [5] suggested generating
a spanning tree from the FSM and then basing test sequences on paths through this tree. Pimont and Rault
[27] suggested covering pairs of edges, called “switch cover.” Fujiwara [8] used the term “n-switch” to refer
to a sequence of edges extending Pimont and Rault’s pairs of edges to arbitrary lengths (and mistakenly
attributing “l-switch”, or switch cover, to Chow and calling it the “W-method”).

Other test generation methods based on FSMs include tour [22], the distinguished sequence method [10],
and unique input-output method [30]. Their objectives are to detect output errors based on state transitions
driven by inputs. FSM based test generation has been used to test a variety of applications including lexical
analyzers, real-time process control software, protocols, data processing, and telephony.

The key behind using FSMs to support testing seems to be not “what” to do with them (the above
paragraphs give a plethora of coverage criteria), but in “how” to generate the FSMs. Most of the coverage
criteria date back to the early papers. Some of the more theoretical work from the formal specification
community has involved creating FSMs from formal specifications. Dick and Faivre [7] generated FSMs by
analyzing formal specifications of software expressed in VDM. Derrick and Boiten [6] did the same, but
used the formal specification language Z. Luo, Bochmann and Petrenko [20] applied Fujiwara’s method to
communicating concurrently executing FSMs.

FSMs have also been used to test object oriented programs [9, 18] and designs [24, 31]. Kung et al.
[9, 18] extract the FSM from the code using symbolic execution, while Turner and Robson [31] derive the
FSM from the design of classes. Offutt and Abdurazik [24] derive tests from UML state charts [11], a form
of FSMs. Offutt and Liu [25, 26] developed an FSM model of formal specifications of software. They then
defined several testing criteria on the transitions by adapting control flow-based test criteria such as modified
condition/decision coverage (MCDC) [4].

7 Conclusions and Future Work

This paper addresses the problem of automatically testing Web applications at the system level. The
paper has presented four results. First, the FSMWeb methodology for generating finite state machines
without using the source code is presented. This is based on a user-level model of the Web application,
and a hierarchical aggregation of detailed FSMs. Second, a procedure for generating tests from the FSMs is
developed. This procedure uses standard coverage criteria on the FSMs, and a novel technique for aggregating
tests defined for lower level FSMs into tests for aggregate FSMs. Third, a collection of constraints on input
values are used to generate user input data in a semi-automatic fashion. The data is chosen from a collection
of possible values provided by the tester, and the constraints are used to ensure that the data is valid for the
test requirements. Fourth, the testing methodology has been demonstrated by a case study on a moderately-
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sized Web application, a course student information system. Although the example is small enough to fit in
a paper, the abstraction and aggregation that are implicit in the method provides built-in scalability.

A research prototype implementation has been written in Java that generates executable Evalid scripts
[21] for the application.

7.1 Limitations and Future Work

When considering the problems listed in Section 1.1, the FSMWeb technique addresses problems 1, 2, 3, 4,
and 6. At the tester’s discretion, problem 5 can be addressed by adding transitions to the Application FSM.

We have not addressed the “oracle” problem, that is, of deciding if the results are correct. This is
particularly difficult with Web applications because of the low observability. Some of the output is sent back
to the user as HTML documents, but Web applications also change state on the server, in the database, and
send messages to other Web applications and services. Tracking these kinds of outputs is very difficult and
we are not aware of any research that has addressed this problem as yet.

One limitation of the FSMWeb technique is that it has somewhat limited support for unanticipated user
controlled transitions, called operational transitions [33]. This includes a user going directly to an internal
Web page with a bookmark or URL rewriting and unanticipated back and forward transitions and is listed as
problem 4 in Section 1.1. While these types of transitions can certainly be modeled in the application FSMs,
doing so has the potential to significantly increase the number of transitions. Before this technique can be
used to test these types of transitions, a method will have to be found to model operational transitions in
an affordable manner. This could be as straightforward as keeping a list of potential operational transitions
and selecting them an various points in a test sequence. This problem is addressed in separate research by
Wu and Offutt [33]; in the future we will look into combining the two techniques. We plan to investigate
error recovery testing by investigating the value mutating constraints and FSMs.

Logical web pages are currently identified by hand. However, they can be extracted from HTML or from
software that creates the HTML through fairly simple parsing.

The FSMWeb technique still has a number of open questions and issues left to address. Current work is
largely focusing on automation and evaluation. The tool is in a preliminary stage, but work on it is ongoing.
The first step is to build the test model with as little user input as possible. We are working on algorithms to
automatically determine logical Web pages and then to derive finite state machines based on the links. We
hope to recognize clusters automatically, perhaps based on the site navigation layout. Some information can
also be gleaned from design notations like UML documents. We are also developing software that combine
user control with automation.

With expanded tool development, we plan to empirically evaluate this method, especially with regards
to the impact of various testing criteria and input selection criteria on the complexity and number of test
cases. Empirical studies will also be used to evaluate the ability of this approach to detect faults.

Section 4 discussed the problem of combining test sequences from lower level FSMS into aggregate
test sequences. Rather than choosing to combine all lower level test sequences, which will probably be
impractical, we have suggested two combination strategies. One goal of our experimentation is to evaluate
those combination strategies in terms of their cost/benefit tradeoffs and ability to help find faults.

One of the open questions about our technique is how much the human inputs impacts the results. For
example, the CSIS model was based on whether the user is a student, TA, or professor. The three types of
users share a number of functions, so another valid model might start by looking at those functions, and
considering the type of user to just be a parameter. This is a general risk of allowing human input into
any test process; the human can provide a very large amount of useful information, but then some of the
automation and repeatability is lost. One question we will explore is how much of an effect these decisions
have on the testing of the software.

Test generation can also be further refined, specifically by recognizing and using relationships among
inputs as constraints. For example, for a given user name, only one password is valid. A previous tool by the
first author, SLEUTH [32], represented constraints like this through sets of related values. If a database of
inputs is available, then it can be used to support this type of constraint. For example, if the Web application
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has a database of users and user information, the test generator can index into the database, query the user
record and identify the appropriate password after a user name has been selected. The test model needs
to account for these relationships. If the database is not available, a special-purpose test database will be
created as defined by Ran et al. [28]. Note that this approach no longer needs to be concerned with syntax
for an input (for example, a birth year may have to be a four digit number between 1900 and 2002). In
effect, we are trading off populating a test database with input values against generating them dynamically.
Many Web applications use databases for key inputs such as users and orders, so the test environment can
use them to simplify test generation. We also assume that testers have full access to such a database if it
exists.
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A Appendix: BNF Grammar for Input Selection Constraints

The table below gives the grammar for our input constraint language. At the highest level, a constraint
consists of one or more input choices, followed by zero or more order constraints, followed by zero or more
propagation constraints.

There are three types of input choices: required, optional, and choice. Required and optional inputs are
specified by the operators R and 0, and are followed by a list of parameters. Parameters are named inputs
designated by strings, and may optionally be constrained to a particular value (for example Name=’Alan
Turing’). Choice inputs are specified by the operator C followed by an integer (for example C3) and optional
bound designator (+ or -), followed by a list of input parameters.

The choice operator is used to place a constraint on the number of inputs that may be selected. For
example, C3 requires exactly three inputs to be selected from the list. Lower and upper bounds are specified
using the bound designators. For example, C4- limits the number of selected inputs to at most four. Similarly,
C5+ requires at least five inputs be selected. The number of inputs specified by a choice operator must be
consistent with the number of choices in the parameter list.

Order constraints are specified using the sequential and any order operators S and A, followed by a
constraint list. An S order constraint requires that the inputs in the corresponding constraint list occur
in their order of appearance in the list. For example, the constraint S(Id, Password, Submit) specifies
that Id must be entered first, followed by Password, and finally by Submit. Similarly, any requires that
all inputs in the constraint list be entered, but their order is unspecified. For example, A(First, Middle,
Last) requires that First, Middle, and Last appear as inputs, but in any order. Thus, the following
are valid entry sequences: First;Middle;Last, Last;First;Middle, and so on. Note that a constraint list
consists of elements that are either input choices or other order constraints (that is, nested order constraints).
For example, the two entry sequences in the preceding paragraph could be specified as A(S(First, Middle,
Last), S(Last, First, Middle)). An input used in an order constraint must be specified in the list of
input choices.

Propagation constraints specify a list of inputs whose current values may or may not be reused. The
latter are specified by the continue operator followed by a list of inputs. Similarly, the single operator is
used to specify inputs whose values may not be used again. Note that inputs in either list are required to
also be specified in the list of input choices.
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| Constraint | ( InputChoices [ OrderConstraint | [ PropagationConstraints ] ) — None
| None || none

| InputChoices || InputChoice | InputChoice |*

| InputChoice || RequiredInput — Optionallnput — Choicelnput

| RequiredInput || Required InputList

| Required || R

| InputList || Left RequiredParameterList Right

Rz I

| Right 1)

| RequiredParameterList

| Parameter [ AdditionalParameter |*

| Parameter | SimpleParameter | FizedConstraint ]
| SimpleParameter || string

| FizedConstraint || Equals Value

| Equals | =

| Value || Quote string Quote

| Quote || ’

| AdditionalParameter || Comma Parameter

| Comma || R

| Optionallnput || Optional InputList

| Optional || (0]

| Choicelnput || Choose Number [Bound| Left ParameterList Right
| Choose || C

| Bound || -—+

| Number | integer

| OrderConstraint || Order ConstraintList

| ConstraintParameterList

| ConstraintParameter | AdditionalConstraintParameter |*

| ConstraintParameter

|| SimpleParameter — OrderConstraint

| ConstraintList

|| Left ConstraintParameterList Right

| AdditionalConstraintParameter

|| Comma ConstraintParameter

| Order

|| AnyOrder — SequentialOrder

| AnyOrder

LA

| SequentialOrder

LS

| PropagationConstraints

| [ ContinueUseList ] [ SingleUseList ]

| ContinueUseList || ContinueUse SimpleParameterList

| ContineUse || continue

| SingleUseList || SingleUse SimpleParameterList

| SingleUse || single

| SimpleParameterList || SimpleParameter | AdditionalSimpleParameter |*

| AdditionalSimpleParameter

|| Comma SimpleParameter
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