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Predictive performance is important to many applications of species distribution 
models (SDMs). The SDM ‘ensemble’ approach, which combines predictions across 
different modelling methods, is believed to improve predictive performance, and is 
used in many recent SDM studies. Here, we aim to compare the predictive perfor-
mance of ensemble species distribution models to that of individual models, using a 
large presence–absence dataset of eucalypt tree species. To test model performance, 
we divided our dataset into calibration and evaluation folds using two spatial block-
ing strategies (checkerboard-pattern and latitudinal slicing). We calibrated and cross-
validated all models within the calibration folds, using both repeated random division 
of data (a common approach) and spatial blocking. Ensembles were built using the 
software package ‘biomod2’, with standard (‘untuned’) settings. Boosted regression 
tree (BRT) models were also fitted to the same data, tuned according to published 
procedures. We then used evaluation folds to compare ensembles against both their 
component untuned individual models, and against the BRTs. We used area under the 
receiver-operating characteristic curve (AUC) and log-likelihood for assessing model 
performance. In all our tests, ensemble models performed well, but not consistently 
better than their component untuned individual models or tuned BRTs across all tests. 
Moreover, choosing untuned individual models with best cross-validation performance 
also yielded good external performance, with blocked cross-validation proving better 
suited for this choice, in this study, than repeated random cross-validation. The latitu-
dinal slice test was only possible for four species; this showed some individual models, 
and particularly the tuned one, performing better than ensembles. This study shows 
no particular benefit to using ensembles over individual tuned models. It also suggests 
that further robust testing of performance is required for situations where models are 
used to predict to distant places or environments.
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Introduction

Species distribution models (SDMs), also known as ecologi-
cal niche models or habitat suitability models, are models 
that fit species–environment relationships to explain and pre-
dict distributions of species. SDMs are important tools in 
ecology, widely used in applications including exploring eco-
logical and evolutionary hypotheses, invasive species manage-
ment, reserve planning and predicting the impact of past and 
future climate change on species and communities (Guisan 
and Thuiller 2005, Guillera-Arroita et al. 2015, Guisan et al. 
2017). A range of modelling algorithms are now available 
for building SDMs (e.g. generalised linear models, regres-
sion trees Maxent; Elith  et  al. 2006). It is not necessarily 
straightforward for users of SDMs to decide which algorithm 
is optimal for their situation (Elith and Graham 2009). In 
the absence of targeted application-specific metrics of model 
performance, SDM users often seek the algorithm that yields 
most accurate predictions. However, the relative predictive 
performance of algorithms is often situation-dependent, and 
past algorithm comparisons have not been able to identify any 
single class of algorithms as consistently superior at prediction 
(Segurado and Araújo 2004, Elith et al. 2006, Pearson et al. 
2006). Rather than choosing a single modelling method 
(‘individual model’ hereafter), it has been suggested that one 
could instead build multiple models using different model-
ling methods, and combine predictions from these models to 
produce together an ‘ensemble’ prediction to achieve better 
prediction (Araújo and New 2007). We note here that this is 
a particular use of the word ensemble: it considers ensembles 
across modelling methods. This excludes machine learning 
methods such as random forests and boosted regression trees 
(Hastie et al. 2009) which are in one sense an ensemble, but 
are different conceptually and based on just one model type 
(decision trees). Hence in this paper we consider random for-
ests and boosted regression trees as ‘individual’ models.

Ensemble modelling is widely applied by SDM users 
(Araújo and New 2007, Hao et al. 2019a) and many mod-
ellers believe ensemble models are superior for prediction 
tasks compared to individual models (Hao  et  al. 2019a). 
However, there is limited empirical investigation about how 
well ensemble models predict compared to individual SDMs. 
Two studies (Crimmins et al. 2013, Zhu and Peterson 2017) 
specifically investigated the relative performance of ensemble 
and individual models when used to predict into novel envi-
ronments (also referred to as ‘model transfer’), as such use is 
popular among ensemble modellers. Using species data inde-
pendent from original data for validating model predictions, 
both studies found ensemble models to perform no better than 
individual models. In contrast, Marmion et al. (2009) found 
ensemble models to perform better than individual models 
when validated using a subset of the full dataset, providing 
evidence that ensembles can predict well to withheld data 
within the same space and time as the training data. Given 
that the structure and source of validation data can strongly 
impact the assessment of model performance (Roberts et al. 
2017), and the limited testing of ensemble models to date, it 

can be argued that our understanding about ensemble perfor-
mance in different settings is still fairly limited.

Here, we aim to contribute to this knowledge gap by test-
ing the predictive performance of widely-used ensemble and 
individual models using a large set of tree occurrence data in 
southeast Australia. Rather than using the common strategy 
of random partitioning of data into calibration and valida-
tion subsets (Marmion et al. 2009), in this study we apply 
spatial blocking. Spatial blocking involves partitioning the 
data into mutually-exclusive spatial blocks, which are used to 
either calibrate or validate models. The advantage of spatial 
blocking over random partitioning is that test data are spa-
tially more distant from training data, and therefore likely 
more independent (Roberts et al. 2017, Valavi et al. 2019). 
Spatial dependence (spatial autocorrelation, SAC) can occur 
in both species and predictor data, because neighbouring sites 
are more likely to experience similar environmental condi-
tions and there may be spatial dependence in biological 
processes (Roberts  et  al. 2017). Models might overfit these 
dependencies, and random splits may not reveal such overfit-
ting (Roberts  et  al. 2017). Hence spatial blocks are useful, 
enabling a thorough comparison of ensembles (expected to 
be complex), other complex models and simpler ones (sensu 
Merow et al. 2014). Through this study, we aim to comple-
ment the existing knowledge on performance of ensemble 
models versus individual models and investigate how spatial 
blocking affects our understanding of model performance.

Methods

Species and predictor data

Species data are from a large (32 256 sites) presence–absence 
dataset of 36 eucalypt tree species in New South Wales, 
Australia. These were obtained from vegetation survey data 
stored in the Flora Survey Module of the Atlas of NSW 
Wildlife, Office of Environment and Heritage. Creating 
spatial blocks for species with few presence records is dif-
ficult. To retain a reasonable amount of data to calibrate 
and validate models, we omitted all species with fewer than 
500 presences in the full dataset, resulting in a selection of 
14 tree species (13 in the genus Eucalyptus and one in the 
genus Corymbia). These 14 species were represented by 534 
to 2003 presence records (see Table 1 for number of pres-
ence records and Supplementary material Appendix 1 for 
maps of records). For covariate data, we used 11 predictor 
variables at nine arc-second (~250 × 250 m) raster resolution 
(details in Supplementary material Appendix 1). Both spe-
cies and predictor data were compiled and used previously 
in Fithian et al. (2015), and made openly available with that 
paper.

Spatial blocking

We devised spatial blocks in two different ways described 
below.
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Checkerboard blocking

In our first strategy for blocking, we divided our study region 
into a ‘checkerboard’ pattern with 53 equal-sized square 
blocks, each with a size of ~83 × 83 km, using the ‘blockCV’ 
package (Valavi et al. 2019) within the R ver. 3.4.1 statisti-
cal language environment (<www.r-project.org>). The block 
size was selected using the ‘spatialAutoRange’ function in 
‘blockCV’, which suggests block sizes based on the median 
range of spatial autocorrelation in all predictor variables. The 
53 blocks were then allocated into five roughly equal-sized 
folds, with similar number of presence and absence records in 
each fold (using ‘selection = random’ argument in the function 
‘spatialBlock’ in ‘blockCV’; for an example of fold arrange-
ment see Supplementary material Appendix 1 Fig. A2). For 
each modelling run, we reserved one fold as the external fold. 
These data were strictly kept away from the model calibrat-
ing process, and only used to validate external model predic-
tions. We used the remaining four folds (internal folds from 
here on) to calibrate and internally cross-validate models. In 
total five modelling runs were completed for each species and 
method, by cycling through the data, with each fold acting as 
the external fold exactly once.

Latitudinal blocking

The checkerboard design tests prediction to different parts 
of the landscape to some extent, but alternative designs can 
enforce testing in more geographically distant areas. This is 
useful, because ensemble modelling is a popular approach for 
predicting to distant areas (e.g. invasion or range expansion), 
justified by a widely stated view that ensembles are superior 
at such prediction tasks (Hao et al. 2019a). Because our study 
area experiences warmer temperatures in the north and vice 
versa, here we tested how well models predict to latitudinal 
extremities within the study area. We evenly divided the 
landscape into five latitudinal slices between latitudes −38 
and −28, each slice with a width of 2° latitude (~222 km). 
We then used either the northernmost or the southernmost 

slice as the external fold and the remaining four folds to 
calibrate and internally cross-validate models. We applied 
this approach to only four species – those whose distribu-
tion spanned all five slices: Corymbia maculata, Eucalyptus 
obliqua, Eucalyptus pauciflora and Eucalyptus pilularis (rang-
ing from 24 to 809 presence records per species per slice). 
We tested whether these slices require models to extrapolate 
using multivariate environmental similarity surface (MESS, 
Supplementary material Appendix 2).

Individual models

We used eight different approaches to build individual 
models, including popular methods from both statistics 
and machine learning. The models, and their acronyms, are 
detailed in Table 2. We built these individual models using 
the ‘biomod2’ package ver.3.3-7 (Thuiller et al. 2009) for the 
R statistical language. ‘biomod2’ provides a range of meth-
ods and functionalities relevant to the problem of model-
ling distributions, including a streamlined framework for 
building ensemble SDMs. Ensemble SDM workflows can 
be carried out using other toolkits such as BioEnsembles 
(Diniz‐Filho  et  al. 2009) or without specialised tool sets 
(Hardy  et  al. 2011, Crimmins  et  al. 2013). However, we 
choose ‘biomod2’ because it is most popular among ensem-
ble SDM users and is therefore representative of the typical 
ensemble SDM workflow (Hao et al. 2019a).

The configurations of our selected modelling methods are 
governed by tuning choices, including settings for how each 
model is fitted and what terms are allowed in the model. For 
instance, for a GLM, choices include the complexity of basis 
expansions allowed in the model (e.g. linear, quadratic or 
cubic terms; Hastie et al. 2009), and the approach used for 
selecting the final model (e.g. stepwise selection, or use of a 
full model). In practice, the evidence points towards common 
use of default tunings with biomod2 (Hao et al. 2019a). To 
be consistent with that, here we also used ‘biomod2’ in-built 
functions to build individual models as well as ‘biomod2’ 
default tuning choices (see our archived data for our R code, 
including tuning parameters used).

The tuning of model algorithms is known to affect pre-
dictive performance (Elith  et  al. 2008, Hastie  et  al. 2009, 
Merow et al. 2013). Here, we wish to briefly explore whether 
default tuning choices in ‘biomod2’ are optimal for our data-
set or if they can be improved. We wish to also test how tuned 
models compare against ensembles of models with ‘biomod2’ 
default tunings. To this aim, for each modelling run, we 
tuned a BRT model (tuned BRT hereafter), using the package 
‘dismo’ (Hijmans et al. 2017) in R and advice from Elith et al. 
(2008), and compared its predictive performance with ‘bio-
mod2’ models. We chose to tune only the BRT model because 
we are experienced with the algorithm, and tuning all indi-
vidual models is beyond the scope of this study. In a BRT 
model, the main tuning parameters include learning rate, 
depth of tree, bag fraction and the total number of trees in the 
ensemble (for an explanation see Elith et al. 2008). Our tuned 
BRT model is set with a slow learning rate (0.002), relatively 

Table 1. Number of presence records for all species; all species are 
modelled under ‘checkerboard’ blocking design, and names of 
those species also modelled under ‘latitudinal’ blocking design are 
in bold.

Species Abbreviation No. of presences

Eucalyptus dives eucadive 905
Eucalyptus pauciflora eucapauc 1094
Eucalyptus agglomerata eucaaggl 1025
Eucalyptus cypellocarpa eucacype 1290
Eucalyptus fastigata eucafast 753
Eucalyptus obliqua eucaobli 953
Eucalyptus pilularis eucapilu 1773
Eucalyptus piperita eucapipe 1762
Eucalyptus robusta eucarobu 534
Eucalyptus sieberi eucasieb 2003
Eucalyptus moluccana eucamolu 804
Eucalyptus punctata eucapunc 2102
Eucalyptus rossii eucaross 613
Corymbia maculata corymacu 1387



552

deep trees (5), bag fraction of 0.75 and a maximum of 20 
000 trees. The optimal number of trees is estimated in the 
‘gbm.step’ function in ‘dismo’, a method that gradually adds 
more trees to the ensemble until optimal prediction on cross-
validated data is achieved. We chose these settings because our 
presence–absence dataset is large, thus it likely can support 
relatively complex relationships (i.e. deep trees), and because 
these settings allowed us to fit at least 1000 trees, which is 
desirable to reduce variance between different runs of these 
stochastic models (Elith et al. 2008). This contrasts with the 
‘biomod2’ ver. 3.3-7 defaults, which use the ‘gbm’ package, 
has a slow learning rate (0.001) and deep tree depth (7), uses 
a bag fraction of 0.5 and only allows up to 2500 trees. In 
‘biomod2’ the optimal number of trees are then chosen by a 
three-fold cross-validation across the set fitted.

Internal cross-validation

Cross-validation (CV) is often used by modellers to under-
stand the performance of their models and to build a special 
class of ‘weighted’ ensemble models popular among ‘bio-
mod2’ users. CV divides data multiple times into different 
subsets used for calibrating (i.e. fitting or training) and vali-
dating (i.e. testing) models. Although CV is thought to be 
less ideal than independent validation as a test of true model 
performance (Marmion et al. 2009, Crimmins et al. 2013), 
we believe it is nevertheless important to investigate what 
information on model performance a typical ensemble mod-
eller would gain from using CV. Therefore, we performed 

CV in all modelling runs in both spatial blocking designs, 
using only the internal folds. To distinguish our CV from 
external validations using the external fold, we will refer to 
CVs as ‘internal’ to reflect the use of internal folds only, and 
to cross-validated models as ‘internal models’ (see Fig. 1 
for an illustration of how we divided data for internal and 
external models). We designed internal CVs in two differ-
ent ways. Firstly, we randomly selected 75% of the samples 
in the internal folds for calibrating the internal models, and 
used the remaining 25% to validate them; we repeat this pro-
cess four times in each modelling run. This repeated random 
CV strategy is provided by ‘biomod2’ as a default option, 
and is widely used in ‘biomod2’ studies (Hao et al. 2019a). 
Therefore, we included it to represent the model performance 
information that typical ‘biomod2’ users obtain, and to assess 
whether it yields different results than those obtained from 
spatially blocked validation methods. For our second internal 
CV, we used the existing spatially-blocked folds within inter-
nal folds by using three internal folds to calibrate models and 
the remaining one for validation. We cycled through the four 
internal folds until each fold had been used for validation 
once, effectively conducting a four-fold CV (Hastie  et  al. 
2009). In both CV designs, we averaged model performance 
statistics across the four repeated runs/folds, using area under 
the curve (AUC) of the receiver-operating characteristic plot 
(Fielding and Bell 1997) as a metric of predictive perfor-
mance. AUC is a confusion matrix-derived measure of dis-
crimination, reflecting how successful models are at correctly 
discriminating presences from absences. It is extensively 

Table 2. Individual models used to build ensemble models.

Model Abbreviation Overview of model fitting in biomod2* R packages called

Generalised  
linear model

GLM A regression model that fits quadratic response curves with  
no interactions between covariates, with stepwise backward  
selection using Akaike’s information criterion.

glm

Generalised  
additive model

GAM A regression model that fits smoothed additive response curves  
through the mgcv package, allowing no interactions between covariates.

gam, mgcv

Multivariate  
adaptive regression 
splines

MARS Similar to a GAM, MARS can fit complex response curves by  
joining together linear segments. The defaults allow no interaction  
terms, and use default penalties from the earth package.

earth

Artificial neural  
networks

ANN A single-hidden-layer neural network that uses a five-fold internal  
cross-validation to choose the best number of units in the hidden  
layer and weight decay. These two parameters control model complexity.

nnet

Classification  
tree analysis

CTA A decision tree model fitted with default settings in the underlying rpart 
package. Under biomod2 defaults it fits complex trees with many nodes.  
A five-fold internal cross-validation is used to choose the best model.

rpart

Flexible discriminant 
analysis

FDA This method first fits a MARS model (fitted through mda package) then 
performs dimensionality reduction before attempting classification.

mda

Random forest RF A machine-learning method that ensembles predictions from  
500 classification trees, fitted on randomly selected subsets of all  
training data. Individual trees are controlled to have at least five data 
points in their terminal nodes, but are otherwise allowed to grow as  
many nodes as possible.

randomForest

Boosted  
regression trees

BRT A machine-learning method that ensembles regression trees through  
gradient boosting. A maximum of 2500 relatively deep trees are  
fitted, and best iteration of trees is selected using an internal  
three-fold cross-validation.

gbm

* Using default tuning in ‘biomod2’ package ver.3.3-7; no models use spatial terms. Further information on default settings can be viewed 
using the function Print_Default_ModelingOptions() in ‘biomod2’.
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employed by SDM users, including most ensemble model-
ling studies (Hao et al. 2019a). AUC values range between 
0 and 1, with 0.5 representing random discrimination and 
one representing perfect discrimination. We did not subject 
tuned BRT models to internal CVs as we aimed to compare 
their performance against other models in external validations 
(rather than to understand how their performance would be 
perceived by typical ‘biomod2’ users using CV).

Ensemble models

We built ensembles using the two most popular methods 
amongst ‘biomod2’ users (Hao et  al. 2019a) – Mean, and 
weighted average (WA). Mean produces the ensemble pre-
diction by averaging predictions across individual models. 
WA also averages predictions, but weights them based on 
CV performance of individual models (so the ensemble is 
more strongly influenced by models performing well on CV). 
For our WA ensembles, we weighted the model predictions 
based on their internal cross-validation AUC, with weights 
calculated as in eq. 1 (Hartley et al. 2006, Marmion et al. 
2009):

WAprediction
AUC prediction

AUC
i

j j ij

j j

=
×( )∑

∑
 (1)

that is, for a given site i, the WA ensemble prediction, 
WApredictioni, is calculated as the sum of predictions for 
site i across j individual models weighted by their respective 
AUC, AUCj and normalized by the sum of all AUCs.

For each modelling run, we produced one Mean and two 
WA ensembles, giving a total of three ensembles. One WA 
ensemble used AUCs from repeated random internal cross-
validation (random WA hereafter), and the other used AUCs 
from spatially-blocked internal CV (block WA).

External validation

When investigating the performance of SDMs, it is often dif-
ficult to find a single best way to validate models. In practice, 
‘biomod2’ ensembles are often evaluated using cross-validation 
on the same data used to calculate weights to build WA ensem-
bles. As recognised by its authors (<https://rstudio-pubs-static.
s3.amazonaws.com/38564_747d4bbf87704f0394734977b
d4905c4.html>), this test may provide biased results across 
the various ensemble types and individual models, because 
the weighting is in favour of models that performed better 
on validation data. Therefore, performance of WA ensembles 
is possibly optimistic as judged by internal cross-validation. 
Since our study aims to investigate performance properties, to 
avoid this potential artificial advantage to WA ensembles, we 
validated models externally on held-out data from the external 
folds (Fig. 1), and averaged their external performance across 
all external folds (five for checkerboard and two for latitudi-
nal). Our external validation also serves a second purpose of 
allowing us to assess if models that performed well on internal 
cross-validations also perform well on the external data. This 
is important to the scenarios in which modellers choose the 
individual model with best internal performance as their final 
model, instead of combining models in an ensemble (equivalent 
to the ‘Best’ ensemble approach in Marmion et al. 2009). We 
wish to understand how effective this strategy of choosing the 
‘best internal model’ is and how it compares to model-combin-
ing ensembles and conventional single-model approaches. We 
calibrated the models for external evaluation on the entirety 
of internal folds (~80% of all data), then validated them using 
all data from the external fold. We will refer to these models as 
‘external models’ hereafter, to reflect the use of external evalu-
ations. For both external random WA ensembles and external 
block WA ensembles, we used internal cross-validation AUCs, 
averaged across four repeats, to calculate the weights. We chose 
AUC and log-likelihood as validation statistics in external vali-
dations. We used log-likelihood to complement AUC because 
while AUC tests model discrimination, log-likelihood tests a 

20% 20% 20% 20% 20%

Internal folds External fold

external model – calibra�on data

external model – valida�on data

internal model – calibra�on data
internal 

model –

valida�on 

data

Calibra�on –

evalua�on 

setup

Fold 

arrangement

Spa�ally blocked (checkerboard or la�tudinal)

OR

Repeated random

Spa�ally blocked (checkerboard 

or la�tudinal)

Figure 1. Schematic illustrating the amount (in % of full data) and arrangement of data used for calibration and validation of internal and 
external models.
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different aspect of model performance – model calibration, 
which is how closely fitted values of models match observa-
tions (Pearce and Ferrier 2000).

Methods summary

In summary, we used eight algorithms for individual mod-
els and three ensemble methods in our analysis; in addition, 
we fine-tuned separate BRT models for comparison, thus 
resulting in 12 models per species per modelling run in total. 
We modelled all 14 species using a checkerboard blocking 
design and, for four selected species, we also built models 
using a latitudinally sliced blocking design. In both designs, 
we divided data into five folds, and for each modelling run, 
we designated four as internal folds and the remaining one 
as the external fold. Under checkerboard blocking, we cycled 
through all folds to act as the external fold for a total of five 
modelling runs per species. Under latitudinal blocking, we 
only used the northernmost and southernmost folds as the 
external fold, thus completing only two modelling runs per 
species. In all modelling runs, we built and cross-validated 
internal models using data from only internal folds, and 
models were cross-validated using a repeated random strat-
egy and a spatially blocked strategy. We then built external 
models using all data from internal folds and validated them 
on the held-out external fold (checkerboard or latitudinal). 
The external validations allowed fair comparison between 
ensemble and individual models, and the internal cross-
validations helped to understand whether internally best-
performing models are still superior on external validations. 
Note that we necessarily calibrated and tested the internal 
and external models on different subsets of data (Fig. 1), so 
while they both can offer narratives about ranking of model 
performance, the internal and external validation results are 
not directly comparable. We used AUC to measure model 
performance in internal validations, and used AUC and log-
likelihood in external validations.

In addition to the methods described above, we also 
repeated all analyses with 90% less calibration data to simulate 
a data-poor situation. Because they yielded similar patterns to 
those in the main results presented below, we report data-
thinned analyses and log-likelihood results in Appendix 2.

Results

Checkerboard blocking

Most models performed well when assessed with AUC based 
on checkerboard blocking (Fig. 2). Across all species, blocked 
internal CVs tended to yield similar AUC values to those 
produced by external validations, with a slightly lower per-
formance estimate internally, understandable given that the 
models in internal tests were fitted to less data. In contrast, 
repeated random CVs consistently estimated higher AUC 
values. This is consistent with the concept that spatial blocks 
provide test data more independent from the training data. 

We note that even relatively smooth models like GLMs show 
this pattern, whereas complex models, like RF, show even 
greater overoptimism under random CVs (Fig. 2).

Focusing on the comparison between performance of 
ensembles and individual models on external data, we found 
that, across all species, all three ensembles (mean, random 
WA, block WA) outperformed all untuned individual models 
(paired two-tailed Wilcoxon signed-rank test, p < 0.05 for all 
models except RF, for which p = 0.05, Supplementary material 
Appendix 2). The improvements in AUC, whilst significant, 
tended to be very small (≤ 0.03 AUC unit difference between 
ensembles and all individual models except CTA and FDA, 
which performed significantly worse than every other model, 
p < 0.01). The three ensembles performed indistinguishably 
from one another (p > 0.05), so weighting did not signifi-
cantly alter performance in our case. Among untuned indi-
vidual models, RF performed best, with its mean AUC score 
only ~0.01 unit less than that of the ensembles. However, 
RF only outperformed other strong-performing models (i.e. 
GLM, BRT, GAM and MARS) by 0.01–0.02 AUC units. 
Tuned BRTs outperformed all untuned individual models 
(p < 0.05), including untuned BRTs, but again most differ-
ences were small. The differences, albeit small, imply that 
default BRT tuning choices in ‘biomod2’ are not quite opti-
mal for our dataset. Furthermore, tuned BRTs appeared to 
match the performance of all ensemble models when judged 
by mean AUC across species (p > 0.5).

Choosing the model that performed best per species on 
internal cross-validation also yielded good performance on 
external validation, comparable to that of ensembles (see 
‘block best’ and ‘random best’ rows in Supplementary mate-
rial Appendix 2 Table A2). Blocked internal CVs were more 
successful at predicting best external models than random 
internal CVs (11 correct predictions out of 14 species versus 
4; Table 3). This appears to be driven by RFs performing par-
ticularly strongly under random internal CVs, but not always 
under the other two validation designs. However, inability to 
identify the model with the best external performance would 
not be problematic in this dataset, because best internal mod-
els tended to perform well on external validation even if they 
are not the top models – the AUC difference between best 
internal and external models are always within 0.02 AUC 
units (‘AUC loss’ columns in Table 3).

Latitudinal blocking

Latitudinal extremities were more remote though mostly 
still within the range of environments in the training data 
(Supplementary material Appendix 2). AUC of models on 
latitudinally blocked internal cross-validations were lower 
than that observed when checkerboard blocking was used 
(mean of 0.78 with a range from 0.54 to 0.92, compared 
to mean of 0.87 with a range from 0.61 to 0.96). AUC val-
ues from latitudinal external validation were also lower than 
those from checkerboard external validation (mean = 0.76, 
min = 0.46, max = 0.92 compared to mean = 0.87, min = 0.51, 
max = 0.99; Fig. 3). In addition to lower overall AUC, ranking 
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Figure 2. Model performance as measured by AUC across 14 species and five folds using a checkerboard-blocked validation design, for dif-
ferent modelling approaches (x-axis). AUC scores are colour-coded according to the data used for evaluation (Eval: block = spatially blocked 
internal cross-validation, random = repeated random internal cross-validation, external = external validation). ‘Block best’ and ‘random best’ 
correspond to the best-performing individual model for each species under the respective internal cross-validation method. Boxes span 1st 
and 3rd quartile values, with the horizontal line indicating the median.

Table 3. Best individual models as identified by either repeated random (Random) or spatially blocked (Block) internal cross-validations, 
compared to best individual models on external validations. ‘Blocking’ represents whether external validation results were based on check-
erboard (C) or latitudinal blocking designs (L). ‘AUC loss’ indicates how much worse (in AUC units) the best cross-validation models per-
formed on external validation compared to the best external models. Models that performed best on both cross-validation and external 
validation are in bold.

Blocking Species Random AUC loss Block AUC loss External best Best external AUC

C corymacu RF 0.01 GAM 0.00 GAM 0.82
C eucaaggl RF 0.00 RF 0.00 RF 0.83
C eucacype RF 0.00 RF 0.00 RF 0.92
C eucadive RF 0.00 MARS 0.01 ANN 0.95
C eucafast GAM 0.01 RF 0.00 RF 0.93
C eucamolu RF 0.02 GLM 0.00 GLM 0.88
C eucaobli RF 0.00 RF 0.00 RF 0.92
C eucapauc RF 0.00 GLM 0.00 GLM 0.93
C eucapilu RF 0.00 RF 0.00 GAM 0.83
C eucapipe RF 0.01 GAM 0.00 GAM 0.87
C eucapunc RF 0.01 MARS 0.00 MARS 0.90
C eucarobu RF 0.01 BRT 0.00 MARS 0.90
C eucaross GAM 0.00 GLM 0.00 GLM 0.94
C eucasieb RF 0.00 RF 0.00 RF 0.88
L corymacu RF 0.11 MARS 0.00 BRT 0.74
L eucaobli RF 0.04 RF 0.04 MARS 0.84
L eucapauc RF 0.00 RF 0.00 MARS 0.87
L eucapilu RF 0.02 BRT 0.01 FDA 0.80
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of model performance under latitudinal blocking was also 
different from the checkerboard blocking scenario. The three 
ensembles performed equally well, and all outperformed 
most untuned individual models, but were only better than 
GLMs and untuned BRTs by 0.01–0.02 AUC units (see 
Supplementary material Appendix 2 Table A3 for details). 
However, MARS outperformed all ensembles for three out of 
four species, and its mean AUC across species was higher than 
all ensembles by 0.01 AUC units (this pattern is consistent 
when data are thinned, Supplementary material Appendix 2). 
Moreover, tuned BRTs obtained higher AUC than all other 
models (ensembles included), and appeared to outperform 
other models most often (Supplementary material Appendix 
2 Table A3, note that we did not perform significance tests 
due to small sample size, n = 4).

Models that performed best on internal cross-validations 
were consistently not the best performing on latitudinal exter-
nal validation (Table 3). Most internal best models were not 
noticeably worse than external best models, with the excep-
tion of RF for Corymbia maculata, which performed best on 
internal repeated random CV but on external validation did 

worse than the best model (BRT) by over 0.1 AUC units. 
In addition, repeated random CV consistently yielded higher 
AUC values than blocked CV and external validation for 
every model (Fig. 3).

For both checkerboard and latitudinal blocking designs, 
detailed model-to-model AUC comparisons are available in 
Supplementary material Appendix 2 Table A2, A3, which also 
contains additional results from log-likelihood and thinned-
data analyses.

Discussion

By validating models on spatially blocked data, we found that: 
1) ensemble models performed well compared to untuned 
individual models, but their performance gain was small; 2) 
ensembles can be outperformed by untuned individual mod-
els when predicting to distant areas; 3) the approach where 
one chooses the individual model with best internal valida-
tion performance also yielded good performance, only mar-
ginally worse than that of ensembles; 4) ensembles of untuned 
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Figure 3. Model performance as measured by AUC across four species and two folds using a latitudinally-blocked validation design, for 
different modelling approaches (x-axis). AUC scores are colour-coded according to the data used for evaluation (Eval: block = spatially 
blocked internal cross-validation, random = repeated random internal cross-validation, external = external validation). ‘Block best’ and ‘ran-
dom best’ correspond to the best-performing individual models for each species under the respective internal cross-validation method. 
Boxes span 1st and 3rd quartile values, with the horizontal line indicating the median.
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individual models could not consistently outperform a tuned 
individual model. Hence in this dataset we observe strong 
performance across a range of approaches, without clear 
superiority of ensembles.

In our AUC tests using latitudinal design, ensembles were 
outperformed by tuned BRTs and untuned MARS on both 
full and thinned training data, and by untuned GLMs under 
thinned training data (Supplementary material Appendix 2). 
This suggests that ensembles may not perform as well as indi-
vidual models when predicting to more distant areas. This is 
consistent with previous investigations into ensemble perfor-
mance showing that they perform well at interpolating tasks 
(Marmion et al. 2009), but are not always the best at transfer 
tasks (Crimmins et al. 2013, Zhu and Peterson 2017). This 
is worth further investigation, because ensembles are popular 
with such transferring tasks (Hao et al. 2019a). In our lati-
tudinal tests, the observed decrease in ensemble performance 
relative to others may be explained by a combination of: 1) 
spatial dependencies between train and test sets are decreased 
in latitudinal blocking, and 2) complex models can overfit 
spatial patterning, erroneously attributing geographic pat-
terns of SAC to environmental covariates (Merow et al. 2014, 
Roberts  et  al. 2017). It is likely that the ensembles are the 
most complex models in our study, because there are many 
component models, all fitted with default settings. On the 
other hand, models outperforming ensembles on latitudinal 
validations were all tuned to have relatively simple response 
curves (see Table 2 for default tunings of GLMs and MARS) 
or their tuning was optimised (tuned BRT), thus they were 
less likely overfit. Since our explorations of extrapolation 
revealed relatively few environments outside those in the 
training data, it is unlikely that this decreased performance 
in latitudinal test folds is driven by extrapolation problems 
(sensu Sequeira et al. 2018).

Interestingly, the performance of ensemble models did 
not appear to be affected by inclusion of poor models (e.g. 
CTAs). Initial investigations revealed that the CTA models 
in this study tended to produce nearly flat response curves. 
This means that, when combined with other models in an 
ensemble, predictions from these poor CTA models did not 
influence the discrimination capacity of the final prediction 
greatly (i.e. they did not affect the ranking of the final model 
predictions). One would imagine that with different tuning 
the range of predictions from a CTA would increase, and 
may either improve the performance of the CTA or, if not, 
have more (negative) impact on the ensemble performance. 
Since the CTA models were the most consistently poorly 
performing ones in our study, we have limited scope to test 
whether ensembles would be similarly unaffected by other 
model algorithms that perform poorly in other datasets. This 
requires further research, to identify whether specific types 
of prediction failure more severely impact ensemble perfor-
mance (Dormann et al. 2018).

The tuning of modelling methods is known to affect pre-
dictive performance (Elith et  al. 2008, Hastie  et  al. 2009), 
but the approach to model tuning is rarely reported in stud-
ies employing ‘biomod2’ ensembles (Hao  et  al. 2019a). It 

appears that ‘biomod2’ default tuning choices are used in 
many ensemble modelling studies, therefore we also used 
‘biomod2’ defaults to emulate a typical ‘biomod2’ modelling 
scenario. However, with only simple tuning of our BRTs, 
using slightly different code and settings, our ‘tuned’ BRTs 
consistently achieved slightly yet consistently better and less 
variable (Fig. 2, 3) discrimination performance than those fit-
ted with ‘biomod2’ defaults. Other methods are also likely to 
respond to individual tuning. For example, biomod2 default 
tuning for CTA and RF allows for complex trees (Table 2) 
and does not use spatially-blocked validations to control for 
overfitting – this could encourage models to be overfitted to 
spatial structures in data, and thus underperform on spatially-
blocked validations. We believe it is worthwhile investigating 
how individual models respond to tuning, and how they per-
form versus ensembles of well-tuned individual models across 
a range of datasets. Nevertheless, we acknowledge that tun-
ing multiple modelling methods with different underlying 
techniques is a non-trivial undertaking. Practically, modellers 
often only have the skills to fine-tune a single modelling tech-
nique. In such cases it may be important to ask whether the 
tuned single model is better or worse than an ensemble of 
untuned models. In our case study, either approach is suit-
able for maximising prediction accuracy. However, there may 
be an advantage to using tuned single models, as they are 
more interpretable than ensembles (response curves and vari-
able importance are readily available) and time can be spent 
focussing on optimal tuning for the task at hand.

In both of our spatial blocking designs, repeated random 
cross-validations yielded higher performance estimates than 
spatially blocked cross-validations and external validations. 
Depending on the application in which predictions are to 
be used, blocked cross-validation may be a more realistic 
estimate of model performance (Roberts  et  al. 2017). The 
consistency between the internal and external block cross-
validation estimates is in some ways not surprising: they 
are both testing similar things – i.e. capacity to predict to 
spatially distinct sites. The consistency is also encouraging: 
estimates on internal data were consistent with those seen on 
external data. Because ‘biomod2’ and ensemble modelling 
are often used for predicting to new environments (Hao et al. 
2019a) and blocked CV may better test prediction to new 
environments and will reveal overfitting to spatial dependen-
cies in the data, our findings suggest that using blocked CV 
instead of the ‘biomod2’ default repeated random CV may be 
beneficial to many ‘biomod2’ users. We remark that blocked 
CV can be implemented in ‘biomod2’ through its in-built 
‘BIOMOD_cv’ function, which can create spatially sliced 
blocks (Wenger and Olden 2012). Alternatively, one can use 
the external R package ‘blockCV’ (Valavi et al. 2019), which 
provides a wider range of options for spatial and environmen-
tal blocking for SDMs, and can create blocked data specifi-
cally formatted for use with ‘biomod2’.

In summary, we tested the predictive performance of 
ensemble models compared to individual models using a 
presence–absence dataset, and found ensemble models to 
perform slightly better than untuned individual models in 
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most situations, but not consistently better than tuned indi-
vidual models on external validation. With future research 
on ensemble performance testing the breadth of applica-
tions and data types commonly used in ensemble modelling, 
knowledge of ensemble performance will be improved and 
used to inform best practice in ensemble modelling.
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