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1. INTRODUCTION.

In the case of a univariate cumulative distribution function (C.D.F.) the Kolmogorov-
Smirnov statistic yields tests of Ho : F = Fp and thus confidence bands for the C.D.F.
These procedures are distribution free over the class of continuous C.D.F.’s. For a multi-
variate C.D.F. the deviation of the Kolmogorov-Smirnov statistic is no longer distribution
free. (See, e.g., Kiefer and Wolfowitz (1958).) Furthermore, in general there is no tractable
expression for the distribution of the Kolmogorov-Smirnov statistic. To the present these
facts have generally prevented the construciton of multivariate analogs of the univariate
Kolmogorov-Smirnov tests and confidence bands.

Recent papers of Adler and Brown (1986) and Brown and Rinott (1988) make it
possible to construct suitable tests and confidence bands. How this can be done is explained
later.

Tables are provided giving the critical values needed for the construction of one-sided
and two-sided tests and confidence bands.

The one-sided confidence sets constructed in this way are optimal in the sense of being
the smallest sets of the given form having at least the desired probability of containing
the true distribution. The two-sided confidence bands constructed in this way are not
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exactly optimal, but are nearly so, in the sense that they are numerically close to being
the narrowest constant width bands guaranteed to have at least the desired probability of
containing the true distribution.

Tables are given which help describe how far these two sided bands are from being
optimal and also give some information about other characteristics of the suggested tests
and confidence procedures. These tables also include simulation results about the dis-
tribution of the one-sided and two-sided Komogorov-Smirnov statistics from the uniform
distribution on the unit square. Some simulation results about this distribution were ob-
tained earlier by Pyke and Wilbour (unpublished). Theoretical bounds (upper and lower)
for this distribution have also been previously established. (See references in Adler and
Brown (1986).)

Another method yielding tests and confidence sets for bivariate distributions has been
proposed by Beran and Millar (1986). Their method, based on a bootstrap argument,
is very different from ours, and produces quite different tests and confidence sets. Their
procedure has the possible advantage of being rotation invariant and thus may perhaps
produce tests and confidence sets which are more appealing in a number of potential
applications. Our method is easier to apply and yields tests and confidence sets of an
intuitive and prespecified form, which can be easily visualized and conveniently described
in terms of the cumulative distribution function.

2. SETTING.

Forz = (z;,7;)e R®andy = (y;,y,) elR® writez < ytomeanz; < y;.7; < yo.
The cumulative distribution function of a random variable X, taking values in IR? is defined
by F(z) = P(X < z). The positive (resp., negative) Kolmogorov-Smirnov distance
between two C.D.F.’s, F and G, on IR? is defined by

|[F=-G|t = S‘lg)z(F(I] ~ G(z)) (resp., |F - G| = stg)z[G(:c) — F(z))).
The ordinary Kolmogorov-Smirnov distance is
IF~G| = max (|F - G[*,|F - G") = sup |F(z)— G(z)|.
zcR?

Let X),..., X, be a random sample from some bivariate population. The empiracal

C.D.F. is defined as

Fa(t) = n7' ) xqeexag(t) = 70 #{i: X < t)
i=1

where # denotes “cardinality of” and ys denotes the indicator function of S.

Tests will be constructed of the null hypothesis Ho : F = Fp where Fp is a specified
C.D.F. on IR?. The alternative may be either one sided, of the form Hyy : F> Fo(F #
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Fp) or of the form Hy— : F < Fo(F # Fp), or two sided as defined by H, : F # Fp. The
two sided alternative is of course much more commonly of interest than the one sided one.
The one sided alternative has been introduced here in part to facilitate presentation of the
theory in Section 4.

Confidence bands are constructed by inverting the tests of Ho versus H,. Also con-
structed are one sided confidence sets based on inversion of the tests of Hp versus Hj4
or of Hp versus H;_. These are of theoretical interest and may occasionally also be of
interest in practice.

3. THE PROCEDURES.

(3.1) For testing Ho : F = Fo versus the one sided alternative H;4 (resp., H;_) at
level a: Reject Ho when \/a |F,, — Fo|t > C(a) (resp., va |Fn — Fo|~ > C7(a))
where Table 1 gives values of CZ(a) for selected values of @, n. The values in this table are
evaluated numerically (via simulation) based on the theory described in the next section.
Various considerations indicate that this numerical determination is generally accurate up
to a possible relative error of +£1%.

(3.2) For testing Ho : F = Fp versus the two sided alternative H; : F' # Fp at level
a: Reject Hp when /n |F, — Fo| > Cu(a)). Values of Cn(«) are given in Table 2. These
values also appear to be generally accurate to within +1%.

Confidence sets and bands are determined by inverting these tests:

(3.3) A lower (resp., upper) 100(1 — a)% confidence set for F is a set of the form
{F:F(t) < Fu(t) + Cl(a)/Vn ¥t}
(resp., {F: F(t) > Fu(t) — Cr(a)/V/n Vt}).
(3.4) A 100(1 — @)% confidence band for F is a set of the form

{F:F,(t) = Cu(a)/v/n < F(t) £ Fu(t) + Cn(a)/v/n Vi}.



Table 1: Critical Values, CZ(a), for One Sided Tests

100a | C3(e) | n=10 n=20 n=30 n=50 n=100 n=>500
10.0% | C(a) 1.453 1.474 1.485 1.494 1.501 1.507
Chiaj 1.365 1.409 1.430 1.455 1.472 1.500
5.0% | Ci(a) 1.576 1.603 1.615 1.625 1.634 1.640
Cria) 1.488 1.538 1.558 1.586 1.604 1.635
25% | Cf(e) | 18685 1720 1731 1.744 1.755 1.752
Cala) 1.599 1.656 1.677 1.707 1.723 1.753
1.0% | Ct{e) 1.815 1.855 1.875 1.884 1.898 1.904
Cnle) 1.721 1.791 1.813 1.846 1.865 1.811
0.5% | Ci{e) 1.903 1.950 1.976 1.978 2.001 2.004
Crla) 1.809 1.885 1.907 1.943 1.970 2.023
Table 2: Critical Values. C,(a). for Two Sided Tests
100a |n=10 na=20 =a=30 n=50 nan=100 n=>500
10.0% 1.536 1.574 1.588 1.607 1.620 1.638
5.0% 1.646 1.690 1.705 1.727 1.739 1.752
2.0% 1.776 1.826 1.845 1.863 1.882 1.806
1.0% 1.864 1.919 1.942 1.961 1.884 2.012




4. THEORY

Let G denote the bivariate C.D.F. corresponding to the distribution which is uniform
over the negative diagonal of the unit square. Formally,

(4.1) G(z1,73) = (21 + 22 — D', 0 < 71,25 < 1.

Let F be any other bivariate C.D.F. It is shown in Brown and Rinott (1988, Section 3)
that forany 0 < ¢ € 1

(4.2) Po(Va |Ga—GIF > ¢) 2 Pp(Vn |E.=F|F > o).

(The validity of this statement in the limit as n — oo was earlier established in Adler and
Brown (1986, Section 3).) Consequently

(4-3) Pr(Vn |Ep=F| > ¢

IA

Pe(Va |Ea=FI* > ¢) + Pe(v/n |Fa=F|” > ¢)

< Po(vn |Ga=GI* > ¢) + Pa(vn |Ga—G|™ > ¢
In order to construct Table 1 values of Pg(y/n 1@,,-—@]* > ¢) were found numerically
by repeated simulation. The entries are the numerically obtained values CZ(a) for which

(4.4) Ps(v7 |Ga = GIE > CE(a)) = o

The entries for n = 5,..., 100 (resp., n = 500) in the table are the result of 100,000 (resp.,
20,000) simulations of samples of size n. The accuracy of these simulations was checked
by comparing for some entries a first group of simulations against a second group. Nearly
all numbers agreed to within 1%.

Furthermore, one of us had earlier performed a similar simulation of 100,000 repetitions to
calculate C}(a) for all n as above and @ > .01. Those results agreed to within 1% (and
generally closer) with all numbers in Table 1. (The probabilities on which these numbers
were based may have a somewhat larger percentagewise simulation error. See the end of
Remark (5.4).)



The entries in Table 2 are values Cp(a) from the preceding simulation experiment for
which

(4.5) Po(vn |Ga =G|t > Cu(@)) + Po(vn |Ga— G|~ > Cu(a)) = a.

According to (4.1) and (4.3)

(4.6) Pr(vai [Fa-FI* > C¥(a) < a

with equality if F = G. (If the marginals of F are uniform on (0,1) then equality holds only if
F = G.) Hence the one-sided tests proposed in (3.1) are conservative, as are the confidence
sets proposed in (3.3). Because there is equality in (4.6) when F = G, those sets are the
smallest confidence sets of the form {F : F(-) < F,(-) + ¢} and {F: F(-) > F,(:) - ¢},
respectively, having the prescribed confidence coefficient.

According to (4.2) and (4.4)

(4.7) Pr(v/n |En=F| > Ca(a)) < a.

(Actually, strict inequality always holds in (4.7) because the second inequality in (4.3) is
strict whenever F has uniform marginals (w.l.o.g.) and F # G; and when F = G the first
inequality is strict because Pg(\/n |Gn — G|t > cand n |G =G| > ¢) > 0
for ¢ < /n.) Hence the two sided tests of (3.2) and the confidence bands of (3.4) are
conservative. But it is not the case here that the two sided bands are the smallest possible
of the given form since actually

(4.8) SL;pPF(\/ﬁ[Pn-F[ > Cn(a)) < a.

as indicated above. (It can be seen by reference to (4.3) that as a — 0 for fixed n the ratio
of the two sides of (4.6) converges to 1, so the extra physical size of the proposed bands
becomes relatively negligible.)

5. FURTHER NUMERICAL PROPERTIES OF THE PROCEDURES.

Table 3 gives values for Dy(a) determined by simulation to satisfy

(5.1) Pg(v/n |Gn = G| > Da(a)) = a.
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Note that Da(a) < Cp(a), as predicted by (4.8). These values could be used to test

o:F = Gversus H : F # G. They could also be used to construct confidence
bands with nominal confidence coefficient 100(1 — a)%. However, there is no guarantee
that these bands would be conservative in the sense that

(I) Pe(v/n |Fa = F| > Dg(@)) < aforall F and for all a. In fact, we conjecture

they are not conservative, but we suspect that the desired inequality (1) fails by at most a
numerically very small amount, and only for special choices of F.

The actual size at Fo = G of the two-sided test proposed in (3.2) is Ps( /7 |G —
G| > Cq(a)). Selected values of this quantity appear in Table 4. This also gives another
indication of the extent of inequality in (4.4).

Let U denote the uniform distribution on the unit square. Let F by any other continu-
ous bivariate distribution under which the coordinates X; and X, are independent. Then
the distribution under U of |U, — U| (and of |Un — U|#, resp.) is the same as that under F
of |E, — F|(|F, - F |*). Consequently it is of special interest to examine the performance
of the tests suggested in Section 3 as tests of Hp : F = U.

In order to do so we simulated the required distributions. The results for n = 10....,100
summarize 20,000 replications; those for n = 500 summarize only n = 10,000. (This smaller
value was chosen because of constraints on computer time. In consequence the probabilities
reported for n = 500 and a = .01 have a standard deviation approximately 10% of their
value.)

Table 5 gives values of E}(a) and E; (a) numerically satisfying

(5.2) Py([U. -UX > E%(a)) =

These could be used to construct one-sided exactly level a tests of Ho : F = U. Pyke
and Wilbour (unpublished) earlier obtained extensive tables of E}(a) based on 10,000
repetitions forn = 5, 10, 20, 50, 100, which they have kindly shown us. With two exceptions
their values and ours are within 1% of each other. (They have Ejf(.01) = 1.825, and
E(.01) = 1.800.)

Table 6 gives values of E,(a) numerically satisfying

(5.3) Py(|Ua—U| > En(a)) = a.

These could be used to construct tests of Ho : F = U versus Hp : F # U or, as noted,
tests of Ho : F = Fp versus Ho : F # Fp for any Fp having independent marginals.

Tables 7 and 8 provide information about the true size when Fp = U of the omnibus
tests proposed in Section 3. Table 7 gives the size (= power) of the one-sided tests (3.1)
when used for testing Ho : F' = U. The entries of this table consequently describe the
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probability when the true C.D.F. is U that it is in the confidence sets of (3.3). Table 8
provides the analogous information for the two sided test of (3.2) and the confidence bands
of (3.4).

It is, of course, of interest to compare these true sizes to the nominal size (= level of
the test). It is also of interest to compare them to the true sizes when the true C.D.F. is
G, as given in Tables 3 and 4. For example, Tables 4 and 8 can be roughly summarized
as follows: When Fp = G the two-sided test has true power which is usually from 80 to
90% of its nominal power (a). The true power is further reduced when Fo = U. This
reduction is as much as another 40% for small @ and n but is a much smaller percent for
larger n or larger a.

(5.4) (Remark) Kac, Kiefer, and Wolfowitz (1955, equation (4.6)) give the following ex-
pression:

(5:5) lim Po(ValGn =G| > ¢)= ) (8n°c’ —2)e 2 2
n=1

The values ¢ = Csgo(a) were substituted in (5.5) and the result was entered in the
column headed n = oo of Table 4. The discrepancy between the entries for n = 500
and n = oo is much larger than one would normally expect to be due to simulation error
from a simulation involving 20,000 replications of events having probability a. However,
perhaps this discrepancy is not surprising in view of the fact that \/E(G',, — Gy) has
jumps of size 1/y/n whereas the limiting process on which (5.5) is based is a continuous
process. (Note that 1/@(} = .045. One might therefore expect Pe(VB00|G, — G| >
¢) & limp—oo PG(v/n |Gn—G| > c+ (.045/2)). The corresponding values of this for
¢ = Cso(a)and @ = .10,.05,.02,.01 are 100P = 8.085,4.297,1.645,.849. Two of these
four numbers are now noticeably less than the corresponding entries for n = 500! This
change in the relative size of the figures also demonstrates how sensitive the probabilities
are to small changes in the constant c.)

More extensive tables of probabilities from which the above were extracted may be
found in Adler, Brown, and Lu (1988).



Table 3: Values of D,(a) Defined in (5.1)

100 [n=10 a=20 n=30 =m=50 n=100 n=>500
10.0% 1.507 1.541 1.556 1.571 1.584 1.604
5.0% 1.625 1.663 1.682 1.699 1.711 1.727
2.0% 1.761 1.809 1.824 1.843 1.860 1.884
1.0% 1.854 1.906 1.929 1.944 1.967 1.991

Table 4: Actual Size (in %) of the Two Sided Test (3.2)
When F, = G. {See (5.5) for n = o)

100e |n=10 n=20 mn=30 n=50 n=100 n=500 n=oc

10.0% 8.480 8.397 B.411 8.296 8.250 5.410 9.094
5.0% 4.323 4.282 4.287 4.252 4.242 4.295 4.894

2.0% 1.788 1.747 1.762 1.739 1.743 1.730 1.904

1.0% 0.910 0.892 0.900 0.874 0.868 0.855 0.993




Table 5: Critical Values, Es(a}, for One Sided Tests

for Ho 1 F=U
1000 | EX(a) [n=10 n=20 n=30 n=350 n=100 n=>500
10.0% | EZ(e) | 1.354 1.381 1.389 1.405 1.424 1.434
E;{e) | 1301 1.344 1377 1.388 1.395 1.422
50% | EX{e) | 1.488 1.524  1.330 1.546 1.564 1.586
Es(a) | 1.443 1476  1.520 1.536 1.538 1.566
25% | Ef{a) 1.602 1.643 1.653 1.689 1.688 1.708
E (a) | 1.555  1.597  1.640 1.639 1.673 1.698
20% | Ef(e) | 1634 1676  1.695 1.730 1.724 1.747
Eg(a) 1.598 1.634 1.681 1.701 1.710 1.734
10% | Ef(e) | 1.725 1778 1.805 1.834 1.834 1.855
E (o) | 1695 1734  1.781 1.803 1.822 1.828
Table 6: Critical Values EX for Two Sided Test
for Ho: F=U
10 |n=10 n=20 n=30 n=50 n=100 nmn=>500
100% | 1.467  1.499  1.524 1.541 1.352 1.573
5.0% | 1.582  1.624 1.647 1.674 1.679 1.703
2.0% 1.710 1.757 1.795 1.817 1.827 1.848
1.0% 1.798 1865 1.891 1.919 1.924 1.943
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Table 7: Actual Size (in %) of the One Sided Test (3.1)

When Fp= U

100e | H#(e) [n=10 n=20 n=30 n=5 n=100 n=3500
10.0% | Ha(e) | 6.000  6.345  6.280  6.635 6.820 7.020
Hi(e) | 7.395  7.235  7.680  7.370 7.025 6.690

5.0% | Hi(e) | 2835  3.145 3183  3.360 3.350 3710
Ho(e) | 3.900 3.550  3.960  3.745 3.600 3.360

2.0% | Hi(a) | 1.030 1.135 1.265 1.515 1.310 1.630
Ho(e) | 1.680 1310 1575  1.535 1.505 1.260

1.0% | Hi(e) | 0500 0.660 0640  0.715 0.655 0.660
H{e) | 0795 0670 0810 0.685 0.770 0.570

Table 8: Actual Size (in %) of the Two Sided Test (3.2)

When Fy=U
100 {n=10 n=20 n=30 n=50 n=100 n=2500
10.0% 6.615 6.505 6.955 T.035 6.975 T7.110
5.0% 3.235 3.135 3.530 3675 3.475 3.600
2.0% 1.175 1.275 1.350 1.440 1.383 1.240
1.0% 0.580 0.675 0.655 0.740 0.635 0.700
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