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We propose tests for sphericity and identity of high-dimensional covariance matrices. The tests are nonparametric without assuming a
specific parametric distribution for the data. They can accommodate situations where the data dimension is much larger than the sample
size, namely the “large p, small n” situations. We demonstrate by both theoretical and empirical studies that the tests have good properties
for a wide range of dimensions and sample sizes. We applied the proposed test on a microarray dataset on Yorkshire Gilts and tested for the
covariance structure for the expression levels for sets of genes.
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1. INTRODUCTION

High-dimensional data are increasingly encountered in sta-
tistical applications with the most prominent ones coming from
biology and finance. In genomic studies the data dimension can
be a lot larger than the sample size. When this happens, some
of the conventional multivariate procedures may not necessar-
ily work since these procedures are justified under a framework
where the sample size n tends to infinity while the dimension p
remains fixed.

In this paper, we consider tests for covariance matrices of
multivariate distributions when p can be much larger than the
sample size n. Let X1, X2, . . . ,Xn be independent and identi-
cally distributed p-dimensional random vectors with covariance
� = var(Xi). Our interest is to test two structures for the covari-
ance:

H0 :� = σ 2Ip vs. H1 :� �= σ 2Ip (1.1)

and

H0 :� = Ip vs. H1 :� �= Ip, (1.2)

where Ip is the p-dimensional identity matrix and σ 2 is a
unknown but finite positive constant. The identity hypothesis
in (1.2) covers the hypothesis H0 :� = �0 for a specific known
invertible covariance matrix �0. Conventional tests for covari-
ance based on the likelihood ratio (Anderson 2003) cannot be
used without modification when the data dimension is larger
than the sample size, since the sample covariance is no longer
invertible with probability one.

The practical needs for testing the above hypotheses come
from several areas of statistical applications, in particular from
microarray analysis and the associated large-scale multiple test-
ing. A common assumption made when analyzing the mi-
croarray data is the so-called column-wise or gene-wise in-
dependence, namely independence in the expression levels
among different genes. Hence, it is important to carry out tests
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on the covariance structure of the data columns before high-
dimensional statistical procedures are employed. Having said
these, we note that the issue of data dependence has drawn
increasing attention in the context of multiple testing, which
include Benjamini and Yekutieli (2001) who showed that the
false discovery rate (FDR) procedure proposed in Benjamini
and Hochberg (1995) under independence is applicable under
the positive regression dependence. There have been also a sub-
stantial set of research works on inference for means of high-
dimensional distributions either in the context of multiple tests
as in van der Laan and Bryan (2001), Donoho and Jin (2004),
Fan, Hall, and Yao (2007), Kosorok and Ma (2007), and Hall
and Jin (2008), or in the context of simultaneous multivari-
ate testing as in Bai and Saranadasa (1996), Schott (2007),
and Chen and Qin (2010). See also Huang, Wang, and Zhang
(2005), Fan, Peng, and Huang (2005), and Zhang and Huang
(2008) for inference on high-dimensional conditional means.
Some of these works accommodate column-wise dependence.

Naturally, tests for the hypotheses (1.1) and (1.2) would be
based on the sample covariance matrix as in the conventional
formulations of John (1971) and Nagao (1973) and the like-
lihood ratio statistic (Anderson 2003). For inference on high-
dimensional covariance matrices, there has been an array of
works on the convergence of the sample covariance matrices
based on the spectral analysis of large-dimensional random
matrices (Bai and Yin 1993; Bai, Silverstein, and Yin 1998);
see Bai and Silverstein (2005) for a comprehensive summary.
These studies show that even under the modest p/n → c for a
positive constant c, the smallest and the largest eigenvalues of
the sample covariance matrix do not converge to their popu-
lation counterparts. Hence the sample covariance fails to con-
verge to the population covariance �. While this is discourag-
ing, we will show in this paper that consistent test procedures
can still be constructed for high-dimensional covariance.

The research in this paper is motivated by the important work
of Ledoit and Wolf (2002) who examined two conventional
tests (John 1971, 1972 and Nagao 1973) for the above hypothe-
ses for high-dimensional normally distributed random vectors
when p/n → c for a finite constant c. They established the as-
ymptotic normality of the test statistics and found the spheric-
ity test is robust under p/n → c, whereas the identity test needs
to be modified under high dimensionality. In this paper, new
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tests for hypotheses (1.1) and (1.2) are proposed without the
normality assumption and without specifying an explicit rela-
tionship between p and n as long as p → ∞ as n → ∞ and
tr(�4) = o{tr2(�2)}. Hence, the tests accommodate the “large
p, small n” situations. The underlying reason for such accom-
modation is due to more accurate and reliable estimators of
tr(�) and tr(�2) under both nonnormality and high data di-
mensionality.

The paper is structured as follows. Section 2 introduces the
basic data structure, hypotheses, the estimators, and the as-
sumptions. The test procedures are proposed in Section 3 af-
ter establishing the asymptotic normality of the test statistics,
followed by results on the consistency of the tests. Section 4
reports simulation studies. An empirical study on a biological
data employing the proposed test procedures is given in Sec-
tion 5. All the technical details are deferred to the Appendix.

2. PRELIMINARIES

Let us now introduce the test statistics for testing the two
hypotheses (1.1) and (1.2). For (1.1), a scaled distance measure
between σ−2� and Ip is

1

p
tr

[(
�

(1/p)tr(�)
− Ip

)2]
= p

tr(�2)

tr2(�)
− 1. (2.1)

The case for (1.2) is similar by considering

1

p
tr(� − Ip)

2 = 1

p
tr(�2) − 2

p
tr(�) + 1 (2.2)

as a distance measure between � and Ip.
For classical fixed dimension normally distributed data, John

(1971, 1972) considered a test for sphericity based on

U′
n = 1

p
tr

[(
Sn

(1/p) tr(Sn)
− Ip

)2]
,

where Sn is the sample covariance matrix. And the test for the
identity hypothesis (John 1972 and Nagao 1973) is based on

V ′
n = 1

p
tr(Sn − Ip)

2.

Basically, these two statistics can be understood by replacing
tr(�) and tr(�2) by their estimators tr(Sn) and tr(S2

n) respec-
tively in (1.1) and (1.2). While direct substitution of � by Sn

brings invariance and optimal testing properties as shown in
John (1971, 1972) and Nagao (1973) for normally distributed
data when p is fixed, tests based on these statistics may not
work for high-dimensional data as demonstrated in Ledoit and
Wolf (2002).

For normally distributed random vectors, Ledoit and Wolf
(2002) evaluate the above two test statistics when the dimen-
sion p is increased at the same rate as n so that p/n → c for a
finite c (p can be larger than n). They showed that while the test
for sphericity based on U′

n is not affected by a diverging p, the
identity test based on V ′

n is affected by the increasing dimen-
sionality. They proposed a modification to V ′

n that works when
p/n → c.

In this paper we propose new tests for the sphericity and iden-
tity hypotheses without the normal distribution assumption and
under much relaxed conditions for the growth rate of p. In par-
ticular, p can be a larger order of n, hence accommodating the

so-called “large p, small n” situations. The key for our proposal
is to have more durable and accurate estimators for tr(�) and
tr(�2). Behind our proposal is the observation that while us-
ing tr(Sn) and tr(S2

n) to estimate tr(�) and tr(�2) is intuitive,
these estimators have unnecessary terms which slow down the
convergence considerably when the dimension is high.

Let

Y1,n = 1

n

n∑
i=1

X′
iXi and Y3,n = 1

P2
n

∑
i�=j

X′
iXj.

Here and below, we denote Pr
n = n!/(n − r)!. Then E(Y1,n) =

tr(�) + μ′μ and E(Y1,n − Y3,n) = tr(�), and thus

T1,n = Y1,n − Y3,n (2.3)

is an unbiased estimator of tr(�). Similarly, define

Y2,n = 1

P2
n

∑
i�=j

(X′
iXj)

2, Y4,n = 1

P3
n

∗∑
i,j,k

X′
iXjX

′
jXk,

and

Y5,n = 1

P4
n

∗∑
i,j,k,l

X′
iXjX

′
kXl.

Here and elsewhere in this paper
∑∗ denotes summation over

mutually different indices. For example,
∑∗

i,j,k means summa-
tion over {(i, j, k) : i �= j, j �= k, k �= i}. An unbiased estimator of
tr(�2) is

T2,n = Y2,n − 2Y4,n + Y5,n.

Besides unbiasedness, both T1,n and T2,n are invariant with
respect to the location transformation that transforms Xi to Xi +
c for an arbitrary constant vector c. This allows us to assume in
the rest of the paper that μ = 0.

The test statistics we use for testing the sphericity hypothesis
(1.1) and the identity hypothesis (1.2) are, respectively,

Un = p

(
T2,n

T2
1,n

)
− 1 and Vn = 1

p
T2,n − 2

p
T1,n + 1.

To facilitate our analysis, like Bai and Saranadasa (1996), we
assume that the observations Xi follow a multivariate model.

Assumption 1. Suppose X1, X2, . . . ,Xn are independent and
identically (IID) distributed p-dimensional random vectors such
that

Xi = �Zi + μ for i = 1,2, . . . ,n, (2.4)

where μ is a p-dimensional constant vector, � is a p × m con-
stant matrix with m ≥ p so that ��T = �, and Z1, Z2, . . . ,Zn

are IID m-dimensional random vectors such that E(Z1) = 0 and
var(Z1) = Im. Write Z1 = (z11, . . . , z1m)T . We assume that each
z1l has uniformly bounded 8th moment, and there exists a finite
constant � such that for l = 1, . . . ,m, E(z4

1l) = 3 + � and for
any integers �ν ≥ 0 with

∑q
ν=1 �ν = 8,

E
(
Z�1

1i1
Z�2

1i2
· · ·Z

�q
1iq

) = E
(
z�1

1i1

)
E
(
z�2

1i2

) · · ·E
(
z
�q
1iq

)
(2.5)

whenever i1, i2, . . . , iq are distinct indices.
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This model, employed earlier in Bai and Saranadasa (1996),
maintains that the observations Xi are linearly generated by m-
variate Zi whose components are largely white noise. The latter
is reflected by (2.5). We note that m, the dimension of Zi, is
arbitrary as long as m ≥ p. This offers much flexibility in gen-
erating Xi with the given covariance �. The distribution of Zi is
unspecified, and hence is nonparametric.

The following assumption specifies the asymptotic frame-
work for the high-dimensional inference.

Assumption 2. As n → ∞, p = p(n) → ∞, tr(�2) → ∞ and
tr(�4)/tr2(�2) → 0.

By applying Hölder’s inequality, tr(�2)/ tr2(�) ≤ tr(�4)/

tr2(�2). Hence, Assumption 2 implies

tr(�2)/ tr2(�) → 0. (2.6)

A similar reasoning shows that

tr(�3)/{tr(�) tr(�2)} → 0 (2.7)

is valid under Assumption 2 as well.
In Assumption 2, we do not specify explicitly the growth rate

of p relative to n as commonly made in existing works on high-
dimensional data, but rather only requires that tr(�4) grows at
a slower rate than tr2(�2). This is in fact a weak proposition.
To appreciate this, we note that if all the eigenvalues of � are
bounded away from zero and infinity, Assumption 2 is trivially
true for any p as long as p → ∞. Some of the commonly en-
countered covariance structures satisfy Assumption 2. Let us
first consider a correlation matrix

� = (
ρ|j−i|)

p×p (2.8)

for some ρ ∈ (−1,1). It prescribes that X1i and X1j are less
correlated when j and i are further apart. It can be shown after
some algebra that

tr(�2) = p/(1 − ρ2) + ρ2(ρ2p − 1)/(1 − ρ2)2 = O(p)

and

tr(�4) = 2
p−1∑
k=1

(p − k)(k + 1)2ρ2k

+ p(1 + ρ2 + 7ρ4 − ρ6)/(1 − ρ2)3 + O(1).

It may be checked that tr(�4) = O(p). Hence, tr(�4) =
o{tr2(�2)}.

Now consider another

� = (
σiσjρ

|j−i|)
p×p, (2.9)

where σ 2
l = var(X1l) are the marginal variance for l = 1, . . . ,p.

If {σ 2
l }p

l=1 are uniformly bounded away from infinity and zero
respectively. Then, it can be shown, based on the above result
for the correlation matrix (2.8), that Assumption 2 is also satis-
fied. In fact, Assumption 2 is valid even when some σ 2

l either
diverges to the infinity or converges to 0 as long as the speed of
divergence/convergence is not too fast relative to p’s increase.
The same can be said for

� = (
σiσjρ

|j−i|I(|j − i| ≤ d)
)

p×p,

where d is a positive integer. This � implies a correlation struc-
ture where any two components in Xi are uncorrelated if they
are more than d apart. As tr(�4) is bounded by the corre-
sponding term for matrix (2.9), it is O(p). It can be shown that
tr(�2) = O(p) as well. Hence Assumption 2 holds for the �.

Let λ1, . . . , λp be the eigenvalues of �. Ledoit and Wolf
(2002) assume that both p−1 ∑p

l=1 λl and p−1 ∑p
l=1(λl − α)2

are free of p and n in additional to assuming p/n → c and

p−1 ∑p
l=1 λ

j
l converges for j = 3 and 4, respectively. Assump-

tion 2 simplifies these conditions.

3. MAIN RESULTS

We first introduce notations which quantify the asymptotic
variance of the test statistics. Let A = �T� and

σ 2
1,n = 4

n2
+ 8

n
tr

[(
�2

tr(�2)
− �

tr(�)

)2]

+ 4�

n
tr

[(
A2

tr(�2)
− A

tr(�)

)
◦

(
A2

tr(�2)
− A

tr(�)

)]
,

σ 2
2,n = 4

n2
tr2(�2) + 8

n
tr(�2 − �)2

+ 4�

n
tr[(A2 − A) ◦ (A2 − A)].

Here we define, for two matrices C = (cij) and B = (bij), C ◦
B = (cijbij).

The following theorems establish the asymptotic normality
of Un and Vn respectively.

Theorem 1. Under Assumptions 1–2,

σ−1
1,n

[(
Un + 1

p

)(
tr2(�)

tr(�2)

)
− 1

]
D→ N(0,1). (3.1)

In particular, under the null hypothesis in (1.1), nUn
D→ N(0,4).

Theorem 2. Under Assumptions 1–2,

σ−1
2,n [pVn − tr(� − Ip)

2] D→ N(0,1). (3.2)

In particular, under the null hypothesis in (1.2), nVn
D→ N(0,4).

Based on the asymptotic normality under the respective null
hypothesis, our proposed α-level test for sphericity rejects H0

in (1.1) if 1
2 nUn ≥ zα where zα is the upper α quantile of

N(0,1). Similarly, the α-level test for the identity hypothesis
rejects the H0 in (1.2) if 1

2 nVn ≥ zα . Interestingly, both tests
have the same form of rejection region.

We note that Un is invariant under linear rotation transfor-
mations, namely the value Un remains unchanged for X′

i =
aAXi + c where a is a constant, c is a vector of constants and A
is an orthogonal matrix. At the same time, Vn is invariant under
the shift and orthogonal rotation transformation X′

i = AXi + c
where A and c have the same qualifications as above. Hence,
the sphericity and identity tests we have proposed are invariant
under linear rotational and rotational and shift transformations,
respectively.
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To evaluate the power of the sphericity test, we define

δ1,n = 1 − tr2(�)

p tr(�2)
and

(3.3)

δ2,n = tr

[(
�2

tr(�2)
− �

tr(�)

)2]
.

Let σ 2
S (λ) = ∑p

i=1 λ2
i /p − (

∑p
i=1 λi/p)2 be the “variance” of

the eigenvalues {λi}p
i=1 of �. Then, δ1,n = p tr−1(�2)σ 2

S (λ)

measures the departure from the null sphericity hypothesis in
(1.1). Specifically, under H1 of the sphericity hypothesis (1.1),
0 < δ1,n < 1. To appreciate this point, we note by applying
the Schwarz inequality, tr(�) ≤ √

p tr(�2) and so δ1,n ≥ 0.
Since � is nonnegative definite, δ1,n ≤ 1 is trivially true. Fur-
thermore, δ1,n = 1 if and only if � = 0, which contradicts
the first part of Assumption 2. Also, δ1,n = 0 if and only if
tr(�/ tr(�) − Ip/p)2 = 0, which is true under the null hypothe-
sis of sphericity.

To describe the power of the test for the identity hypothesis,
define

ρ1,n = 1

p
tr[(� − Ip)

2] and

(3.4)

ρ2,n = tr(�2)

ntr(� − Ip)2
.

We note that ρ1,n = ∑p
i=1(λi − 1)2/p that measures the vari-

ation of the eigenvalues from 1 under the identity hypothesis.
Clearly, ρ1,n = 0 if and only if the identity hypothesis � = Ip is
true.

Let β1,n = P( 1
2 nUn ≥ zα|� �= σ 2Ip) and β2,n = P( 1

2 nVn ≥
zα|� �= Ip), which are respectively the power of the sphericity
and identity tests. The following theorem specifies the lower
bound for the powers of the tests.

Theorem 3. Under the Assumptions 1–2, there exists finite
positive constants C(1)

1 , C(2)
1 , C(1)

2 , and C(2)
2 such that

lim inf
n

β1,n

≥ 1 − lim sup
n



(−C(1)
1 + C(2)

1 ((1 − δ1,n)/(nδ1,n))√
1/(n2δ2

1,n) + δ2,n/(nδ2
1,n)

)
(3.5)

and

lim inf
n

β2,n

≥ 1 − lim sup
n



(
− C(1)

2√
n2ρ2

2,n + nρ2,n

+ C(2)
2

n2ρ1,nρ2,n

)
. (3.6)

The next theorem asserts the consistency of the two proposed
tests.

Theorem 4 (Consistency). Under Assumptions 1–2, as n →
∞:

(i) under H1 in the sphericity hypothesis (1.1), if nδ1,n →
∞, then δ2,n/(nδ2

1,n) → 0 and β1,n → 1;
(ii) under H1 in the identity hypothesis (1.2), if nρ1,n → ∞,

then ρ2,n → 0 and β2,n → 1.

As δ1,n and ρ1,n measure the departure from the null hypothe-
ses for the sphericity and identity hypotheses, Theorem 4 main-
tains that as long as the measures of the departure from the null
hypotheses δ1,n and ρ1,n are not shrinking faster than 1/n, the
tests are consistent. These results generalize those of Ledoit and
Wolf (2002), who establish the consistency of their tests under
the assumptions of δ1,n and ρ1,n are fixed with respect to n, in
which cases both nδ1,n and nρ1,n automatically diverge.

As mentioned in the Introduction, the proposed test for iden-
tity can be used to test for H0 :� = �0 for a known covariance
invertible �0. This can be carried out by first transforming Xi

to �
−1/2
0 Xi, and applied the identity test on the transformed

data. The idea of formulating the test statistics for spheric-
ity and identity hypotheses can be used for testing H0 :� =
diag{σ 2

1 , . . . , σ 2
p } for positive constants {σ 2

l }p
l=1, which implies

components of Xi are uncorrelated. As H0 is valid if and only if
tr(�2) = ∑p

l=1 σ 4
l , we could construct a test based on T2,n − Ŝp

where

Ŝp =
p∑

l=1

{
(P2

n)
−1

∗∑
i,j

X2
ilX

2
jl − 2(P3

n)
−1

∗∑
i,j,k

XilXklX
2
jl

+ (P4
n)

−1
∗∑

i,j,k,m

XilXjlXklXml

}

since T2,n and Ŝp are unbiased estimators of tr(�2) and Sp =:∑p
l=1 σ 2

l respectively. The asymptotic property of the test sta-
tistic would be more involved than the test statistics for the
sphericity and identity hypotheses. We would not pursue it due
to a limited space.

4. SIMULATION RESULTS

We report results from simulation studies which were de-
signed to evaluate the performance of the proposed spheric-
ity and identity tests for the covariance matrix. For comparison
purposes, we also conducted the tests proposed by Ledoit and
Wolf (2002) (LW tests).

For the sphericity test H0 :� = σ 2Ip, we generated p-
dimensional independent and identical multivariate random
vectors {Xi}n

i=1 which were generated following the multivari-
ate model in Assumption 1. In particular, we considered two
scenarios with respect to the innovation random vector Zi, the
mean μ and the � matrix:

(I) Zi were m-dimensional normal random vector with
mean 0m and covariance Im; � = Ip,μ = μ01p.

(II) Zi = (Zi1, . . . ,Zim)′ consisted of IID random variables
Zij which were standardized Gamma(4,0.5) random
variables so that they had zero mean and unit variance;
� = Ip and μ = μ01p.

In both scenarios, we chose the dimension of Zi be the same
with that of Xi, namely m = p, and μ0 = 2 under the null hy-
pothesis.

To mimic the “large p, small n” situation, we chose the di-
mensionality p according to p = c1 exp(nη)+c2, where η = 0.4
for (c1, c2) = (1,10) and (c1, c2) = (2,0) respectively. These
allowed p growing at an exponential rate of n. The sample sizes
were n = 20,40,60,80 which assigned p = 38,89,181,331
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for (c1, c2) = (1,10) and p = 55,159,343,642 for (c1, c2) =
(2,0). All p’s were larger than the corresponding sample sizes.
All the simulation results were based on 1000 simulations and
the nominal significant level of the tests was 5%.

To evaluate the power of the sphericity test, two different
forms of alternatives were considered in the simulations. In the
first alternative, we generated multivariate random vectors Zi

as scenarios (I) and (II) given above under the null hypothe-
sis, and set � = diag(

√
21[vp],1p−[vp]), where [x] denotes the

integer truncation of x. We chose μ = 21p in scenario (I) and
μ = 2(

√
21′[vp],1′

p−[vp])′ in scenario (II). Two levels of v were
considered: v = 0.125 and 0.25, which yielded diagonal covari-
ance � which had respectively 12.5% and 25% of its diagonal
elements being 2 whereas the rest were 1.

In the second alternative, we set m = p + 1 and � =
(
√

1 − ρIp,
√

2ρ1p) for both scenarios; and set μ = 21p for
scenario (I) and μ = 2(

√
1 − ρ + √

2ρ)1p for scenario (II).
Therefore, the second alternative had � = (1 − ρ)Ip + 2ρ1p1′

p,
the so-called compound symmetric covariance structure. This
was an alternative structure we contemplated in the case study
that will be reported in the next section. In our simulation, we
set ρ = 0.10 and 0.15 respectively.

The above settings for evaluating the size and power of the
sphericity test were also used for the identity test for H0 :� =
Ip. As the simulation results for the identity test followed very
much similar patterns to those of the sphericity test, we only
report the simulation results for the sphericity test.

Table 1 reports empirical sizes of the proposed sphericity test
and the test of Ledoit and Wolf (2002) (LW test) for both sce-
narios of distributions. These empirical sizes were applicable
for both settings of the alternatives. Tables 2 and 3 report the
empirical power of the proposed test and LW test for the two
alternative settings respectively. We observe from Table 1 that

under the scenario (I) of normal distribution, both the proposed
test and the LW test had similar empirical sizes. The empirical
size of the tests were converging to the nominal level as both
p and n increase together. These were all assuring. However,
under the scenario (II) of Gamma distribution, the LW test en-
countered serious size distortion while the proposed test still
had reasonable sizes. This is understandable as the LW test was
constructed based on the normality assumption and utilized the
fact that the sample covariance is Wishart distributed. It was for
this reason we do not report the power of the LW test in Tables 2
and 3 under the second scenario of the Gamma distribution. We
note that there was some slight size distortion for the proposed
tests when either p or n was small (p = 38 or n = 20) under the
Gamma distribution scenario. This could be understood as the
test is both asymptotic and nonparametric. However, as p and
n both were increased, the sizes of the proposed test were quite
close to the nominal 5%.

The power results in Tables 2 and 3 showed the proposed test
and the LW test under normality had quite good power, and they
were largely comparable. The powers of the proposed test were
largely dependent on (i) the sample size n, and (ii) the variation
percentage measures v and ρ as they determine δ1,n and δ2,n,
the two quantities which determined the asymptotic power of
the test as shown in Theorems 3 and 4. We find the powers in
Table 2 were less affected by the increased dimensionality, as
compared to Table 3. We were a little surprised that despite the
fact that the LW test was justified under p/n → c, it had quite
resilient power when p was a lot larger than n for the normal
distribution scenario. The powers under the second alternative
as reported in Table 3 increased much faster than those under
the first alternative reported in Table 2 as the sample size and
the dimension were increased. And when ρ was increased from
0.1 to 0.15 under the second alternative, many entries of the em-
pirical powers of the tests approach to 1. This could be viewed

Table 1. Empirical sizes of the proposed sphericity test and the LW test for H0 : � = σ 2Ip at 5% significance
for normal and gamma random vectors

LW test Proposed test
n n

p 20 40 60 80 20 40 60 80

(a) Normal random vectors
38 0.045 0.055 0.054 0.054 0.061 0.061 0.060 0.063
55 0.051 0.042 0.054 0.056 0.070 0.050 0.062 0.056
89 0.054 0.051 0.047 0.068 0.066 0.054 0.054 0.072

159 0.061 0.054 0.046 0.045 0.068 0.065 0.044 0.048
181 0.048 0.051 0.049 0.049 0.062 0.057 0.052 0.052
331 0.061 0.062 0.047 0.052 0.078 0.069 0.059 0.059
343 0.044 0.062 0.056 0.053 0.062 0.073 0.062 0.060
642 0.062 0.051 0.042 0.050 0.080 0.059 0.041 0.055

(b) Gamma random vectors
38 0.174 0.199 0.173 0.165 0.092 0.078 0.060 0.056
55 0.177 0.168 0.198 0.168 0.083 0.065 0.068 0.048
89 0.173 0.183 0.157 0.174 0.088 0.068 0.049 0.046

159 0.188 0.185 0.206 0.192 0.078 0.063 0.064 0.055
181 0.174 0.187 0.172 0.185 0.058 0.059 0.059 0.062
331 0.177 0.186 0.189 0.160 0.084 0.050 0.064 0.042
343 0.206 0.191 0.164 0.176 0.084 0.070 0.048 0.056
642 0.167 0.188 0.191 0.184 0.064 0.060 0.057 0.062
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Table 2. Empirical powers of the proposed sphericity tests and the LW test for H0 :� = σ 2
0 Ip versus Ha :� = σ 2

0 Ip + σ 2
1 Ap at 5% significance

with Ap = diag(1[vp],0p−[vp]) and σ 2
0 = σ 2

1 = 1

LW test Proposed test
n n

p 20 40 60 80 20 40 60 80

(a) Normal random vectors
v = 0.125

38 0.203 0.400 0.671 0.830 0.230 0.418 0.669 0.840
55 0.179 0.447 0.699 0.860 0.210 0.476 0.709 0.863
89 0.215 0.452 0.764 0.918 0.232 0.473 0.775 0.923

159 0.188 0.489 0.752 0.924 0.232 0.508 0.757 0.928
181 0.212 0.507 0.774 0.931 0.239 0.512 0.772 0.920
331 0.212 0.509 0.779 0.936 0.246 0.517 0.776 0.931
343 0.228 0.514 0.793 0.942 0.260 0.513 0.785 0.942
642 0.202 0.503 0.805 0.949 0.241 0.503 0.797 0.946

v = 0.250
38 0.318 0.682 0.906 0.978 0.337 0.696 0.912 0.977
55 0.288 0.698 0.910 0.990 0.332 0.700 0.917 0.989
89 0.309 0.697 0.933 0.997 0.337 0.706 0.938 0.997

159 0.307 0.725 0.949 0.994 0.342 0.725 0.952 0.997
181 0.324 0.733 0.950 0.996 0.349 0.738 0.941 0.997
331 0.332 0.730 0.942 0.999 0.360 0.740 0.947 0.999
343 0.311 0.742 0.945 0.996 0.336 0.746 0.945 0.997
642 0.323 0.724 0.969 0.995 0.339 0.709 0.972 0.996

(b) Gamma random vectors
v = 0.125 v = 0.250

38 0.212 0.414 0.615 0.780 0.332 0.639 0.871 0.976
55 0.224 0.434 0.645 0.827 0.341 0.651 0.890 0.973
89 0.253 0.477 0.743 0.889 0.351 0.682 0.918 0.987

159 0.242 0.477 0.759 0.917 0.325 0.715 0.926 0.991
181 0.243 0.531 0.781 0.908 0.328 0.717 0.933 0.994
331 0.262 0.514 0.790 0.947 0.331 0.717 0.940 0.994
343 0.240 0.531 0.775 0.938 0.338 0.725 0.954 0.994
642 0.262 0.534 0.796 0.947 0.343 0.747 0.951 0.995

as an empirical indication of the proposed test being consis-
tent.

5. AN EMPIRICAL STUDY

In genetic microarray analysis, a common practice for testing
differentially expressed genes is to apply a t-test on each indi-
vidual gene and then use a multiple comparison procedure to
control the Family Wise Error Rate (FWER) or the False Dis-
cover Rate (FDR). The latest development in biological stud-
ies focus on sets of genes, as genes tend to work together to
achieve certain biological tasks. Identifying significant gene
sets, instead of individual genes, for certain treatments under
evaluation is gaining substantial interests; see Barry, Nobel, and
Wright (2005), Efron and Tibshrini (2007), and Newton et al.
(2007). Gene sets are defined under the Gene Ontology (GO)
system that gives structured and controlled vocabularies which
produce names of gene sets (also called GO terms). Regardless,
our interest is rested on genes or set of genes, the correlation
structure of the high-dimensional data can have significant im-
plications on the statistical procedures used in the analyses for
genetic data.

The dataset we analyzed came from an experiment conducted
by Department of Animal Science in Iowa State University (for
more detail of this experiment, see Lkhagvadorj et al. 2009). In
this experiment, 24 six-month-old Yorkshire Gilts are equally
divided into four groups (blocks). There are two genotypes with
12 pigs each. Two different diet treatments were randomly as-
signed to each of the 12 pigs in each genotype. One has no
restriction on the amount of feed consumed by the pigs, and
the other had feed abstained for three days. For each pig in
the study, the microarray gene expressions were measured. The
aim of the study was to identify treatment effects on the gene-
expression levels. What we are interested is testing the correla-
tion structure among the genes within each gene set.

There are 24,123 genes in the microarray data and 4538 gene
sets with the number of genes ranging from 2 to 2000. For GO
terms with dimension less than 10, we applied the sphericity
and equality tests proposed by John (1971) and Nagao (1973)
assuming p is fixed. For the other GO terms with dimensions
at least 10, we applied the proposed test procedures given in
Section 3.

Denote S1, . . . , Sq, q = 4538, for the gene sets to be stud-
ied, and the gene set Sg has pg genes. To make the marginal
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Table 3. Empirical powers of the proposed sphericity tests and the LW test for H0 :� = σ 2
0 Ip versus Ha :� = (1 − ρ)σ 2

0 Ip + ρσ 2
1 1p1′

p

at 5% significance with σ 2
0 = 1 and σ 2

1 = 2

LW test Proposed test
n n

p 20 40 60 80 20 40 60 80

(a) Normal random vectors
ρ = 0.10

38 0.094 0.117 0.151 0.220 0.105 0.128 0.168 0.228
55 0.107 0.185 0.264 0.329 0.128 0.198 0.275 0.336
89 0.142 0.258 0.413 0.596 0.164 0.261 0.426 0.614

159 0.225 0.488 0.724 0.882 0.256 0.522 0.733 0.887
181 0.265 0.574 0.810 0.931 0.282 0.589 0.809 0.927
331 0.489 0.847 0.977 0.996 0.495 0.865 0.971 0.995
343 0.512 0.865 0.978 1.000 0.522 0.866 0.976 1.000
642 0.728 0.982 0.999 1.000 0.743 0.983 0.999 1.000

ρ = 0.15
38 0.303 0.606 0.832 0.931 0.326 0.613 0.840 0.932
55 0.474 0.794 0.948 0.993 0.475 0.807 0.947 0.992
89 0.634 0.935 0.995 0.999 0.663 0.937 0.993 0.999

159 0.860 0.995 1.000 1.000 0.850 0.994 1.000 1.000
181 0.884 1.000 1.000 1.000 0.889 0.999 1.000 1.000
331 0.975 1.000 1.000 1.000 0.976 1.000 1.000 1.000
343 0.958 1.000 1.000 1.000 0.962 1.000 1.000 1.000
642 0.999 1.000 1.000 1.000 0.997 1.000 1.000 1.000

(b) Gamma random vectors
ρ = 0.10 ρ = 0.15

38 0.103 0.118 0.176 0.261 0.307 0.614 0.802 0.900
55 0.138 0.190 0.280 0.350 0.428 0.760 0.925 0.968
89 0.186 0.295 0.404 0.557 0.625 0.927 0.987 0.995

159 0.267 0.469 0.730 0.821 0.779 0.980 1.000 1.000
181 0.311 0.541 0.799 0.889 0.833 0.991 1.000 1.000
331 0.485 0.805 0.950 0.988 0.945 0.999 1.000 1.000
343 0.508 0.828 0.954 0.993 0.955 0.998 0.999 1.000
642 0.707 0.967 0.998 1.000 0.994 1.000 1.000 1.000

variance homogeneous across genes, we applied a variance sta-
bilization transformation as given in Huber et al. (2002). Let
yg

ijkl be the pg dimensional vector of gene expression levels (af-
ter the transformation) measured for the gth gene set, the lth
pig in the ith treatments, and jth block with kth genotype. We
assume the following factorial design model:

yg
ijkl = τ g + μ

g
i + βj1pg + αk1pg + ηG1pg + ε

g
ijkl, (5.1)

where τ g and μ
g
i (i = 1,2) are pg dimensional vectors de-

noting the intercepts and the treatment effects respectively, βj
(j = 1, . . . ,4), αk (k = 1,2), and ηG are univariate denoting the
block, the genotype, and the gene-set effects respectively, ε

g
ijkl

is the vector of residuals, and 1pg is the pg dimensional vec-
tor of 1’s. The treatment and genotype effects μ

g
i and αk are

treated as fixed, while the block effect and the GO term effects
are random. In addition, due to the factorial design, μ

g
i and αk

are subjected to constraints μ
g
2 = α2 = 0.

We are interested in testing for the covariance structure of
ηG1pg +ε

g
ijkl. It is not too restrictive to assume var(εg

ijkl) = σ 2
ε Ipg

for a positive constant σ 2
ε . Hence, the covariance of ηG1pg +ε

g
ijkl

is

� =: σ 2
ε Ipg + σ 2

ηG
1pg1T

pg
,

say, where σ 2
ηG

= var(ηG). Let �Sg be the covariance matrix
corresponding to the gene set Sg. We want to test the sphericity
and identity hypotheses H0a :�Sg = σ 2

ε Ipg and H0b :�Sg = Ipg

for g = 1, . . . ,q. Both hypotheses will rule out the gene set ef-
fect as both imply σ 2

ηG
= 0.

To remove the treatment, block and the genotype effects, we
estimate μ

g
i and τ g by

μ̂
g
i = 1

n(i)

∑
j,k,l

yg
ijkl −

1

n(2)

∑
j,k,l

yg
2jkl and

τ̂ g = 1

n(2)

∑
j,k,l

yg
2jkl,

where n(i) is the number of observations in treatment i. Then,
estimate β and α by fitting the linear model

yg
ijkl − μ̂

g
i − τ̂ g = βjIpg + αk1pg + eg

ijkl. (5.2)

Here eg
ijkl are the “residuals” representing ηG1pg + ε

g
ijkl in

model (5.1) via the least square regression.
The histograms of the p-values of the sphericity and identity

tests based on the estimated residuals from (5.2) for the gene
sets are displayed in Figure 1. When we controlled the FDR at
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Figure 1. Histograms of p-values for the tests H0a and H0b.

5%, there were 3730 gene sets are significant for the spheric-
ity tests and 4251 gene sets are significant for the identity test.
These numbers constitute a high proportion of the total number
of gene sets 4538, and indicate that the column-wise indepen-
dence assumption are not reasonable. That more gene sets were
tested significant under identity hypothesis is understandable as
the identity hypothesis is more restrictive than the sphericity
hypothesis. It is natural to expect that the genes within a gene
set are correlated. The study confirms that there were substan-
tial amounts of gene-wise dependence in this dataset. Hence,
any procedures which are affected by the dependence has to be
used with great care.

APPENDIX

We first report two propositions which contains some basic results
which will be used throughout in the appendix. The proofs are ele-
mentary and are available in a technical report which is available on
request.

Proposition A.1. Under Assumption 1, we have:

(i) for any m × m symmetric matrices B1 and B2,

E{(Z′
1B1Z1)(Z′

1B2Z1)}
= tr(B1)tr(B2) + 2 tr(B1B2) + � tr(B1 ◦ B2); (A.1)

(ii) let A = �′�. Then

E{(Z′
1AZ2)4} = 3 tr2(�2) + 6tr(�4)

+ 6� tr(A2 ◦ A2) + �2
m∑

i,k=1

(Aik)
4; (A.2)

(iii) for any m×m positive definite matrix B, there exists a constant
C such that

E
{
(Z′

1BZ1 − tr(B))4} ≤ C tr2(B2); (A.3)

(iv) let Aik be the (i, k)th entry of A = �′�. Then
∑

i,k(Aik)
4 ≤

tr(�4).

Proposition A.2. Let A = �′�. Then: (i) var(Y1,n) = 2n−1 tr(�2)+
�n−1 tr(A ◦ A); (ii) var(Y2,n) = 4n−2 tr2(�2) + 8n−1 tr(�4) +
4�n−1 tr(A2 ◦ A2) + O(n−3 tr2(�2) + n−2tr(�4)); (iii) var(Y3,n) =
2/[n(n − 1)]tr(�2); (iv) cov(Y1,n,Y2,n) = 4n−1 tr(�3) + 2�n−1 ×
tr(A2 ◦ A); (v) cov(Y1,n,Y3,n) = 0; (vi) var(Y4,n) = 2n−3 tr2(�2) +
2n−2 tr(�4)+O(n−4 tr2(�2)+n−3tr(�4)); (vii) var(Y5,n) = 8n−4 ×
tr2(�2) + O(n−5 tr2(�2) + n−4tr(�4)).

Proposition A.3. (i) Let Zn = anY1,n + bnY2,n, for n = 1,2, . . . ,

where an, bn are arbitrary real numbers. Then under Assumptions 1–
2, as n → ∞

Zn − EZn

var(Zn)

D→ N(0,1).

(ii) Let var[(Y1,n,Y2,n)′] = Bn. Then

B−1/2
n (Y1,n − μ1,n,Y2,n − μ2,n)′ D→ N(0, I2),

where μ1,n and μ2,n are, respectively, the means of Y1,n and Y2,n.

Proof. We only need to show (i) as the conclusion in (ii) is a direct
consequence of (i) by theorem 29.4 of Billingsley (1995). To show (i),
we need to use the martingale central limit theorem. For that purpose,
let F0 = {∅,�}, Fk = σ {X1, . . . ,Xk}, k = 1,2, . . . ,n. Let Ek(·) denote
the conditional expectation of given Fk [E0(·) = E(·)]. Write Zn −
EZn = ∑n

k=1 Dn,k , where Dn,k = (Ek − Ek−1)Zn. Then for every n,
{Dn,k,1 ≤ k ≤ n} is a martingale difference sequence with respect to
the σ -fields {Fk,1 ≤ k ≤ n}.

By the martingale central limit theorem (Billingsley 1995, p. 476),
it suffices to show that, letting σ 2

n,k = Ek−1(D2
n,k), as n → ∞,∑n

k=1 σ 2
n,k

var(Zn)

P→ 1 and

∑n
k=1 E(D4

n,k)

var2(Zn)
→ 0. (A.4)

We first show the first part of (A.4). As it is true E(
∑n

k=1 σ 2
n,k) =

var(Zn), we only show var(
∑n

k=1 σ 2
n,k) = o(var2(Zn)). From (i), (ii),

and (iv) of Proposition A.2,

var(Zn) = 2

n
tr(�2

n) + �

n
tr(�n ◦ �n) + 4b2

n

n2
(1 + O(n−1))tr2(�2),

where �n = an� + 2bn�2 and �n = (anA + 2bnA2). It hence follows

var2(Zn) ≥ K max{b2
nn−3 tr(�2

n)tr2(�2),b4
nn−4 tr4(�2)} (A.5)
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for some constant K for all large n.
To evaluate

∑n
k=1 σ 2

n,k , define un,k = (Ek − Ek−1)Y1,n and vn,k =
(Ek − Ek−1)Y2,n. Then Dn,k = anun,k + bnvn,k so that σ 2

n,k =
a2

nEk−1(u2
n,k) + 2anbnEk−1(un,kvn,k) + b2

nEk−1(v2
n,k). In the next,

let us denote Qk−1 = ∑k−1
i=1 (XiX′

i − �), Mk−1 = �′Qk−1�, ξ2,k =∑k−1
i=1 {X′

i�
2Xi − tr(�3)}, and ξ3,k = ∑k−1

i=1 {X′
i�

3Xi − tr(�4)}.
Noting that Y1,n = (1/n)X′

kXk + (1/n)
∑

i/∈{k} X′
iXi. Then,

un,k = (Ek − Ek−1)(1/n)X′
kXk = (1/n){X′

kXk − tr(�)}. (A.6)

Similarly,

vn,k = (Ek − Ek−1)
2

n(n − 1)

∑
i/∈{k}

(X′
iXk)

2

= 2

n(n − 1)
{X′

kQk−1Xk − tr(Qk−1�)}

+ 2

n
{X′

k�Xk − tr(�2)}. (A.7)

Note that Ek−1(u2
n,k) = C0, say, is a constant. Then, from (A.1),

Ek−1(un,kvn,k) = 4

n2(n − 1)
ξ2,k + 2�

n2(n − 1)
tr(A ◦ Mk−1) + C1,

Ek−1(v2
n,k) = 16

n2(n − 1)
ξ3,k + 8

n2(n − 1)2
tr(Qk−1�Qk−1�)

+ 8�

n2(n − 1)
tr(A2 ◦ Mk−1)

+ 4�

n2(n − 1)2
tr(Mk−1 ◦ Mk−1) + C2,

where C1 and C2 are two constants. Let C = a2
nC0 + C1 + C2. Then,

n∑
k=1

σ 2
n,k = R1,n + R2,n + R3,n + R4,n + Cn,

where

R1,n = 8bn

n2(n − 1)

n∑
k=1

(anξ2,k + 2bnξ3,k),

R2,n = 4bn�

n2(n − 1)

n∑
k=1

tr(�n ◦ Mk−1),

R3,n = 8b2
n

n2(n − 1)2

n∑
k=1

tr(M2
k−1),

and

R4,n = 4�b2
n

n2(n − 1)2

n∑
k=1

tr(Mk−1 ◦ Mk−1).

We need to show var(Ri,n) = o(var2(Zn)) for i = 1, . . . ,4. Using
(A.1), for any positive integers �1, �2,

cov(X′
1��1 X1,X′

1��2 X1) = � tr(A�1+1 ◦ A�2+1) + 2 tr(��1+�2+2).

It follows that for any k ≤ j,

cov(anξ2,k + 2bnξ3,k,anξ2,j + 2bnξ3,j)

= (k − 1)
{
2 tr(�2

n�4) + �tr[(�nA2) ◦ (�nA2)]}
≤ (k − 1)(2 + �) tr(�2

n�4)

≤ (k − 1)(2 + �) tr(�2
n)tr(�4),

where we applied the fact tr[(�nA2) ◦ (�nA2)] ≤ tr(�2
n�4). Thus,

var(R1,n) ≤ Kb2
nn−3 tr(�4) tr(�2

n) and hence by (A.5)

var(R1,n)

var2(Zn)
≤ K

tr(�4)

tr2(�2)
→ 0.

By carrying out similar procedures we can show that the above is
true for Rl,n for l = 2,3, and 4, and hence completes the proof for the
first part of (A.4).

To show the second part of (A.4), we note from (A.6) and (A.7),

Dn,k = 1

n
{Z′

k�nZk − tr(�n)} + 2bn

n(n − 1)
{Z′

kMk−1Zk − tr(Mk−1)}.

By (A.3),

n∑
k=1

E(D4
n,k) ≤ 8

[
1

n3
E{Z′

k�nZk − tr(�n)}4

+ 16b4
n

n4(n − 1)4

n∑
k=1

E{Z′
1Mk−1Z1 − tr(Mk−1)}4

]

≤ K(n−3 tr2(�2
n) + b4

nn−6 tr4(�4))

= O(n−1 var2(Zn)). (A.8)

This proves the second part of (A.4) and finishes the proof of this
proposition.

Proof of Theorem 1

Let μ1,n = E(T1,n) and μ2,n = E(T2,n). Then μ1,n = tr(�),
μ2,n = tr(�2). Write

Ũn = T2,n/μ2,n − 2T1,n/μ1,n + 1, εn = (T1,n − μ1,n)/μ1,n.

Then (
tr2(�)

tr(�2)

)(
Un + 1

p

)
− 1 = Ũn − ε2

n

(1 + εn)2
.

It suffices to show εn
P→ 0 and σ−1

1,n (Ũn − ε2
n)

D→ N(0,1).

By (2.3), (i), (iii), and (v) of Proposition A.2,

var(εn) = 1

tr2(�)

[
2

n
tr(�2) + �

n
tr(A ◦ A) + 2

n(n − 1)
tr(�2)

]

≤
[

2 + �

n
+ 2

n(n − 1)

]
tr(�2)

tr2(�)
, (A.9)

where tr(�2)/ tr2(�) → 0. Thus, εn
P→ 0.

Furthermore, Ũn = [Y2,n/μ2,n − 2Y1,n/μ1,n + 1] + 2Y3,n/μ1,n −
2Y4,n/μ2,n + Y5,n/μ2,n. From (i), (ii), and (iv) of Proposition A.2,

var(Y2,n/μ2,n − 2Y1,n/μ1,n + 1)

= σ 2
1,n + O

(
1

n3

)
+ O

(
1

n2

)
tr(�2)

tr2(�)
.

Also, it is straightforward to see var(Y3,n/μ1,n) = O( 1
n2

tr(�2)

tr2(�)
) =

o( 1
n2 ) = o(σ 2

1,n), var(Y4,n/μ2,n) = O( 1
n3 + 1

n2
tr(�4)

tr2(�2)
) = o( 1

n2 ) =
o(σ 2

1,n), and var(Y5,n/μ2,n) = O( 1
n3 ) = o(σ 2

1,n). Hence by (i) of

Proposition A.3, σ−1
1,n Ũn

D→ N(0,1). Finally, that E(ε2
n) = o( 1

n ) =
o(σ1,n) implies σ−1

1,n εn
P→ 0. Thus, σ−1

1,n (Ũn − ε2
n)

D→ N(0,1).
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Proof of Theorem 2

Similar to the proof of Theorem 1, we have pVn = (Y2,n − 2Y1,n +
p)+ 2Y3,n − 2Y4,n + Y5,n, in which E(Y2,n − 2Y1,n + p) = tr(� − I)2,
var(Y2,n − 2Y1,n + p) = σ 2

2,n + O(n−3 tr2(�2) + n−2 tr(�4)), and

var(Y3,n) = o(σ 2
2,n), var(Y4,n) = o(σ 2

2,n), var(Y5,n) = o(σ 2
2,n). By

Proposition A.2, σ−1
2,n [pVn − tr(� − I)2] D→ N(0,1). This completes

the proof.

Proof of Theorem 3

(i) From Theorem 1,

lim inf
n

β1,n ≥ 1 − lim sup
n



(
(1 − δ1,n)(2zα/n) − δ1,n

σ1,n

)
.

Let C1 = 1/
√

8 + 4� and C2 = 2zα . Then,

2zαC−1
2

√
1

n2
+ 1

n
δ2,n ≤ σ1,n ≤ C−1

1

√
1

n2
+ 1

n
δ2,n.

Hence,

lim sup
n



(
(1 − δ1,n)(2zα/n) − δ1,n

σ1,n

)

≤ lim sup
n

[


(
(1 − δ1,n)(2zα/n)

2zα[C2]−1
√

1/n2 + (1/n)δ2,n

− δ1,n

C−1
1

√
1/n2 + (1/n)δ2,n

)]

and (3.5) follows.
In this case of (ii),

lim inf
n

β2,n ≥ 1 − lim sup
n



(
2pzα
nσ2,n

− tr(� − I)2

σ2,n

)
.

For C1 = 1/
√

8 + 4� and C2 = 2zα , it is easy to see σ2,n ≥
n−1 tr(�2) = (p/n)ρ1,nρ2,n. Furthermore, using the fact that tr(�2 −
�)2 ≤ tr(�2) tr(� − I)2, σ2,n ≤ C−1

1 tr(� − I)2
√

ρ2,n + ρ2
2,n. Using

the same technique as in the proof of (i), we get (3.6).

Proof of Theorem 4

From Theorem 3, all the conclusions in Theorem 4 follow di-
rectly except the one that asserts ρ1,n → ∞ if and only if ρ2,n →
0. We first show the necessity part. Suppose ρ1,n → ∞. Denote
γn = (1/p) tr(�2). Then ρ1,nρ2,n = γn. By the way of contradiction,
if lim supn ρ2,n = b > 0 (b may be ∞), there exists a subsequence
{nj} such that ρ2,nj → b. Thus, γnj → ∞. On the other hand, us-

ing tr(�) ≤
√

p tr(�2), we have ρ−1
2,nj

≥ n(γ
−1/2
nj − 1)2. This implies

ρ2,nj → 0, contradicting the hypothesis b > 0.

We can prove the sufficiency part in the same way. Suppose ρ2,n →
0, but lim infρ1,n → a < ∞. Then there exists a subsequence {nj} such
that ρ1,nj → a and so γnj → 0. On the other hand, using tr(�) ≤√

p tr(�2), we have ρ1,nj ≥ n(γ
1/2
nj − 1)2. This implies ρ1,nj → ∞,

contradicting the hypothesis a < ∞.

[Received September 2009. Revised January 2010.]
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