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Abstract

In two-sample comparison problems it is often of interest to examine whether one distribution 

function majorizes the other, i.e., for the presence of stochastic ordering. This paper develops a 

nonparametric test for stochastic ordering from size-biased data, allowing the pattern of the size 

bias to differ between the two samples. The test is formulated in terms of a maximally-selected 

local empirical likelihood statistic. A Gaussian multiplier bootstrap is devised to calibrate the test. 

Simulation results show that the proposed test outperforms an analogous Wald-type test, and that it 

provides substantially greater power over ignoring the size bias. The approach is illustrated using 

data on blood alcohol concentration of drivers involved in car accidents, where the size bias is due 

to drunker drivers being more likely to be involved in accidents. Further, younger drivers tend to 

be more affected by alcohol, so in making comparisons with older drivers the analysis is adjusted 

for differences in the patterns of size bias.
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1. Introduction

Sampling bias is encountered in numerous biomedical settings, especially in genetics (see, 

e.g., Clark et al. 2005, ascertainment bias), wildlife population studies (Patil and Rao 1978), 

disease screening (Zelen and Feinleib 1969; Duffy et al. 2008), and vaccine efficacy trials 

(Gilbert et al. 1999). It is also an increasingly important issue in the analysis of “big data” 

(Harford 2014). Due to the bias, inference concerning the underlying distribution functions 

needs to be tailored to take into account known features of the sampling mechanism. This is 

especially challenging in two-sample settings when the bias affects the two groups in 

different ways.
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In this paper we study the problem of testing for stochastic ordering between two lifetime 

distribution functions, F1 and F2, given independent samples from

where the weight functions wj(·) > 0 are assumed to be known, and 

 are the normalizing constants. Such data are called size-biased 

because the weights wj(x) depend on the size x of the datum. The comparison between F1 

and F2 will be restricted to a given fixed interval [t1, t2]. The nonparametric maximum 

likelihood estimator (NPMLE) of a distribution function from a biased sample of this type 

and its asymptotic properties are known —Vardi (1982) and Gill et al. (1988) dealt with the 

uncensored case and Kvam et al. (1999) considered the censored case when the weight 

function takes the special form w(x) = I(x > x0) with some known x0. The asymptotic 

distribution of the difference of the NPMLEs of F1 and F2 is therefore easily derived, but is 

not distribution free, and a suitable method for calibrating even an omnibus test for F1 = F2 

versus F1 ≠ F2 is not readily available. We will develop a Gaussian multiplier bootstrap 

approach for this simultaneous inference problem; our approach is also easily adapted to the 

case of an omnibus alternative.

The distribution function F1 is said to be stochastically larger than F2 on [t1, t2] if F1(x) ≤ 

F2(x) for all x ∈ [t1, t2]; this ordering is denoted F1 ⪰ F2. We investigate the problem of 

testing the two-sided alternative

(1)

where ≻ denotes ⪰ with strict inequality for some x ∈ [t1, t2]. Our approach will first be 

developed for testing the one-sided alternative

(2)

and then extended to the two-sided alternative using the union-intersection principle.

The union of the null and alternative hypotheses in (1) excludes the possibility of crossing 

distribution functions: F1(u) > F2(u) for some u ≥ 0, F1(v) < F2(v) for some v ≥ 0. Denote 

the hypothesis of crossing distribution functions by Hc. An auxiliary test for the null 

hypothesis Hc (against the alternative that Hc is not true) is therefore recommended. Such a 

test is readily constructed using a simultaneous confidence band for the difference F2 – F1 

(see Section 2.2.2). Reject Hc if the lower boundary of the confidence band is ≤ 0 or its 

upper boundary ≥ 0. It can be shown that the family-wise error rate of this auxiliary test 

combined with our test for stochastic ordering can be controlled at same alpha level as the 

individual tests, cf. Chang and McKeague (2014).
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Our approach to testing (1) and (2) is based on the method of empirical likelihood (EL) 

(Owen 1988, 2001). This method has been adapted to various biased sampling problems 

(Qin 1993; El Barmi and Rothmann 1998; Davidov et al. 2010) and is more appealing than 

the Wald approach because it is self-studentized and provides more accurate Type-I error 

control. There is also evidence that EL-based tests have optimal power (see, e.g., Kitamura 

et al. 2012). As far as we know, however, the approach has not been used to develop tests for 

stochastic ordering under biased sampling.

First considering the one-sided alternative in (2), we devise a localized EL statistic for 

 versus  at each given t ∈ [t1, t2]. The proposed test rejects 

H0 for large values of the maximally-selected EL statistic. Such a localization strategy has 

been used in Einmahl and McKeague (2003) and El Barmi and McKeague (2013) for testing 

various nonparametric hypotheses, except they considered an integral type test statistic and 

restricted attention to data without sampling bias. Various Kolmogorov–Smirnov type test 

statistics (not based on EL) for stochastic ordering have been proposed by El Barmi and 

Mukerjee (2005) and Davidov and Herman (2009), but these cannot deal with size-biased 

data either.

We find the limiting distribution of the resulting maximally-selected EL statistic, but it is not 

distribution-free (it depends on F1 and F2), so calibration of the test becomes a challenge. As 

mentioned before, we develop a Gaussian multiplier bootstrap approach to resolve this 

problem. The proposed calibration method is fast, because it avoids recalculation of several 

computationally expensive quantities in each bootstrap sample. The multiplier bootstrap has 

been been widely applied; for a recent example of its use to calibrate a two-sample 

nonparametric test, see Rémillard and Scaillet (2009).

The paper is organized as follows. In Section 2.1 we consider the one-sample case and in 

Section 2.2 we extend the theory to the two-sample case. Section 3 presents results from a 

simulation study: the proposed EL test performs better than the Wald test and the test 

ignoring size bias, in terms of both accuracy and power. Section 4 then provides an 

application of the proposed test to alcohol concentration records in fatal driving accidents. 

Finally, some concluding remarks are placed in Section 5.

2. EL tests for stochastic ordering in biased sampling model

2.1. One-sample case

In this section we drop the earlier subscript j, and just write F, G, w and W. The observed 

data {Xi, i = 1, …, n} are iid copies of X ~ G. The nonparametric likelihood (see, e.g., Owen 

2001, Ch. 6.1) for F is
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where wi = w(Xi) and pi is the point mass that F places at Xi. The NPMLE is given by 

, where p̃i = W/̃(nwi) and .

Consider testing H0: F = F0 versus H1: F ≻ F0, where F0 is a known distribution function. 

Our procedure is to first construct the statistic for testing the “local” hypotheses 

 versus  for a given t, and then to deal with the general 

hypotheses based on some functional of the local statistics.

To construct the local test statistic at t, consider the EL ratio

(3)

In defining ℛ(t) we adopt the convention that sup ∅ = 0 and 0/x = 1. A tractable form of the 

EL ratio can be obtained by comparing F0(t) and F(̃t), the unconstrained maximizer of L(F). 

When F̃(t) ≤ F0(t), the denominator of ℛ(t) is the unconstrained maximum given by 

. When F(̃t) > F0(t), the constrained maximum in the 

denominator is attained on the boundary of the constraint set, and then ℛ(t) = 1. That is,

To simplify the above expression, we follow a similar derivation to the literature on EL-

based testing in biased sampling models (see, e.g., Qin 1993; El Barmi and Rothmann 

1998). The numerator is seen to be , where

and (Ŵ, λ)̂ satisfy the estimating equations  and 

. This results in

The derivation is omitted because it is similar to the two-sample case (presented in 

Appendix A).
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To derive the large sample properties of the local EL test statistic −2 log ℛ(t), we will first 

approximate it by a Wald-type counterpart , where

(4)

(5)

and  (The derivation is omitted because it is 

similar to the two-sample case presented in Appendix B.) Both of the above expressions are 

useful: (5) shows that maximizing the positive part of Un(t) (over t ∈ [t1, t2]) extends the 

one-sided Kolmogorov–Smirnov statistic by adjusting for size bias (see Remark 3 below), 

whereas (4) will be the basis for the multiplier bootstrap approach introduced later. It can be 

shown that  has asymptotically a chi-bar square distribution under , which is 

also the limiting null distribution of −2 log ℛ(t). That is, for t such that 0 < F0(t) < 1,

under , where Z ~ N (0, 1) and Z+ = max(Z, 0). This result can be used to test the local 

versus .

To test for the alternative of stochastic ordering, we propose the following maximally-

selected local EL statistic:

(6)

Our first result gives the asymptotic null distribution of Mn. The proof is omitted because it 

is similar to the two-sample case (presented in Appendix B).

Theorem 2.1: Suppose 0 < F0(t1) < F0(t2) < 1 and . Then, under H0

where U+ = max(U, 0), U (t) is a mean-zero pinned Gaussian process with covariance 

function
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and

Remark 1: Gill et al. (1988) studied the problem of estimating a single underlying 

distribution function F0 from multiple biased samples having different weight functions. The 

moment condition  we use in Theorem 2.1 matches the moment 

condition they imposed on each weight function. This moment condition is needed to check 

the Donsker property of the class of functions of the form x ↦ Ix≤t/w(x). Our approach is 

based on bracketing entropy (rather than uniform entropy), which leads to a more direct 

proof.

As an example that the moment condition suffices, consider w(·) = 1. Then our problem 

reduces to finding uniform convergence of a standardized version of , where 

Fn(t) denotes the empirical cdf (see Remark 3 below). In this case our moment condition 

simplifies to , which always holds.

Remark 2: Given an additional unbiased sample directly from F0 (see, e.g., El Barmi and 

Rothmann 1998), a moment condition is not needed since the denominator w(x) of the 

relevant function class in that case is replaced by 1 − κ + κw(x)/W, which is bounded away 

from zero provided κ < 1, where κ is the proportion of the combined sample size in the 

biased sample.

Remark 3: Under H0, when there is no size bias (i.e., w(·) ≡ 1), Un(t) reduces to the familiar 

form

where Fn(t) denotes the empirical cdf, and in this case

where B is a standard Brownian bridge on [0, 1] and xl = F0(tl), l = 1, 2.

The limit in Theorem 2.1 is not distribution free. To obtain critical values for Mn, we 

propose a Gaussian multiplier bootstrap approach.
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2.1.1. Gaussian multiplier bootstrap—Our proposed test statistic Mn is asymptotically 

equivalent to , so in view of (4) it is reasonable to construct a 

Gaussian multiplier bootstrap in terms of

where the ξi are i.i.d. N (0, 1) and independent of the data, σ̃*(t, t) is the sample variance of 

, and F̃(t) (the NPMLE) and W ̃are defined in the beginning of 

Section 2.1. The reason to use the NPMLE instead of F0(t) under the null is to avoid a loss 

of power due to imposing the null hypothesis on the bootstrap (see, e.g., Hall and Wilson 

1991).

We will show bootstrap consistency of the process  for the distribution of Un(t), which 

leads to the same property for

as in the following theorem. The proof is omitted because it is similar to the two-sample 

case (see Appendix D).

Theorem 2.2: Under H0 and the conditions of Theorem 2.1, conditionally on the data almost 

surely,

Based on Theorem 2.2, to calibrate the test we simulate  by repeatedly generating 

samples of Gaussian random multipliers {ξi}. We then compare the empirical quantiles of 

these bootstrapped values  with our test statistic Mn.

2.2. Two-sample case

The notation is similar to the one-sample case, with the further subscript j now indicating the 

j-th sample. The nonparametric likelihood L(F1, F2) is the product of the two one-sample 

likelihoods, L(F1)L(F2). We assume that the sample proportion κj ≡ nj/n > 0 remains fixed 

as the total sample size n = n1 + n2 → ∞.

The “local” hypotheses are  versus  for a given t. Denote the 

common cdf under  by F0(t). The local EL ratio at t is defined to be
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(7)

By Lagrange multipliers (see Appendix A) we obtain

(8)

where F̃1 and F̃2 are the unconstrained NPMLEs, and p̂ij, Ŵj, λ̂, and F̂0(t) satisfy the system 

of equations

(9)

Under , F0̂(t) is the maximum EL estimate of the common distribution function at t. The 

local EL test statistic −2 log ℛ(t) is shown to converge weakly to a chi-bar square 

distribution. The derivation involves approximating −2 log ℛ(t) by its Wald-type counterpart 

, where

(10)

and  (see Appendix B for more 

details).

To test H0 vs. H1, we propose the maximally selected EL statistic Mn as in (6), except ℛ(t) 

is now given in (8). The following result gives the asymptotic null distribution of Mn (see 

Appendix B for the proof).

Theorem 2.3: Suppose 0 < F0(t1) < F0(t2) < 1 and . Then, under H0
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where U(t) is a mean-zero pinned Gaussian process with covariance function

and

Remark 1: When there is no size bias (i.e., wj(·) ≡ 1), Un(t) reduces to

where Fnjj(t) is the empirical cdf of the j-th sample and

This implies that Mn is asymptotically equivalent to

which is the square of the one-sided scaled version of the commonly used two-sample 

Kolmogorov–Smirnov statistic, supt∈[t1,t2] [Fn22(t) − Fn11(t)]+.

Remark 2: As an example that the moment condition  suffices, 

consider w1(·) = 1 and w2(·) = 1. Then our problem reduces to finding uniform convergence 

of a standardized version of  (see Remark 1 above). In this case our 

moment condition simplifies to , which always holds.

Remark 3: The condition 0 < F0(t1) < F0(t2) < 1 suggests a data-driven rule for t1 and t2: t1 = 

inf{t: F̃1(t) > 0 and F2̃(t) > 0} and t2 = sup{t: F1̃(t) < 1 and F̃2(t) < 1}. This is what we use in 

the later simulation runs and data analysis.

As in the one-sample case, we use a Gaussian multiplier bootstrap to calibrate the test.
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2.2.1. Gaussian multiplier bootstrap—Similar to the one-sample case, it suffices to 

bootstrap Un(t) since the test statistic Mn is asymptotically equivalent to 

. Define a Gaussian multiplier bootstrap for Un(t) by

where the ξij are i.i.d. N (0, 1) and independent of the data, and σ̃*(t, t) is the sum of the 

sample variance of  over j = 1, 2. Similarly to what was 

noted in Section 2.1.1, for estimates of unknown quantities Fj(t) and Wj (j = 1, 2) in our 

bootstrap, we use the NPMLEs (the unconstrained maximizers) instead of the constrained 

maximizer under the null, to avoid a loss of power.

We show bootstrap consistency of , thereby establishing consistency of

The result is provided in the following theorem (see Appendix D for the proof).

Theorem 2.4: Under H0 and the conditions of Theorem 2.3, conditionally on the data almost 

surely,

Based on Theorem 2.4, to calibrate the test, we simulate  by repeatedly generating 

samples of Gaussian random multipliers {ξij} while holding the observed data fixed. We 

then compare the empirical quantiles of these bootstrapped values  with our test statistic 

Mn.

2.2.2. A simultaneous confidence band constructed by Gaussian multiplier 

bootstrap—As mentioned in the Introduction, a simultaneous confidence band for F2–F1 is 

needed for an auxiliary test that F1 and F2 do not cross. Such a confidence band can be 

constructed using the aforementioned Gaussian multiplier bootstrap approach. Here we 

briefly explain how a suitable band can be constructed based on the standardized difference 

between the NPMLEs and the true cdfs,

(11)

Chang et al. Page 10

J Nonparametr Stat. Author manuscript; available in PMC 2017 October 05.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



where . This is the counterpart of 

the equal precision confidence band in censored data (Nair 1984). It is more challenging to 

construct an EL-type band, as it requires solving for two roots at each t for the upper and 

lower bounds (see, e.g., McKeague and Zhao 2002); this is beyond the scope of the present 

article.

The asymptotic distribution of (11) is given as follows (see Appendix E for the proof).

Theorem 2.5: Suppose 0 < Fj(t1) < Fj(t2) < 1 and  for j = 1, 2. Then

where UB(t) is a mean-zero pinned Gaussian process with covariance function 

 and 

.

Remark: When F1 = F2 = F0, UB(t) = U(t) and σB(s, t) = σ(s, t), where U(t) and σ(s, t) are 

defined in Theorem 2.3.

The derivation utilizes the equality between (11) and

(12)

as noted in Appendix E. Based on (12), we can use a Gaussian multiplier bootstrap to 

construct the confidence band, as in the case of one-sample and two-sample tests for 

stochastic ordering. In particular, we can directly use  from Section 2.2.1. Bootstrap 

consistency of  can be established along similar lines using the proofs in Appendix D, 

except that F0(t) is replaced by Fj(t) in quantities related the j-th sample. Then by the 

continuous mapping theorem, we have the following theorem of bootstrap consistency.

Theorem 2.6: Under the conditions of Theorem 2.5, conditionally on the data almost surely,

From Theorem 2.6 we can construct an asymptotic 100(1 − α)% confidence band for F2(t) − 

F1(t) as follows: simulate  by repeatedly generating samples of Gaussian 
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random multipliers {ξij} while holding the observed data fixed. We then denote the upper α 
quantile of these bootstrapped values as , and the band is given by

for t ∈ [t1, t2].

3. Simulation study

In this section, we report the result of a simulation study for the one-sided tests. Results for 

the two-sided tests are similar. We investigate the performance of Mn in terms of accuracy 

and power.

3.1. Accuracy

We consider F1 = F2 = Beta(4, 3) and two scenarios for the weight functions: (A) w1(x) = x 

and , (B)  and w2(x) = x. The scenarios are illustrated in Figure 1. 

From the figure, we can see that although the underlying F1 and F2 are the same, the 

observed distributions G1 and G2 are different due to size bias.

It would be interesting to see what happens if size bias is ignored; that is, one mistakes Gj as 

Fj. To this end, we compare Mn with its counterpart that sets wij ≡ 1 (see Remark 1 after 

Theorem 2.3), which is related to the one-sided two-sample Kolmogorov–Smirnov statistic. 

We denote this statistic by . Another statistic for comparison is the one-sided Wald-type 

statistic  (see Section 2.2).

The size simulation results are given in Table 1. Note that the empirical significance levels 

of our EL test are close to the nominal level in all the cases considered. On the other hand, 

the Wald test is too conservative in Scenario B. As for the test ignoring size bias, its 

empirical significance levels are too large in Scenario A and too small in Scenario B. We 

conclude that the proposed EL test has better accuracy than the other tests.

We have also compared our EL test with the Wald test in terms of computational cost, and 

we have found that they have very similar run times. This is because the major 

computational task lies in solving the estimating equations in (9) for each t, and both our EL 

and Wald statistics involve quantities from those estimating equations.

3.2. Power comparisons

In this section, we compare the small sample power of the proposed test with its counterpart 

ignoring size bias and the Wald test. Two models of underlying distribution functions are 

considered: (C) F1 = Beta(4, 3) versus F2 = Beta(4, 4), (D) F1 = Beta(3, 5) versus F2 = 

Beta(3, 7). For both models, we set  and w2(x) = x. The weight functions make 

the difference between G1 and G2 smaller than the difference between F1 and F2, as 

illustrated in Figure 2. As a result, the test ignoring size bias (i.e., comparing Gj instead of 

Fj) is expected to have lower power.
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The power simulation results are summarized in Table 2. Mn outperforms the other tests in 

all the cases considered. The Wald test tends to have lower power. The much lower power of 

 shows the importance of taking sampling bias into account. Similar results are 

obtained for the Gamma distribution (results available upon request). The proposed EL test 

has considerable advantages over competing approaches for testing stochastically ordered 

alternatives.

4. Real data example

In this section we apply our test to the question of whether the distribution of blood alcohol 

concentration (BAC) of drivers involved in fatal car accidents depends on age. Size bias 

arises because drivers with higher BAC are more likely to be involved in accidents and have 

their BAC recorded.

We compare the BAC of two age groups: younger (< 30 years) and older (≥ 30 years) 

drivers. The pattern of sampling bias is different between these two groups, as discussed by 

Ramírez and Vidakovic (2010). This is due to the tendency of younger drivers to be more 

affected by alcohol, resulting in upweighted sampling at lower levels of BAC in the younger 

group. Ramírez and Vidakovic take the weight functions to be  and wo(x) = x for 

the younger and older groups, respectively, although they admit that this choice is subjective 

(it is similar in spirit to the selection of the prior distribution in a Bayesian setting). We 

specify the younger-group weight function to take the more general form wy(x) = xr, where r 

∈ [0, 1].

The BAC data are available online from the Fatality Analysis Reporting System (FARS) of 

the U.S. National Highway Traffic Safety Administration. To ensure sample homogeneity, 

we restrict our analysis to whole blood test results of male drives involved in interstate 

highway accidents in California during 2009, criteria satisfied by 125 subjects. There are 67 

younger and 58 older drivers. Although the empirical cdfs (see top panel of Figure 3) show 

there is no obvious difference between the two biased distributions (from which the data are 

observed), the NPMLEs for the underlying distribution functions (based on the weight 

functions used by Ramírez and Vidakovic) suggest that BAC in the younger group is 

stochastically larger than in the older group, see the bottom panel of Figure 3. We specified 

t1 and t2 to be the smallest and largest observations in the pooled sample, respectively.

Applying the one-sided EL test, the p-value is found to be an increasing function of r, see 

Figure 4 (solid line). For r ≤ 0.4, the test shows significance at the 0.05 level; for r ≤ 0.5, it 

shows significance at the 0.1 level. This indicates that the younger group has stochastically 

larger BAC than the older group over a reasonable range of weight functions. The one-sided 

Wald test (dashed line), on the other hand, is much more conservative, only showing 

significance at the 0.05 level for r ≤ 0.25. The test ignoring size bias yields a very large p-

value of 0.841, reflecting the fact that the two empirical cdfs almost overlap.
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5. Discussion

We have developed a new test for stochastically ordered alternatives based on size-biased 

data, allowing the pattern of size bias to differ between the two samples. The test is 

formulated in terms of a maximally-selected local empirical likelihood statistic. A 

simulation study shows that the new test is more powerful than its counterpart ignoring size 

bias and an analogous Wald-type test. We applied our test to blood alcohol measurements in 

fatal driving accidents and found a more significant result than the Wald-type test and the 

test ignoring sampling bias.

We calibrate the proposed test using a Gaussian multiplier bootstrap approach. Other 

exchangeable bootstrap procedures (see, e.g., van der Vaart and Wellner 1996, Ch. 3.6) 

could also be considered. A computationally feasible adaptation of the nonparametric 

bootstrap for Un(t) can be defined by replacing ξij in  (see Section 2.2.1) with Mnji − 1 

(i = 1, …, nj, j = 1, 2), where Mnji is the number of times that Xij is redrawn from the 

original sample. Here note that despite resampling of the original observations, we keep 

, Ŵj and F̂0(t) intact. This is because computing them requires solving the 

estimating equations for each t, which could be time consuming if we repeat such 

computation for each bootstrap sample. The proposed multiplier bootstrap approach also 

avoids such recomputation. Although the aforementioned bootstrap procedures are 

asymptotically first-order equivalent, a detailed comparison of their higher-order properties 

(e.g., Hall 1992) would be needed for further insight.

Our key contribution is the development of the first EL-based test for ordered underlying 

distribution functions in biased sampling models. We envision the test to be useful in 

numerous applications involving length/size bias, especially in the biostatistical settings 

mentioned in the Introduction, but also in reliability engineering (Oluyede and George 

2002), and marketing research (Nowell and Stanley 1991). One future direction is to extend 

our test to the multiplicative censorship model, which can be applied to prevalence cohort 

studies (Ning et al. 2013) with different rates of diagnoses among the groups (Walker et al. 

2014). Another direction is to deal with the situation where, in addition to the samples 

observed from the Gj, we also have random samples observed from the Fj. One possible test 

for stochastic ordering in this case is to use a convex combination of the two statistics Mn 

and , where Mn is computed based on samples (of total size n) from G1 and G2 and 

 based on samples (of total size m) from F1 and F2. Still another direction is to extend 

our approach to allow multiple samples with different weight functions acting on F1 and F2, 

just as Gill et al. (1988) do for a single underlying distribution.
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Appendix A. Numerator of the local EL ratio

We only consider the two-sample case; the one-sample case is similar. We first maximize

(A1)

where pij = dFj(Xij) and wij = wj(Xij), subject to the constraints

(A2)

for fixed Wj and F0(t), j = 1, 2. Here ≅ means up to a constant that does not depend on the 

pijs. This is similar to the usual empirical likelihood for estimating equations, except that 

now the likelihood is of a weighted form. By Lagrange multipliers, the optimum is found to 

occur at

where λ1j, λ2j satisfy

A profile log-likelihood can be obtained by plugging pij(Wj, F0(t)) into (A1):
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This profile log-likelihood is then maximized over (W1, W2, F0(t)). The optimal solution 

(Ŵ1, Ŵ2, F0̂(t)) satisfies the relation λ2j = κj/Ŵj and λ11 = −λ12 ≡ λ̂. As a result, the 

optimal pijs are given by

(A3)

where Δj = 1 for j = 1 and −1 for j = 2, ηîj = (κjwij)/Ŵj, g1ij(F0̂(t), Ŵj) = (IXij≤t − F̂0(t))/η̂ij, 

and (Ŵ1, Ŵ2, λ,̂ F̂0(t)) satisfy (9). Here the dependence of the solution on t is suppressed.

Appendix B. Proof of Theorem 2.3

The events λ̂ ≤ 0 and F̃1(t) ≤ F2̃(t) coincide, which can be seen using the relation between 

the sign of the Lagrange multiplier and the location of the global optimum. Then

(B1)

so we can re-write the estimating equations in (9) as

(B2)

where

and g2ij(F0̂(t), Ŵj) = (wij − Ŵj)/η̂ij.

By (B2), we can show that F0̂(t) − F0(t), λ ̂and Ŵj − Wj are Op(n−1/2) (see Appendix C). 

Here and in the sequel, the asymptotic op, o, Op and O terms hold uniformly for t ∈ [t1, t2]. 

Based on these asymptotic orders, we apply Taylor’s theorem to (B1) and get
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(B3)

We also expand Q1j(F̂0(t), Ŵj, λ)̂ (for j = 1, 2) around (F̂0(t), Ŵj, 0) and get

which implies

(B4)

and . Substituting the latter into 

(B3) gives

This and (B4) imply

(B5)

where Un(t) is defined as

(B6)

Based on (B5), we can obtain the limiting distribution of −2 log ℛ(t) by studying Un(t). We 

begin by finding the weak convergence of the second term in (B6), where we can replace Ŵj 

and F̂0(t) by Wj and F0(t), respectively, because F0̂(t) − F0(t) = Op(n−1/2) and Ŵj − Wj = 
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Op(n−1/2). By the Donsker theorem,  converges 

in distribution in l∞([t1, t2]) to a Gaussian process with zero mean and covariance function

the relevant class of functions is shown to be Gj-Donsker in Appendix D. Therefore, by 

independence between the two samples and the continuous mapping theorem, 

 converges in distribution in l∞([t1, 

t2]) to a Gaussian process with zero mean and covariance function

On the other hand,

(B7)

by the Glivenko–Cantelli theorem, F̂0(t) − F0(t) = Op(n−1/2) and Ŵj − Wj = Op(n−1/2). Then 

by Slutsky’s lemma and (B6), we have  in l∞([t1, t2]), where U(t) is a mean-

zero Gaussian process with

This, (B5) and the continuous mapping theorem imply  in l∞([t1, t2]). 

Then applying the continuous mapping theorem again, we obtain the desired result.

Appendix C. Asymptotic orders of F̂0(t), λ ̂and Ŵj

First we establish the asymptotic orders of λ̂Ŵj and F0̂(t) uniformly in t. Let λ̂ = θ|λ̂| such 

that |θ| = 1 and let θj = Δjθ. Denote Δjλ̂g1ij(F0̂(t), Ŵj) by ζij. Substituting 1/(1 + ζij) = 1 − 

ζij/(1 + ζij) into θjQ1j(F0̂(t), Ŵj,λ)̂ = 0, we get
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(C1)

Note that 1+ζij > 0 by p̂ij > 0 for all i, j. Thus we can obtain the following (in)equalities:

where the last equality follows from (C1). This implies

(C2)

where 

, and Zj(F0̂(t)) = max1≤i≤nj|(IXij≤t − F0̂(t))/(κjwij)|. Using the assumption 

 (i.e., , we can show the uniform 

convergence of Sj(F̂0(t)) and ḡ1j(F0̂(t)) by the Glivenko–Cantelli theorem and the Donsker 

theorem (the relevant Gj-Donsker condition is checked in Appendix D), leading to

(C3)

a.s. and

(C4)

As for Zj(F0̂(t)), we can bound it by
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(C5)

a.s., where the first o(n1/2) order is obtained by Lemma 11.2 of Owen (2001). From these 

uniform convergence results and (C2), we have

(C6)

(C7)

Multiplying (C6) by  and (C7) by , adding up the two 

terms, and using the fact that  a.s. (by the SLLN), we can bound

above by an Op(n−1/2) term. This and (C3) imply Zj + 1/(|λ|̂Ŵj) must grow faster than n1/2 

(in probability). Then by (C5) we obtain

(C8)

for j = 1, 2. This, together with (C3) and (C5), imply that the l.h.s. of (C6) and (C7) are both 

Op(n−1/2). Then (C6) and (C7) imply that both θ1(F0̂(t) − F0(t)) and θ1(F0(t) − F̂0(t)) are 

bounded above by Op(n−1/2) terms. And thus

Next we establish the order of Ŵj and λ̂. Let gij(F̂0(t), Wj) = [(wij − Wj)/(κjwij), 

(IXij≤t−F0̂(t))/(κjwij)]
T and let λ̂ = [0, λ]̂T = θ||λ̂|| such that ||θ|| = 1 and let θj = Δjθ. Then 

(B2) and  imply
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(C9)

By (C8) and a similar reasoning as in (C5), we have that max1≤i≤nj||ΔjŴjλ̂T gij(F̂0(t), Wj)|| ≤ 

||ΔjŴjλ̂T|| max1≤i≤nj||gij(F0̂(t), Wj)|| = Op(n−1/2)o(n1/2) = op(1). Then we can expand the r.h.s. 

of (C9) as

where  and

By a similar reasoning as in (C3) and (C4), we can show that ḡj(F0̂(t), Wj) = Op(n−1/2) and 

Sj(F0̂(t), Wj) = O(1) a.s. Then

This and (C8) imply 1 − Wj/Ŵj = Op(n−1/2), which gives . Then by (C8) 

again, we obtain .

Appendix D. Gaussian multiplier bootstrap consistency

To show bootstrap consistency of , we start with . It is easier to first obtain bootstrap 

consistency of

Next we establish asymptotic equivalence of  and , conditionally on the data 

almost surely. This implies bootstrap consistency of . Lastly, by the continuous 

mapping theorem, we obtain the desired result for .
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To prove bootstrap consistency of , we make use of the multiplier central limit 

theorem. Specifically, we first show that for the j-th sample, the class of functions

is Gj-Donsker. This follows by Donsker preservation (see, e.g., Kosorok 2008, Corollary 

9.32) since σ(t, t) is bounded away from zero on [t1, t2], the Donsker property is preserved 

under addition of classes of functions, and the class

is Gj-Donsker under the condition Ewj(Xj)
−2 = Gjwj(x)−2 < ∞. The latter can be seen by 

adapting the proof of the classical Donsker theorem using bracketing entropy (e.g., van der 

Vaart (2000), page 271) as follows. Let ε > 0 and choose 0 = t0 < t1 < … < tk = ∞ to have 

the property that Gj[wj(x)−2I(ti−1 < x < ti)] < ε2 for each i. Then the brackets [I(x ≤ ti−1)/

wj(x), I(x < ti)/wj(x)] have L2(Gj)-size given by the square-root of Gj[{I(x < ti) − I(x ≤ 

ti−1)}/wj(x)]2 = O(ε2). It follows that the bracketing numbers are of the polynomial order 1/

ε, and we conclude that ℱj is Gj-Donsker.

Secondly, we have  by the assumption Gjwj(x)−2 < ∞. These results 

and the multiplier central limit theorem (see, e.g., van der Vaart and Wellner 1996, Theorem 

2.9.7) then imply that, conditionally on the data almost surely, 

converges in distribution in l∞([t1, t2]) to a Gaussian process with mean-zero and covariance 

function

Finally, by independence between the two samples and the continuous mapping theorem, we 

have that  converges in distribution in l∞([t1, t2]) to U(t), conditionally on the data 

almost surely.

After showing bootstrap consistency of , now we show that  is asymptotically 

equivalent to , conditionally on the data almost surely. The task can be broken into 

three parts. Firstly, we show the (conditional) asymptotic equivalence of  and 

. The second task then involves establishing consistency of the bootstrap 

estimator σ̃*(t, t) for σ(t, t). The final step is to use the continuous mapping theorem to get 
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(conditional) consistency of σ̃*−1/2(t, t) for σ−1/2(t, t), and by Slutsky’s lemma we get the 

desired result. We elaborate the first two tasks as follows.

For the first task, we want to show for all ε > 0,

which follows by Chebyshev’s inequality and

a.s., where the o(1) is due to the strong consistency of Wj̃ and F̃j(t) for Wj and F0(t) under 

H0, respectively (see the Remark in Appendix E), uniformly in t ∈ [t1, t2].

For the second task of showing bootstrap consistency of σ̃*(t, t) for σ(t, t), we use results of 

bootstrap for Glivenko–Cantelli classes. In detail, note σ̃*(t, t) can be separated into two 

terms:

(D1)

where  and . It is easier to start with 

the second term—using results from bootstrap for Glivenko–Cantelli classes (see, e.g., 

Kosorok 2008, Theorem 10.13),  converges in probability to 0 conditionally on the data 

almost surely, by strong consistency of W̃j and Gj-Glivenko–Cantelli of ℱj (due to its Gj-

Donsker property established earlier in this section), for j = 1, 2. Then by the continuous 

mapping theorem and independence between the two samples, we have that 

converges in probability to 0 conditionally on the data almost surely.

As for the first term in (D1), , we now show its (conditional) 

consistency for σ(t, t). It is easier to begin with , where
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We can show that conditionally on the data,

(D2)

uniformly over t ∈ [t1, t2] a.s. The second term in (D2) is strongly consistent for σ(t, t) 

uniformly over t ∈ [t1, t2] a.s., so (D2) implies (conditionally) consistency of 

 for σ(t, t). To obtain (D2), we just need to show that, for the j-th 

sample, the class of functions

is Gj-Glivenko–Cantelli (see, e.g., Kosorok 2008, Theorem 10.13). This follows by 

Glivenko–Cantelli preservation under addition of classes of functions, and the class

is Gj-Glivenko–Cantelli under the condition Ewj(Xj)
−2 = Gjwj(x)−2 < ∞. The latter can be 

seen by a similar reasoning when proving Gj-Donsker of ℱj, with the brackets in L1(Gj) 

instead.

After showing bootstrap consistency of , finally we show that 

 is asymptotically equivalent to , conditionally on 

the data almost surely. That is, for all ε > 0,

which follows by Markov’s inequality and
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a.s., where the o(1) is due to the strong consistency of Wj̃ and F̃j(t) for Wj and F0(t) under 

H0, respectively (see the Remark in Appendix E).

Appendix E. Proof of Theorem 2.5

We begin with showing (11) equals (12). It is true because for j = 1, 2,

(E1)

where the first equality follows by definition of Fj̃(t) (see beginning of Section 2.1), the 

second equlity follows by definition of W̃j, and the third is just re-arranging the terms. By 

Donsker theorem,  in (E1) converges weakly in 

l∞([t1, t2]) to a Gaussian process with zero mean and covariance function

the relevant class of functions is shown to be Gj-Donsker in Appendix D (with F0(t) replaced 

by Fj(t) in quantities related the j-th sample). By the Central Limit Theorem and the 

condition Ewj(Xj)
−2 = Gjwj(x)−2 < ∞,  can be shown to be Wj 

+Op(n−1/2). These results give the limiting distribution of the term in bracket in (E1): a 

Gaussian process with zero mean and covariance function
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in l∞ ([t1, t2]). This, along with the independence between the two samples and the 

continuous mapping theorem, implies the term in bracket in (12) converges in distribution in 

l∞ ([t1, t2]) to a Gaussian process with zero mean and covariance function

On the other hand,

by Fj̃(t)−Fj(t) = Op(n−1/2), W̃j−Wj = Op(n−1/2) and the Glivenko–Cantelli theorem; the 

relevant class of functions is shown to be Gj-Glivenko–Cantelli in Appendix D (with F0(t) 

replaced by Fj(t) in quantities related the j-th sample). Then by Slutsky’s lemma and (E1), 

we have

in l∞ ([t1, t2]), where UB(t) is a mean-zero Gaussian process with covariance function 

cov(UB(s),UB(t)) = σB(s, t). Then applying the continuous mapping theorem, we obtain the 

desired result.

Remark

Proofs in this appendix can be applied to show strong consistency results used in Appendix 

D. We can show W̃j = Wj+o(1) a.s. by the SLLN. Then F̃j(t) = Fj(t)+o(1) a.s. follows 

because a Gj-Donsker class is automatically strong Gj-Glivenko–Cantelli (see, e.g., Kosorok 

2008, Lemma 8.17).
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Figure 1. 
For computing empirical levels, the underlying (gray) and weighted (black) distribution 

functions in Scenario A (top) and Scenario B (bottom): F1 and G1 (solid) versus F2 and G2 

(dashed).
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Figure 2. 
For power comparisons, the underlying (gray) and weighted (black) distribution (top row) 

and density (bottom row) functions in Scenario C (first column) and Scenario D (second 

column): F1 and G1 (solid) versus F2 and G2 (dashed).
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Figure 3. 
The empirical cdf (top) and the NPMLE for the underlying distribution function (bottom) of 

BAC values for drivers of age less than 30 (solid) and at least 30 (dashed); the weight 

functions for the NPMLEs are taken to be  and wo(x) = x, respectively.
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Figure 4. 
The p-value of Mn (solid) and Wald test (dashed) for comparing BAC in the two age groups 

when the exponent r in wy(x) = xr changes. The horizontal dotted lines indicate the 0.05 and 

0.1 significance levels.
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