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Abstract Theories of modified gravity, where light scalars with non-trivial self-

interactions and non-minimal couplings to matter—chameleon and symmetron

theories—dynamically suppress deviations from general relativity in the solar system.

On other scales, the environmental nature of the screening means that such scalars

may be relevant. The highly-nonlinear nature of screening mechanisms means that

they evade classical fifth-force searches, and there has been an intense effort towards

designing new and novel tests to probe them, both in the laboratory and using astro-

physical objects, and by reinterpreting existing datasets. The results of these searches

are often presented using different parametrizations, which can make it difficult to

compare constraints coming from different probes. The purpose of this review is to

summarize the present state-of-the-art searches for screened scalars coupled to matter,

and to translate the current bounds into a single parametrization to survey the state

of the models. Presently, commonly studied chameleon models are well-constrained

but less commonly studied models have large regions of parameter space that are still

viable. Symmetron models are constrained well by astrophysical and laboratory tests,

but there is a desert separating the two scales where the model is unconstrained. The

coupling of chameleons to photons is tightly constrained but the symmetron coupling

has yet to be explored. We also summarize the current bounds on f (R) models that

exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these
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are well constrained by astrophysical probes, but there are currently few reported

bounds for theories with higher powers of R. The review ends by discussing the future

prospects for constraining screened modified gravity models further using upcoming

and planned experiments.
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1 Introduction

Since its publication in 1915, Einstein’s theory of general relativity (GR) has withstood

the barrage of observational tests that have been thrown at it over the last century. From

Eddington’s pioneering measurement of light bending by the Sun in 1919 to the first

detection of gravitational waves by the LIGO/Virgo consortium in 2015 (Abbott et al.

2016a, b), its predictions have been perfectly consistent with our observations. To test

the predictions of any theory requires alternatives with differing predictions and, for

this reason, alternative theories of gravity have a history that is almost as rich and

varied as that of GR itself.

The zoo of modified gravity theories is both vast and diverse (see Clifton et al.

2012; Joyce et al. 2015; Koyama 2016; Bull et al. 2016, for some compendia of

popular models) but all have one thing in common: they break one of the underlying

assumptions of general relativity. From a theoretical standpoint, GR is the unique low-

energy theory of a Lorentz-invariant massless spin-2 particle (Weinberg 1965), and

any modification must necessarily break one of these assumptions. Several interesting

and viable Lorentz-violating theories exist that may have some insight for the quantum

gravity problem (Blas and Lim 2015), and, similarly, healthy theories of massive spin-2

particles have recently been constructed (de Rham 2014).

An alternative to these approaches is to introduce new fields that couple to gravity.

One of the simplest possible options is to include a new scalar degree of freedom. These

scalar–tensor theories of gravity are particularly prevalent, and are natural extensions

of general relativity. Scalars coupled to gravity appear in many UV completions of

GR such as string theory and other higher-dimensional models, but the cosmologi-

cal constant problem and the nature of dark energy, two modern mysteries that GR

alone cannot account for, are driving a vigorous research effort into infra-red scalar–

tensor theories, with much of the effort focussing on light scalars (with cosmologically

relevant masses) coupled to gravity.

Typically, the existence of such scalars are in tension with experimental bounds. If

the scalar is massless, or has a Compton wavelength larger than the size of the solar

system (which is certainly the case for Hubble-scale scalars), the theory’s predictions

typically fall within the remit of the parameterized post-Newtonian (PPN) formal-

ism for testing gravity in the solar system (see Will 2004, and references therein).
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Scalars whose Compton wavelengths are smaller than ∼ AU predict deviations from

the inverse-square law inside the solar system, which has been tested on interplanetary

scales using lunar laser ranging (LLR) (Williams et al. 2004), and down to distances

of O(µm) using laboratory-based experiments such as the Eöt-Wash torsion balance

experiment (Adelberger et al. 2003). In many cases, scalar–tensor theories sponta-

neously break the equivalence principle so that objects of identical mass but differing

internal compositions fall at different rates in an external gravitational field. This too

can be tested with LLR and terrestrial searches.

Recently, the simultaneous observation of gravitational waves and a gamma ray

burst from a binary neutron star merger (GW170817 and GRB 170817A) (Abbott et al.

2017a, b) by the LIGO/Virgo collaboration and the Fermi and INTEGRAL satellites

has placed a new and stringent bound on modified gravity theories. The close arrival

time of the gravitational wave and photon signal (δt < 1.7 s) constrains the relative

difference speed of photons (c) and gravitons (cT ) to be close to unity at the 10−15 level

(−3 × 10−15 < |c2
T − c2|/c2 < 7 × 10−16) (Sakstein and Jain 2017; Ezquiaga and

Zumalacárregui 2017; Creminelli and Vernizzi 2017; Baker et al. 2017; Crisostomi

and Koyama 2018; Langlois et al. 2017; Dima and Vernizzi 2017; Bartolo et al. 2017),

where the upper and lower bounds correspond to a ∼ 10 s uncertainty in the time

between the emission of the photons and the emission of the gravitational waves

Abbott et al. (2017b). Many scalar–tensor theories predict that the difference between

the speeds of gravitons and photons is of order unity for models that act as dark energy

(Bellini and Sawicki 2014; Brax et al. 2016) and so this bound represents a new hurdle

for them to overcome.

These stringent bounds imply that the simplest theories with light scalars have

couplings to matter that must be irrelevant on cosmological scales. Theories that try to

avoid this problem using a large mass to pass solar system tests must have a Compton

wavelength ≤ O(µm), in which case they too are cosmologically inconsequential.

Ostensibly, it seems that scalar–tensor theories are trivial in a cosmological setting,

but the link between solar system tests of gravity and cosmological scalar–tensor

theories can be broken. Indeed, the last decade of scalar–tensor research can aptly be

epitomized by two words: screening mechanisms.

Screening mechanisms utilize non-linear dynamics to effectively decouple solar

system and cosmological scales. At the heart of screening mechanisms lies the fact

that there are 29 orders-of-magnitude separating the cosmological and terrestrial den-

sities and 20 orders of magnitude separating their distance scales. As a result, the

properties of the scalar can vary wildly in different environments. The quintessential

example of a screening mechanism being used to ensure a dark energy scalar avoids

solar system constraints is the chameleon mechanism (Khoury and Weltman 2004a, b;

earlier predecessors include Gessner 1992; Pietroni 2005; Olive and Pospelov 2008).

In chameleon models, the mass of the scalar is an increasing function of the ambient

density. This allows it to have a sub-micron Compton wavelength in the solar system

but be light on cosmological scales. Later, a closely related second dark energy screen-

ing mechanism was discovered: the symmetron mechanism (Hinterbichler and Khoury

2010; Hinterbichler et al. 2011a). Earlier work had studied a similar model but with

a different motivation (Pietroni 2005; Olive and Pospelov 2008), and string-inspired

models with similar phenomenology have also been proposed (Damour and Polyakov
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1994; Brax et al. 2011a). Unlike the chameleon, the symmetron has a light mass on all

scales and instead screens by driving its coupling to matter to zero when the density

exceeds a certain threshold. A third mechanism, the environment-dependent dilaton

was subsequently discovered that screens in a similar manner (Brax et al. 2010a).

In this work, we will only discuss screening mechanisms of this type, which rely on

non-linear self-interaction terms in the potential. A final class of screening, which relies

on non-linearities in the kinetic sector screen through what is known as the Vainshtein

mechanism (Babichev and Deffayet 2013; Joyce et al. 2015). These theories will not

be discussed here as the phenomenology of these models, and therefore the most con-

straining observables, are very different to that of the chameleon and symmetron mod-

els. Similarly, we will not discuss massive gravity (de Rham et al. 2011; Hinterbichler

2012; de Rham 2014; de Rham et al. 2017), which screens using the Vainshtein mech-

anism, for the same reason. We note, however, that many models that do screen using

the Vainshtein mechanism (as well as those that predict a mass in the graviton disper-

sion relation such as massive gravity) are severely constrained by the new bounds from

the observation of gravitational waves and photons from GW170817/GRB 170817A

discussed above if they are to simultaneously act as dark energy (Sakstein and Jain

2017; Baker et al. 2017; Ezquiaga and Zumalacárregui 2017; Creminelli and Vernizzi

2017; Crisostomi and Koyama 2018; Langlois et al. 2017). [In the case of massive

gravity, solar system tests are stronger than the LIGO/Fermi bound (Baker et al. 2017)].

The models we will discuss in this review (chameleon/symmetron/dilaton) predict that

cT = c identically and so this bound is irrelevant for them.

Scalar fields with screening mechanisms cannot simultaneously screen and self-

accelerate cosmologically (Wang et al. 2012), but they can act as a dark energy

quintessence field (Copeland et al. 2006), i.e., they require a cosmological constant

term to drive the cosmic acceleration and they are capable of producing deviations

from GR on linear and non-linear cosmological scales as well as astrophysical scales

(see Jain et al. 2013b; Sakstein 2014a, and references therein). In addition to this,

many candidate UV completions of GR such as string theory predict a multitude of

scalars that couple to matter and screening mechanisms are a convenient method of

hiding such additional degrees of freedom. For these reasons, screening mechanisms

are considered interesting and novel paragon for alternative theories of gravity and,

as such, there is an ongoing experimental search for screened scalars. Being designed

to evade conventional tests of gravity, screening mechanisms have inspired novel and

inventive approaches to search for them experimentally. These range from reinterpret-

ing the results of experiments not designed to look for them, to designing instruments

specifically adapted to testing their unique properties, to using astrophysical objects

that have never before been used to test gravity, such as Cepheid stars and galaxy

clusters. In many cases, new and imaginative scenarios have been concocted.

These searches typically use different parametrizations, making them difficult to

compare with one another. The purpose of this review is to collect the state-of-the-

art constraints coming from laboratory and astrophysical tests, and to combine them

into a single parametrization. This not only makes it clear which models are ruled

out by different experiments, but also aides in deciding the optimum search strategy

for exploring the remaining models. In many cases, we will extend the experimental

results to models to which they have not previously been applied.
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This review is organized as follows. In Sect. 2, we will introduce the different

screening mechanisms we will consider in this review, outline their salient features,

and present the parameters we will use to compare constraints. In Sect. 3, we will

discuss how screening works in both astrophysical and laboratory settings. Section 4

contains a brief description of the experiments that have been used to constrain screen-

ing mechanisms, and translates the constraints into our parametrization. The crux of

this review is presented in Sect. 5, where we combine all of the contemporary con-

straints from various experiments into a series of diagrams that show which regions

of parameter space are ruled out, and how different experiments compare in the same

parametrization. We do this for chameleon and symmetron modes. In Sect. 6, we con-

clude by discussing the implications of the constraints for screened modified gravity,

and future prospects for constraining the remaining parameter space.

2 Screening mechanisms

The screening mechanisms that we consider in this review are all specific subsets of

the general scalar–tensor theory

S =
∫

d4x
√

−g

[

R

16πG
−

1

2
∇μφ∇μφ − V (φ)

]

+ Sm[g̃μν, φ], (2.1)

which describes a canonically normalised scalar field φ subject to a potential V (φ)

and conformally (Weyl) coupled to matter through the Jordan frame metric

g̃μν = A2(φ)gμν . (2.2)

It is this non-minimal coupling described by the coupling function A(φ) that results

in deviations from GR.1 In particular, the Einstein frame metric, gμν , is a solution

of Einstein’s equations sourced by both matter and the scalar stress energy tensors,

but matter moves on geodesics of the Jordan frame metric, g̃μν . In what follows, we

work only with the Einstein frame version of the theory. Classically, all observable

quantities will be independent of the choice of frame and our choice of the Einstein

frame is purely for calculational convenience. In the Jordan frame there would be no

direct coupling between the scalar fields and matter, but instead the gravitational action

will depend non-trivially on the scalar field. In this frame matter, particles travel on

geodesics of the Jordan frame metric, but the evolution of the gravitational potentials

is modified by their mixing with the scalar field.

As an example of motion in the Einstein frame, consider a non-relativistic particle

in the Newtonian limit. This particle moves on geodesics of g̃μν and so, defining the

1 Note that one could consider a more general theory where each particle species i is conformally coupled

to a different metric g̃
(i)
μν = A2

i
(φ)gμν although we will not consider such theories here since they are not

well-studied in the context of screened modified gravity. An even more general metric includes disformal

terms g̃μν = A(φ)gμν + B(φ)∂μφ∂νφ (Bekenstein 1993). Constraints on disformal couplings to matter

can be found in Brax and Burrage (2014), Sakstein (2014b), Sakstein (2015), Ip et al. (2015) and Sakstein

and Verner (2015).
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tensor Kα
μν ≡ Γ̃ α

μν − Γ α
μν , the Newtonian limit of the geodesic equation is (Sakstein

2014a; Burrage and Sakstein 2016)

ẍ i + Γ i
00 = −κ i

00 = −
β(φ)

Mpl
∇ iφ, (2.3)

where a dot denotes a derivative with respect to proper time and we have calculated K
i
00

using (2.2) (see Wald 2010; Zumalacárregui and García-Bellido 2014). The coupling

is

β(φ) ≡ Mpl
d ln A

dφ
. (2.4)

The Christoffel symbol Γ i
00 = ∂ iΦN contains the Newtonian force and so we can

interpret

F5 = −
β(φ)

Mpl
∇φ (2.5)

as a new or fifth-force. In this review, we do not consider scalars with non-minimal

kinetic terms which screen through the Vainshtein mechanism.

Another important consequence of the coupling to matter is that the field is sourced

by the trace of the energy-momentum tensor so that its equation of motion is

�φ =
dV (φ)

dφ
−

β(φ)T

Mpl
. (2.6)

Note that T = gμνT μν where T μν = 2/
√−gδSm/δgμν is the Einstein frame energy-

momentum tensor. This is not covariantly conserved (∇μT μν �= 0) because matter

moves on geodesics of g̃; it is the Jordan frame metric T̃ μν = 2/
√

−g̃δSm/δg̃μν that

satisfies ∇̃μT̃ μν = 0. The two are related via T μν = A6T̃ μν (Wald 2010; Sakstein

2014a). For non-relativistic matter, one has2 T = −ρ ≈ −ρ̃ ≈ T̃ , where we have

ignored post-Newtonian terms (Hui et al. 2009; Sakstein 2014b). The equation of

motion is then

2 There are three commonly used densities in the literature: the Jordan frame density ρ̃ = −T̃ 0
0 , the Einstein

frame density ρ = −T 0
0 = A6(φ)ρ̃, and the ‘conserved Einstein frame density’ ρconserved = A(φ)ρ. The

Jordan frame density is the result of statistical physics calculations and it is in this frame that one may specify

an equation of state. The Einstein frame density is what arises naturally in Eq. (2.6) as a result of varying

the action (2.1) and the conserved density is a quantity that is useful in cosmological contexts (Khoury

and Weltman 2004a; Hui et al. 2009; Brax et al. 2012a; Brax and Davis 2012; Brax et al. 2012b; Sakstein

2014a). In particular, the conserved density satisfies a conservation equation that makes the cosmological

equations look similar to those of GR. Since this review is concerned with experimental tests of chameleon

theories, we have opted to work with the Einstein frame density. At the Newtonian level (weak-field limit),

these densities are equivalent (Hui et al. 2009; Sakstein 2014a) and so the choice is somewhat arbitrary,

but we note that one must work with the Jordan frame pressure and density if one is interested in compact

objects such as neutron stars (Babichev and Langlois 2010; Minamitsuji and Silva 2016; Babichev et al.

2016; Sakstein et al. 2017; Brax et al. 2017). We will not consider such objects here.
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�φ =
dV (φ)

dφ
+

β(φ)ρ

Mpl
=

dVeff

dφ
, (2.7)

which defines a density-dependent effective potential3

Veff(φ) = V (φ) + ρ ln A(φ). (2.8)

It is this that governs they dynamics of φ and not V (φ) solely.

In order to classify different screening mechanisms it is instructive to consider the

field profile sourced by a spherical object of mass M and radius R embedded in a

medium of background density ρ0. If the effective potential has a minimum then the

field in this medium will assume the value φ0 = φmin(ρ0) where this is achieved.

Expanding the field about this background value φ = φ0 + δφ, where δφ is the

field sourced by the point mass, and φ0 the uniform background value (i.e. we have

performed a background-object split), we have the equation of motion for a massive

scalar

∇2δφ − m2
eff(φ0)δφ =

β(φ0)ρ(r)

Mpl
, (2.9)

where the effective mass

m2
eff(φ) ≡ V ′′

eff(φ) (2.10)

is the mass of small fluctuations about the minimum of the effective potential. The

scalar potential outside the source is then

δφ =
β(φ0)

4π Mpl

f (M,R)

r
e−meffr , (2.11)

where the undetermined function f (M,R) is a model dependent function of the

source mass parameters. When the source is a point mass one simply has f (M,R) =
M but in general the effective mass may vary inside the object and the object may

have a non-trivial density profile. From Eq. (2.11), it is clear that there are three ways

one can suppress the effects of the scalar. Either

1. The mass meffr ≫ 1 so that the force is short ranged,

2. The coupling to matter β(φ0) ≪ 1, or

3. Not all of the mass sources the scalar field.

3 Several definitions of the effective potential exist in the literature. If one uses the conserved Einstein

frame density then one has Veff (φ) = V ′(φ) + ρ A(φ) (Khoury and Weltman 2004a; Sakstein 2014a).

Furthermore, one often sees the effective potential written as Veff (φ) = V ′(φ) + (A(φ) − 1)ρ (using the

conserved Einstein frame density). This is motivated by models that have A(φ) = 1 + β(φ0)φ/Mpl + · · ·
and the factor of −1 is used to subtract the matter density from the chameleon energy density in order

to avoid double counting in cosmology. [The equation of motion (2.7) which governs the dynamics is

unchanged by including such a factor]. Since we do not consider cosmology here we will not include this

factor.
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Of course, one could simply choose the parameters such that either of the first two

conditions is satisfied but this leads to a trivial situation where the modifications

of gravity are negligible on all scales, and requires fine-tuning the parameters. We

are interested in theories where solar system tests are satisfied trivially but strong

modifications may appear on other scales, producing new and interesting phenomena

that may be relevant to small-scale physics or dark energy and cosmology. Said another

way, we would like to construct theories that exhibit some environmental dependence

of the screening, for example so that conditions 1 or 2 are only satisfied locally. The

density-dependence of the effective potential aids us here because the ambient density

of different objects can vary over many orders of magnitude. For example, there are

29 orders of magnitude separating the mean cosmic density from the density on Earth.

The essence of screening mechanisms is that the effective potential is chosen such

that the minimum is density-dependent so that the field can assume different values in

different environments so that the scalar potential can be dynamically suppressed.

It is possible to construct models with the requisite density-dependent minimum

such that one or more of the conditions above are satisfied. Models that utilize a

combination of the first and third condition are typically known as chameleon models4

(Khoury and Weltman 2004a) and models that utilize the second are known as either

symmetron (Hinterbichler and Khoury 2010) or dilaton models (Brax et al. 2010a).

2.1 Chameleon screening

As remarked above, the chameleon is constructed to give an effective mass that

increases with the density. A wide variety of potentials and coupling functions can

achieve this; here we follow the existing literature and focus on power-law potentials

and exponential couplings,

V (φ) =
Λn+4

φn
, A(φ) = e

φ
Mc , (2.12)

so that the effective potential is then

Veff(φ) =
Λn+4

φn
+ ρ

φ

Mc
, (2.13)

where Mc = MP/β. Theories with Mc ∼ MP , β ∼ 1 have gravitational strength

couplings to matter. The effective potential has a density-dependent minimum given

by

φmin(ρ) =
(

nMcΛ
4+n

ρ

)

1
n+1

. (2.14)

4 Chameleon models were the first example of screening mechanism that screens using this effect. The

scalar blending in with its environment inspired the name.
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Fig. 1 Sketches of the chameleon effective potential for positive n (upper panels) and negative n (lower

panels). The left and right panels show the cases of low and high density environments respectively. The

blue lines show the bare potential and the red lines show the contribution from the coupling to matter. The

black dashed lines show the resultant effective potential, which is the sum of the red and blue lines, and

governs the dynamics of the scalar

The effective mass about this minimum is

m2
eff = V ′′

eff(φ) = n(n + 1)Λn+4

(

ρ

nMcΛn+4

)
n+2
n+1

. (2.15)

For n > −1 this certainly satisfies our requirement that the mass is an increasing

function of the density, with the exception of n = 0, which does not admit a minimum.

Negative even integers, i.e., n = −4,−6,−8, . . . also have this property with the

exceptions n = −1, −2, which do not allow the mass to vary with the density. There

is no minimum when n = −3,−5,−7, . . . and so there are no viable chameleon

mechanism in these cases.

The chameleon mechanism is illustrated in Fig. 1, which sketches the effective

potential, as well as the separate contributions from the bare potential and the matter

coupling, for positive and negative n in both high and low densities. One can clearly

see that the curvature around the high-density minimum is larger than around the low-

density minimum, implying a larger mass for fluctuations. In practice, the difference

can be several orders of magnitude, giving rise to very efficient screening.

Since chameleon models are unable to self-accelerate cosmologically (Wang et al.

2012), one typically adds a cosmological constant to the bare potential in order to

account for dark energy. In this case, one has
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V (φ) = Λ4
DE +

Λn+4

φn
(2.16)

with ΛDE = 2.4 meV. A common origin for the cosmological constant and

the chameleon is an enticing scenario, for example one could have V (φ) =
Λ4 exp(Λ4/φn) (Brax et al. 2004b), and so special attention is often paid to the case

Λ = ΛDE = 2.4 meV.

Another important model is the case n = −4. In this case, the mass-scale Λ that

governs that chameleon self-interactions is absent and one instead has the renormal-

isable potential

V (φ) = Λ4
DE + λcφ

4. (2.17)

One generally expects λc ∼ O(1) to be natural since values larger than this can

give rise to large quantum corrections to the potential and smaller values typically

require some degree of fine-tuning. Comparing with the form of the potential when

n �= 4 one has λc = (Λ/ΛDE)4. Even with this choice of renormalisable potential,

the full chameleon model itself is non-renormalisable because the coupling to matter

introduces higher-order operators of the form

L ⊃ T ln[A(φ)] ∼
(

φ

Mc
+ O

(

φ2

M2
c

)

+ · · ·
)

T . (2.18)

We will discuss this further below.

2.1.1 f (R) models

Theories of gravity where one replaces the Einstein–Hilbert action by a generic func-

tion R, known as f (R) theories (see De Felice and Tsujikawa 2010, for more general

reviews), can screen using the chameleon mechanism, indeed they need to possess a

form of screening mechanism to be compatible with solar system constraints. The first

example of such a model was that of Hu and Sawicki (2007)

S =
1

16πG

∫

d4x
√

−g̃ (R + f (R)) + Sm[g̃]; f (R) = −a
μ2

1 + (R/μ2)−b
,

(2.19)

where a and b and both positive and R = R(g̃). Expanding this action for high

curvatures (R ≫ μ2) one finds that

f (R) = −aμ2 + aμ2

(

R

μ2

)−b

+ · · · (2.20)

so that the theory looks like a cosmological constant with small corrections to GR.

Indeed, one can tune the constants a and b to match with the ΛCDM cosmological

model and one is left with small deviations from GR at the level of cosmological
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perturbations. In the low-curvature regime (R ≪ μ2) the theory behaves like inverse-

power law models where f (R) ∼ (R/μ)−b so that deviations from GR are suppressed.

One can see the chameleon mechanism in action using the equivalence between f (R)

and scalar–tensor theories (Chiba 2003). Introducing the auxiliary field ϕ, a classically-

equivalent action to (2.19) is

S =
1

16πG

∫

d4x
√

−g̃

(

R + f (ϕ) +
d f

dϕ
[R − ϕ]

)

+ Sm[g̃]. (2.21)

One can verify this by varying with respect to ϕ to find ϕ = R on shell, thereby

recovering the action (2.19). Introducing the Weyl-rescaled Einstein frame metric

g̃μν = A2(φ)gμν; A2(ϕ) = 1 +
d f

dϕ
, (2.22)

the action (2.21) can be recast into a scalar tensor theory of the form

S =
∫

d4x
√

−g

[

R

16πG
−

1

2
∂μφ∂μφ − V (φ)

]

+ Sm[e
√

2
3

φ
Mpl ] with (2.23)

V (φ) =
Mpl

2

2

φ f ′(φ) − f (φ)

(1 + f ′(φ))2
, (2.24)

where the canonically-normalised field

φ = −
√

3

2
Mpl ln

(

1 + f ′(ϕ)
)

. (2.25)

The theory is then a chameleon with Mc =
√

6Mpl. The Hu–Sawicki model cor-

responds to a chameleon with n = −b/(1 + b) so that only a narrow range in the

chameleon theory space is covered, i.e, −1 < n < −1/2. The most well-studied

models are b = 1 (n = −1/2) and b = 3 (n = −3/4), although, typically, results are

only quoted for n = 1, and so we will only focus on this model here.

2.1.2 UV properties

Screening relies on the presence of non-linear self-interactions of the scalar field,

and on coupling the scalar to the matter energy momentum tensor. Written in the

Einstein frame, this necessarily introduces non-renormalisible operators, meaning that

additional physics is required in order to UV complete the model (Joyce et al. 2015).

Additionally, we might worry that integrating out physics in the UV changes the form

of the low-energy theory, either rescaling the coefficients, or introducing new terms

into the Lagrangian.

For the theory to be fully predictive, it is important to understand whether the low-

energy theory we study is protected from corrections coming from UV physics. One

commonly used way to estimate the size of these effects is to compute the Coleman–

Weinberg (Coleman and Weinberg 1973) corrections to the scalar mass (Upadhye et al.
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2012a). To do this, one computes the corrections to the scalar mass from scalar fields

running in loops, these loop corrections arise precisely because the scalar field has

non-trivial self interactions in its potential. The Coleman–Weinberg corrections are

found to be at least logarithmically divergent with scale. Even if these corrections to

the mass are assumed to be small at some scale, they may become important at another

scale, or in another environment.

In Upadhye et al. (2012a), the relevance of these corrections for the Eöt-Wash

experiment was computed. With some simple assumptions about the scale at which

the logarithmic terms become important, it was shown that the current constraints

from these experiments are computed in a regime in which the quantum corrections

are indeed under control. However, as the experimental sensitivity improves these

corrections will become more relevant.

Keeping track of the quantum corrections is also important in order to understand

the behaviour of the chameleon in the early universe. In Erickcek et al. (2014, 2013),

it was shown that, with the exception of gravitationally coupled chameleons, it is

not possible to evolve the chameleon through the radiation dominated era without

knowing the UV completion of the model. This is because the decoupling of standard

model particles during this epoch give a large impulse to the otherwise slowly rolling

chameleon field (Brax et al. 2004b). This causes the chameleon scalar to rapidly roll to

the part of the potential where the field’s self interactions are large, and so high energy

quantum fluctuations of the field are excited. It is possible that some non-perturbative

physics could resolve this, but in the absence of a proof of this, we do not know how to

evolve the chameleon model from the early universe to late times in a predictive way.

One model, which can evade this problem, is the case n = −4 due to the absence of a

low-mass scale (that is problematic in the early Universe when energies are typically

high) (Miller and Erickcek 2016).

The most reliable way to compute UV corrections to the low-energy chameleon

model would be to know exactly what the UV-completion of the theory is. A number

of attempts have been made to embed the chameleon mechanism within string theory

(Brax et al. 2004a; Conlon and Pedro 2011; Hinterbichler et al. 2011b; Nastase and

Weltman 2015, 2013), within supersymmetry (Brax et al. 2013b, a), and using non-

canonical kinetic terms (Padilla et al. 2016), but, as yet, no complete theory exists.

2.2 Symmetron screening

The symmetron model does not rely on varying mass, instead, the screening works

by suppressing the coupling to matter in high-density regions. This is accomplished

using Z2 symmetry restoration. The bare potential and coupling function are

V (φ) = −
1

2
μ2φ2 +

λ

4
φ4; A(φ) = 1 +

φ2

2M2
s

(2.26)

so that the effective potential is

Veff(φ) =
1

2
μ2

(

1 −
ρ

μ2 M2
s

)

φ2 +
λ

4
φ4. (2.27)
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Fig. 2 The effective potential

for the symmetron when ρ < ρ⋆

(red, lower) and when ρ > ρ⋆

(blue, upper)

This is Z2 (φ → −φ) symmetric (as are V (φ) and A(φ) individually). The coefficient

of the quadratic term can be either positive or negative depending on the density and,

in particular, there is a critical density

ρ⋆ ≡ μ2 M2
s , (2.28)

where the sign changes. The screening mechanism is best exemplified by examining

the shape of the effective potential sketched in Fig. 2. When ρ < ρ⋆ there are two

degenerate minima at

φ±
min = ±

μ
√

λ

√

1 −
ρ

μ2 M2
s

(2.29)

≈ ±
μ

√
λ

, if ρ ≪ ρ⋆ (2.30)

In this case, the Z2 symmetry is spontaneously broken and the coupling to matter is

β(φ0) =
∣

∣

∣

∣

∣

Mplφ
±
min

M2
s

∣

∣

∣

∣

∣

≈
μMpl

λM2
s

, (2.31)

giving rise to a fifth-force potentially stronger than gravity. When ρ > ρ⋆ the only

minimum is at φ = 0 so that the symmetry is restored and the coupling β(φ0) = 0.

In which case no fifth force can be sourced. One can tune the parameters μ, and λ in

terms of Ms to ensure that ρ⋆ coincides with the present day cosmological density,

or so that the fifth-force is of gravitational strength (Hinterbichler and Khoury 2010;

Hinterbichler et al. 2011a), but we shall not do so here since we are considering a

range of different experimental tests that constrain the parameters in very different

environments and on many different scales.

2.2.1 Generalized symmetrons

The symmetron screening mechanism is by no means reliant on the specific form of

the effective potential (2.27). Indeed, clearly any effective potential of the form
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Veff(φ) = −μ4

(

1 −
ρ

μ4−2n M2n
s

)

φ2n

μ2n
+

φ2m

Λ2m−4
s

, (2.32)

with n < m and n, m ∈ Z
+, exhibits qualitatively similar features to the canoni-

cal symmetron. Such an effective potential can arise through the bare potential and

coupling functions

V (φ) = −
φ2n

μ2n−4
+

φ2m

Λ2m−4
s

; A(φ) = 1 +
φ2n

M2n
s

. (2.33)

First discovered by Brax et al. (2012a, b) using tomographic methods, there has been

little investigation of these models at the present time and so we do not consider them

further here.

2.2.2 Radiatively-stable symmetrons

The symmetron model, as described here, suffers the same UV stability properties as

the chameleon. In particular, that Coleman–Weinberg corrections could dramatically

alter the shape of the potential needed for the symmetron mechanism to work. In

this case, however, the one-loop corrections can also be exploited to give rise to the

screening in a radiatively stable way (Burrage et al. 2016a).

The Coleman–Weinberg model (Coleman and Weinberg 1973) was originally dis-

cussed as a way of using radiative corrections to generate a spontaneous symmetry

breaking transition. The classical model is scale invariant, but the one-loop corrections

generate a scale through dimensional transmutation of the logarithmic divergences.

In the one-field model, higher-order loop corrections become important in the spon-

taneously broken vacuum, but in a multi-field model these can be kept under control

(Garbrecht and Millington 2015), and the one-loop potential can undergo a symmetry

breaking transition whilst the higher-order loop corrections remain small.

The radiatively stable symmetron has a different bare potential to that discussed

above

V (φ) =
(

λ

16π

)2

φ4

(

ln
φ2

m2
−

17

6

)

(2.34)

however, overall the phenomenology this gives rise to is very similar to that of the

standard symmetron.

2.3 Coupling to photons

A conformally coupled scalar field does not have a classical coupling to photons. This

is because the scalar couples to the trace of the energy momentum tensor of the matter

fields, and photons, being relativistic, have a traceless energy momentum tensor. This

is not the end of the story, however, as quantum effects make it easy to generate such a

coupling. One way to do this, is to assume the presence of a new heavy fermion which
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has an electromagnetic charge. Then, an interaction between one conformally coupled

scalar, and two photons can be mediated by a triangle-loop of the heavy fermion. If the

fermion is sufficiently heavy that it can be integrated out, to leave the Standard Model

plus the chameleon as a low-energy effective theory, then the low-energy theory has a

contact interaction between the chameleon and two photons (Brax et al. 2010c). Such

heavy, charged fermions are ubiquitous in theories of physics beyond that Standard

Model, including, string theory, supersymmetry and GUTs. It can also be shown that

the Weyl rescaling that allows us to change from Jordan to Einstein frame, gives rise

to a coupling to photons after quantisation of these fields, this was shown for the

chameleon in Brax et al. (2011b), following earlier work by Kaplunovsky and Louis

(1994) in the context of supersymmetry.

The coupling to photons, which arises in all of these cases, is that of a scalar

axion-like particle

L ⊃
φ

Mγ

Fμν Fμν . (2.35)

(For a symmetron model with Z2 symmetry, the leading coupling would instead be

quadratic in φ.) Here, Mγ is the energy scale that controls the coupling to photons, this

is not necessarily the scale at which the chameleon couples to other matter particles

Mc. The coupling in Eq. (2.35) means that existing constraints on axion-like particles

can be applied to the chameleon, although some care must be taken in doing this

as standard axion-like particles have fixed mass and couplings, and so constraints

from environments of vastly different density can be easily combined. This is not the

case for a screened scalar. This axion-like coupling is not necessary for a screening

mechanism to work, however, it is difficult to forbid such a coupling in a truly quantum

theory. Including the coupling opens new avenues for detecting the chameleon, as

high precision searches for axions and axion-like particles can be exploited to detect

or constrain the chameleon. For example, the interaction in Eq. (2.35) means that

chameleons can be produced through the Primakov effect as photons propagate through

a magnetic field. This underlies a range of different experimental search strategies.

3 Screening

In this section, we discuss screening mechanisms in the context of astrophysical objects

and typical laboratory configurations, and discuss some salient features that are specific

to screening mechanisms.

3.1 Astrophysical screening: the thin-shell effect

Astrophysical objects are typically spherical and so, in this section, we consider the

screening of a non-relativistic, static, spherically symmetric object of mass M, radius

R, and density δρ(r) immersed in a much larger medium with density ρ̄. The total

density is ρ = ρ̄ + δρ. This could represent a star inside a galaxy or a galaxy/dark

matter halo/cluster embedded in the cosmological background, in which case ρ̄ is
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the mean cosmic density. We follow the method of Hui et al. (2009), Davis et al.

(2012), Sakstein (2013, 2014a), and Burrage and Sakstein (2016). (Other derivations

using slightly different procedures recover the same results (Brax et al. 2012b), but

the current astrophysical constraints have been derived using the method we present

here.) Far away from the object, the field minimizes the effective potential so that

one has φ(r) → φ̄ ≡ φmin(ρ̄). Near the object, the equation of motion in Eq. (2.6)

becomes (in spherical coordinates)

∇2φ =
1

r2

d

dr

(

r2 dφ

dr

)

=
dV

dφ
+

β(φ)ρ

Mpl
. (3.1)

One can then envisage two regimes. If the field can reach the minimum of the effective

potential inside the object, then one has V ′
eff(φ) = 0 and the right-hand side of (3.1)

is unsourced so that φ = φmin(ρ) is constant and there is no fifth-force. If instead the

field remains close to φ̄, we can linearise φ = φ̄ + ϕ to find

1

r2

d

dr

(

r2 dφ

dr

)

= m2
0ϕ +

β(φ0)

Mpl
δρ, (3.2)

where m2
0 = V ′′(φ). V (φ) is typically chosen so that φ is cosmologically relevant,

i.e., m0 R ≪ 1 and one can ignore the first term on the right-hand side of (3.2), in

which case one is left with a Poisson equation

1

r2

d

dr

(

r2 dφ

dr

)

=
β(φ̄)

Mpl
δρ. (3.3)

In practice, we expect a hybrid of these two cases where the field sits close to the

minimum of the effective potential at the centre of the object and remains there up

to some radius rs at which it begins to roll towards its asymptotic value and enter the

second regime. There is, therefore, no fifth-force interior to rs; for this reason we will

refer to rs as the screening radius. Outside the screening radius one can integrate (3.3)

once to find

dφ

dr
=

β(φ̄) (M(r) − M(rs))

4π Mplr2
, (3.4)

where

M(r) =
∫ r

0

4πr ′2δρ(r ′) dr ′; M ≡ M(R). (3.5)

The fifth-force (2.5) is then

F5 =
2β2(φ̄)G [M(r) − M(rs)]

r2
. (3.6)
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Fig. 3 The thin-shell effect.

The fifth-force only receives a

contribution from the mass in

the thin-shell rs < r < R

The field equation is only sourced by the density outside the screening radius and so

only the mass exterior to this contributes to the fifth-force. Objects that have rs ≪ R

have

F5

FN
≈ 2β2(φ̄) (3.7)

and are hence unscreened, whereas those for which rs ≈ R have F5/FN ≪ 1 and are

hence screened. In this case, the fifth-force only receives contributions from the mass

in a very thin shell outside the screening radius. This phenomena has been dubbed the

thin-shell effect; we depict this in Fig. 3. Outside the object, the mass term in (3.4) is

more important than the density and one has

F5 =
2β2(φ̄)G [M − M(rs)]

r2
e−meff (r−R). (3.8)

In order to determine whether an object is screened, we must calculate rs. This can

be accomplished by integrating (3.4) from rs (where φ = φs ≈ φmin(ρ)) to ∞ to find

φ̄ − φs =
β(φ̄)M(rs)

4π Mplrs
+

∫ ∞

rs

β(φ̄)M(r ′)

4πr ′2 dr ′. (3.9)

Performing integration by parts and using Eq. (3.5) one finds an implicit relation for

rs

χ ≡
φ̄

2β(φ̄)Mpl

= 4πG

∫ ∞

rs

r ′δρ(r ′) dr ′, (3.10)

where we have ignored φs, since the screening mechanisms always act to push φ to

smaller values inside dense objects. Alternatively, one can use the relation dΦN/ dr =
GM(r)/r to write (3.9) as

χ = −ΦN(rs) − rsΦ
′
N(rs). (3.11)
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Table 1 Astrophysical objects

of interest and their Newtonian

potentials

Object ΦN

Earth 10−9

Moon 10−11

Main-sequence stars (M⊙) 10−6

post Main-sequence stars (1–10M⊙) 10−7–10−8

Spiral and elliptical galaxies 10−6

Dwarf galaxies 10−8

If (3.11) [or, equivalently, (3.10)] has no solution then rs = 0 and the object is

fully unscreened. Given that ΦN < 0 whilst Φ ′
N > 0 there can be no solution when

χ > ΦN = GM/R. Hence, only objects where χ < GM/R can be partially (or

fully for χ ≪ GM/R) screened.

The screening criteria above is particularly useful for determining which astrophys-

ical objects will be partially unscreened and for which range of parameters; one simply

needs to calculate the Newtonian potential. Commonly studied examples are given in

Table 1. In the case of main sequence stars, one can find the Newtonian potential using

the mass-radius relation

M

M⊙
=

(

R

R⊙

)ν

, (3.12)

where ν depends on the type of star in question. In the case of galaxies, one can use

the Virial theorem to calculate the Newtonian potential from the circular velocity:

v2 =
GM

R
. (3.13)

Dwarf galaxies are particularly good probes due to their low Newtonian potentials.

Indeed, many of the astrophysical tests we will discuss below use either dwarf galaxies

themselves or their constituent objects. Setting φ̄ = φ0 the parameter of interest is

χ0 ≡
φ0

2β(φ0)Mpl
. (3.14)

Unscreened dwarf galaxies can then, in theory, test χ0
>
∼ 10−8.

In practice, one also needs to worry about environmental screening. So far, we have

only considered the screening of a single object embedded in a larger background, but

real astrophysical objects are typically not isolated; galaxies are found in clusters and

stars come in pairs or groups. The non-linear nature of the field equations means that

we cannot simply superimpose solutions sourced by different objects to obtain a new

solution. This implies that an object’s environment can affect whether it is screened

or not. The most important example of this is the screening of dwarf galaxies. Taken

in isolation, the Newtonian potential for a dwarf galaxy is O(10−8) but the typical
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potential associated with clusters of galaxies is O(10−4) so that only values of χ0 larger

than this can be tested. The ideal probes are, therefore, dwarf galaxies located in voids

that do not suffer from environmental screening. There has been a great effort towards

determining the criteria for environmental screening (Li et al. 2012; Lombriser et al.

2012a, 2013; Cai et al. 2015). Most of these rely on numerical N-body simulations,

whose description lies outside the scope of this review, but the end result is a screening

map (Cabre et al. 2012) of the local universe that classifies galaxies as either screened,

partially screened, or unscreened. To date, all astrophysical tests using dwarf galaxies

have been taken from this screening map.

Astrophysical tests ultimately end up constraining regions in the χ0–β(φ0) plane.

For our models of interest, one has

β(φ0) =

⎧

⎨

⎩

Mpl

Mc
Chameleons

μMpl√
λM2

s

Symmetrons
, (3.15)

and

χ0 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2

(

Mc

Mpl
2

)
n+2
n+1

(

nΛn+4

3Ωm H2
0

)
1

n+1

Chameleons

1
2

(

Ms
Mpl

)2
Symmetrons

, (3.16)

where we have replaced the cosmic density in φmin(ρ) with 3Ωm Mpl
2 H2

0 .

3.1.1 Screening in f (R) theories

Given that f (R) models only cover a restricted range of n and have a fixed value of

Mc, it is not particularly enlightening to constrain f (R) theories in terms of Λ and

n, even more so, since the cosmological constant is fixed by tuning the parameters

so that Λ = 2.4 × 10−3 eV does not have any special significance. (In this sense,

f (R) theories should be thought of as describing deviations from the ΛCDM model).

Instead, constraints are often quoted in terms of the parameter fR0 = f ′(R0), the

first derivative of f (R) evaluated at the present time in the cosmological background.

The significance of this parameter can be seen by examining the screening in the

f (R) formalism. Consider an object of density ρ0 embedded in the cosmological

background where the Ricci scalar curvature is R0 and the density is ρ0. If one embeds

an object with density δρ into this background, then it will source a Newtonian potential

(g00 = −a2(1 + 2Φ)) and perturb R = R0 + δR, fR = fR0 + δ fR (Schmidt 2010)

such that

∇2Φ =
16πG

3
ρ −

1

6
δR( fR0) (3.17)

∇2δ fR =
1

3
(δR( fR0) − 8πGδρ) . (3.18)
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In the limit where δ fR ≪ fR0, there can be no source for δ fR and one has δR( fR0) =
8πGδρ so that (3.17) becomes ∇2Φ = 4πGδρ. Therefore, in this limit we recover

the Poisson equation and there are no deviations from GR; the fifth force is screened.

In the opposite limit where δ fR ≫ fR0, we can expand δR( fR) ≈ δ fR/ fR R so that

Eq. (3.18) becomes

∇2δ fR = m2
f δ fR −

8πG

3
δρ, m2

f =
1

3 fR R

, (3.19)

which is the equation of motion for a massive scalar with mass m f . On scales shorter

than m−1
f the mass can be ignored and one finds, using (3.17), ∇2Φ = 16πGδρ/3

so that the Newtonian potential is enhanced by a factor of 4/3; the force is fully

unscreened. Note that, in this limit, Eq. (3.18) gives |δ fR | = 2Φ/3 but the maximal

value of δ fR is fR0 so we conclude that objects must be partially screened if fR0 <

2Φ/3. Thus, we see that fR0 is the f (R) equivalent of the χ .

3.1.2 Gravitational lensing: dynamical versus lensing masses

Conformal transformations leave null geodesics unchanged (Padmanabhan 2010)

(g̃μν ẋμ ẋν = A2(φ)gμν ẋμ ẋν = 0) so that photons move on geodesics of both g̃μν and

gμν . This has some novel implications for gravitational lensing by massive bodies.

Expanding the Einstein frame metric in the Newtonian gauge:

ds2 = (−1 + 2ΦN) dt2 + (1 + 2ΨN) dx2, (3.20)

the Jordan frame metric is

ds̃2 =
(

−1 + 2ΦN − 2β(φ̄)
φ

Mpl

)

dt2 +
(

1 + 2ΨN + 2β(φ̄)
φ

Mpl

)

dx2,

(3.21)

where we have set φ → φ̄ + φ and have absorbed factors of A(φ0)
2 into t and x i (see

Sect. 3.2). We can, thus, identify the Jordan frame potentials

Φ̃N = ΦN − β(φ̄)
φ

Mpl
Ψ̃ = Ψ + β(φ̄)

φ

Mpl
. (3.22)

The Newtonian potential, which governs the motion of non-relativistic particles, there-

fore, depends on φ whereas the lensing potential, Ψ , which governs the motion of

photons is

Ψ̃L =
1

2

(

Φ̃N + Ψ̃

)

= ΦN, (3.23)

where we have used the relationship ΨN = ΦN, which is a result of working in the

Einstein frame. For an extended object of mass M, the mass inferred from lensing is
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the true mass M because the Einstein frame potentials satisfy the Poisson equation.

Conversely, the potential governing the motion of non-relativistic objects satisfies

Φ̃ ′
N =

GM

r2
A2(φ̄)

[

1 + 2β2(φ̄)

(

1 −
M(rs)

M

)]

=
GMdyn

r2
, (3.24)

which defines a dynamical mass Mdyn ≥ M with equality for fully screened objects.

The difference between the lensing and dynamical masses is in stark contrast to GR,

and is a particularly useful feature for testing modified gravity using astrophysical

observations.

3.2 Solar-system tests

Classical tests of GR use the PPN formalism applied to solar-system objects and so,

in this section, we will illustrate how these tests apply to screened modified gravity,

and why they yield only weak constraints.

3.2.1 PPN parameters

The PPN metric is both an ansatz (for the possible potentials that could appear in

the metric sourced by a massive body) and a gauge choice. There are 10 parameters

that can be calculated and compared with observations, but only two are relevant for

conformal scalar–tensor theories [disformal theories involve four parameters (Ip et al.

2015]. The PPN metric with these two parameters is (for a spherically symmetric

object of mass M)

g00 = −1 + 2
GM

r
− 2β

(

GM

r

)2

, g0i = 0, and gi j =
(

1 + 2γ
GM

r

)

δi j .

(3.25)

The parameter γ (= 1 in GR) sets the amount of light-bending by massive objects, and

the Shapiro time-delay effect; and the parameter β (= 1 in GR) measures the amount

of non-linearity in the field equations. The term proportional to β is responsible for

the precession of the perihelion of Mercury. Note that the first term in g00 is not free

to vary, this is a gauge choice that implies that G is Newton’s constant as measured in

Cavendish-type experiments.

General expressions for γ and β in screened scalar–tensor theories can be found

in Hees and Fuzfa (2012) and Zhang et al. (2016). It is more instructive, however, to

consider the solution for the fifth-force profile of a static object derived in (3.6). We

will ignore the mass of the scalar for simplicity but including it does not change any of

what follows. The calculation of the fifth-force was performed in the Einstein frame

but the PPN metric is defined in the Jordan frame, since it is the metric that controls

the geodesics of matter and so our task is to calculate the Jordan frame metric given

φ to O(v2/c2) to find γ . The calculation of β is analogous except one continues to
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O(v4/c4); this calculation is long and tedious, and one does not gain any additional

insight. For this reason, we will only calculate γ .

To begin, we summarize our Einstein frame solution. This is

g00 = − 1 + 2
GM

r
, g0i = 0, gi j =

(

1 + 2
GM

r

)

δi j , and

φ =φ̄ − β(φ̄)
M − M(rs)

4π Mplr
, (3.26)

where we have used the fact that F5 = 2β(φ̄)φ′ to find the field profile. Next, we can

expand the metric as

g̃μν = A2(φ)gμν ≈ A2(φ̄)(1 + 2β(φ̄)ϕ)gμν, (3.27)

where ϕ = φ − φ̄. The factor of A2(φ̄) is usually ignored claiming “A(φ̄) ≈ 1,”

but a more correct treatment is to rescale the coordinates such that t → t/A(φ̄) and

r → r/A(φ̄). We also need to rescale the mass M, since this was defined using

Einstein frame coordinates, and Einstein frame densities. Note that one has T̃ μν =
A6T μν , which implies ρ̃ = g̃μν T̃ μν = A4ρ. The mass then needs to be rescaled as

M → A(φ̄)M. Rescaling the mass and the coordinates, the Jordan frame metric is

g̃00 = −1 + 2
A2(φ̄)GM

r

(

1+2β(φ̄)2

[

1 −
M(rs)

M

])

, g̃0i = 0, and (3.28)

gi j =
[

1 + 2
A2(φ̄)GM

r

(

1 − 2β(φ̄)2

[

1 −
M(rs)

M

])]

δi j , (3.29)

where the weak-field limit implies we ignore all higher-order polynomials involving

φ. More correctly, the PPN counting scheme assumes φ ≤ G M/r ∼ v2/c2 and

higher-power terms, and cross terms are, therefore, higher-order.

The Jordan frame metric is not yet in the PPN gauge; we need to rescale

G → GN ≡ A2(φ̄)

(

1 + 2β2(φ̄)

[

1 −
M(rs)

M

])

. (3.30)

This defines Newton’s constant as measured in laboratory experiments. The distinction

between G and GN is not overly important for screened modified gravity because these

experiments are performed deep in the screened regime and G ≈ GN but is crucial for

theories without screening mechanisms. Performing this rescaling, one finds a metric

in precisely the PPN form with (Saaidi et al. 2011; Hees and Fuzfa 2012; Schärer et al.

2014; Zhang et al. 2016; Sakstein 2017)

γ =
[

1 − 2β(φ̄)2

(

1 −
M(rs)

M

)] [

1 + 2β(φ̄)2

(

1 −
M(rs)

M

)]−1

≈ 1 − 4β(φ̄)2

(

1 −
M(rs)

M

)

. (3.31)

123



1 Page 24 of 58 C. Burrage, J. Sakstein

Note that throughout this derivation we have not made use of any screening mecha-

nisms directly, we could have taken any conformal field theory and applied the same

procedure. The novel aspect of screening mechanisms is the non-linearity in the field

equations, which means that instead of having |γ − 1| ∝ 2β2(φ̄), one instead has

|γ −1| ∝ 2β2(φ̄)(1−M(rs)/M) ≪ 2β2(φ̄) in the screened regime. Without screen-

ing mechanisms, we would have to tune β2(φ̄) < 10−5 in order to satisfy the Cassini

bound |γ − 1| < (2.1 ± 2.3) × 10−5 (Fomalont et al. 2009). With screening mecha-

nisms, this bound can be automatically satisfied for screened objects (M(rs) ≈ M(r))

without the need to perform any tunings.

3.2.2 Lensing revisited

The careful reader will now be puzzled by a conundrum. We have already argued in

Sect. 3.1.2 that screened modified gravity (in fact, our derivation above applies equally

to all conformal scalar–tensor theories) does not affect the lensing of light. We have also

argued in this section that the PPN parameter γ �= 1 so that light bending by the Sun

is different than in GR, which implies that the scalar does affect lensing. In fact, both

of these statements are compatible, the difference is merely a choice of coordinates.

In Sect. 3.1.2, we did not fix to the PPN gauge, and so what we called G is not the

same as GN, the value measured in laboratory experiments (although these should be

approximately the same, since we live in a screened environment). In fact, we could

equivalently write Eq. (3.24) as

Φ̃ ′
N =

GNM

r2
. (3.32)

This relation is typically tested using kinematics, i.e., by equating it to v2
c /r , where vc

is the circular velocity. Such a test does not determine the mass, but rather, the product

GNM = GMdyn. If one chooses to set G = GN, then this measurement determines

Mdyn, and one finds that this is larger than M. Alternatively, one could remove G

completely by measuring Ψ̃ = GMlens/r and take the ratio ψ̃/Φ̃N = Mlens/Mdyn =
γ . Only the ratio of the two metric potentials is relevant physically, that is to say, the

amount of gravitational lensing relevant to the force felt by non-relativistic objects.

Whether or not φ directly affects lensing or not is completely a matter of coordinates,

and how one chooses to interpret them.

3.3 Equivalence principle violations

One important feature of screened modified gravity models is that they do not sat-

isfy the equivalence principle. By this, we mean that extended objects with identical

masses but differing compositions will not fall at the same rate in externally applied

gravitational (Newtonian + scalar) fields.5 This can be quantified by considering the

5 Note that point particles do satisfy the equivalence principle because every matter species appearing in

the action (2.1) is universally coupled to the Jordan frame metric and, thus, follow the same geodesics. The

motion of extended objects is governed by energy-momentum conservation and it is here that the difference

arises. See Hui et al. (2009) for an extended discussion of this.
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Newtonian equation of motion for an extended object in external fields Φext
N and φext

(defined in the Einstein frame) respectively

Mr̈ = −M∇Φext
N − Q∇φext. (3.33)

The mass on the left-hand side is the inertial mass of the object, whereas the mass on

the right-hand side is the gravitational mass, which can be thought of as a gravitational

charge (analogous to the electric charge) for the object. Since we are working in the

Einstein frame, these two are equal. The quantity Q is the object’s scalar charge, which

describes its response to the externally applied scalar gradient; one can show that (Hui

et al. 2009)

Q = β(φ0) (M − M(rs)) . (3.34)

This implies that the motion of the object depends on the screening radius, which

in turn depends on the objects internal structure. The equivalence principle is thus

violated for all objects except those that are completely screened (because Q = 0) or

fully unscreened (because rs = 0 and Q = M). This equivalence principle violation

allows for several novel tests that we will discuss below.

3.4 Laboratory screening

Laboratory searches for screened fifth forces, and the particles that mediate them, are

typically performed in a vacuum chamber. Inside this chamber, the position of the

minimum of the effective potential can be different to the minimum of the effective

potential in the walls of the vacuum chamber and its environment. This is the key

difference between screening in the laboratory, and screening in other astrophysical

environments; in a vacuum chamber there is a region of low density surrounded by a

region of higher density.

The behaviour of the field in the experimental apparatus depends on its mass, as

the corresponding Compton wavelength sets the scale over which the field can vary

its value. The field can only change its value from the exterior of the experiment to the

interior of the walls of the vacuum chamber if its Compton wavelength in the walls is

of order the thickness of the walls or smaller. Similarly, the field can only vary its value

from the walls to the vacuum at the center of the chamber if its Compton wavelength

in the chamber is comparable to, or smaller, than the diameter of the chamber.

The chameleon field can vary its mass much more easily than the symmetron, and as

a result laboratory tests constrain a much broader range of models for the chameleon. If

the symmetron mass is too small it will not be able to vary its VEV over the scale of the

experiment. In this case, there are no field gradients in the experiment, and no resulting

fifth forces, so no constraints can be placed. As the symmetron mass increases the vev

starts to vary within the experiment, and a fifth force is present, however this fifth

force may then be exponentially suppressed by the Yukawa term e−mr , where m is the

mass of the symmetron in the vacuum. In general, therefore, laboratory experiments
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will only constrain a small range of symmetron masses (Upadhye 2013; Burrage et al.

2016b; Brax and Davis 2016).

The chameleon field can vary more easily in a laboratory vacuum, and therefore is

much more amenable to laboratory constraints. Over a wide range of the chameleon

parameter space, the chameleon will not be able to reach the value that minimises

its potential in the interior of the vacuum chamber, and instead it will evolve to the

value that sets its mass to be of order the size of the chamber. Once the corresponding

Compton wavelength becomes smaller than the size of the chamber, the field is able

to reach the minimum of its effective potential.

If the experiment is performed in a sufficiently small region at the center of the

vacuum chamber, then we can assume that the background value due to the vacuum

chamber is constant. Then, the screening condition simplifies. A sphere at the center

of the vacuum chamber will be screened if there is a solution for the screening radius

rs > 0 to

1 −
r2

S

R2
=

(

Mc

MP

)2 8π M2
P R

Mobj

(

φvac − φmin(ρobj)

M

)

, (3.35)

where Mobj is the mass of the sphere, R its radius and ρobj its density. φvac is the

background chameleon value due to the vacuum chamber. The right-hand side of this

can be viewed as the ratio of the chameleon to Newtonian potentials at the surface of

the object; this relation can be found by evaluating Eq. (3.10) for a sphere of constant

density.

Clearly determining both the background value of the scalar field and the condition

for screening becomes more complicated for non-spherical geometries, and in these

cases, numerics are needed to place definitive constraints. However, the principles

described here will still guide the shape of the field profile and the conditions for

screening.

Laboratory searches for fifth forces are performed with both classical and quan-

tum experiments. To determine the condition for screening in a quantum experiment

requires a little more thought. If the experiment is sufficiently low energy that the inter-

nal structure of the source is not disrupted, it must still be checked how the chameleon

screening condition is affected by the delocalisation of the object’s center of mass

(Burrage et al. 2015). The chameleon can respond to changes in the position of the

source on timescales on the order of 1/meff(φvac), and a delocalised source can be con-

sidered to fluctuate around with a time-scale Rtrap/v, where Rtrap is the spatial extent

of the trapping potential, and v is the velocity of the particle. If (v/Rtrap) < mvac,

the chameleon field can respond to the quantum fluctuations of the object and, there-

fore, it is the object’s density and size that determine whether the object is screened,

regardless of the uncertainty on its center-of-mass position. Otherwise, the chameleon

cannot respond to the fluctuations in the position of the source, and the relevant density

in the screening condition is ψ̄objψobj, where ψobj is the wavefunction of the object

(Burrage et al. 2015).
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3.5 Screening in the Jordan frame

In this review, we will work exclusively in the Einstein frame but, for completeness, and

because it has received little attention in the literature, we will discuss how screening

works in the Jordan frame. We will follow the notation of Hui et al. (2009), who have

provided the most comprehensive treatment to date,6 although we will not perform the

full Einstein–Infeld–Hoffmann approach for extended objects, instead, we will work

with the one-body problem to be consistent with our analyses above. Written in the

Jordan frame, the action (2.1) is

S =
∫

d4x
√

−g̃

[

Mpl
2

2A2(φ)
R̃(g̃) −

k(φ)

2
∂μφ∂μφ −

V (φ)

A4(φ)

]

+ Sm[g̃μν], (3.36)

where

k(φ) =
1

A2(φ)

[

1 + 6Mpl
2

(

d ln A

dφ

)2
]

. (3.37)

In the Jordan frame, the matter is minimally coupled to g̃μν but the scalar has a non-

canonical kinetic term, is non-minimally coupled to R, and the scalar potential is

VJ(φ) = V (φ)/A4(φ). The scalar equation of motion is

k(φ)�φ +
dk

dφ
∂μφ∂μφ −

dVJ

dφ
+

1

2

dA−2(φ)

dφ
R̃ = 0. (3.38)

Since the Ricci scalar appears in this equation, we also need the Einstein equations,

which are

Gμν =
A2(φ)

Mpl
2

[

T̃m μν + k(φ)∂μφ∂νφ − gμν

(

k

2
∇αφ∇αφ + VJ(φ)

)

+
(

∇μ∇ν − gμν�
)

A−2

]

. (3.39)

Taking the trace of this, one finds

R̃ = −
A2(φ)

Mpl
2

[

T̃m − k∂αφ∂αφ + VJ + 3�A−2(φ)

]

, (3.40)

which can be used to eliminate R̃ in Eq. (3.38). These equations are complicated, but

they simplify significantly in the Newtonian (weak-field) limit. As discussed by Will

(2004); Ip et al. (2015), the expansion parameter in the Newtonian limit is v2/c2 (or

6 Note that our conventions differ from theirs. They use tildes to refer to Einstein frame quantities, whereas

we use them to refer to Jordan frame quantities and their function Ω(φ) is related to our coupling function

via Ω(φ) = A−1(φ).
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G M/R, the Newtonian potential) and one should take φ ∼ v2/c2 or smaller. In this

case, one has

An(φ) ≈ 1 +
nβ(φ0)φ

Mpl
, VJ (φ) ≈ V (φ), ∂αφ∂αφ ∼ O

(

v4

c4

)

, and T̃m ≈ −ρ̃,

(3.41)

where we have neglected terms at higher-order than v2/c2 and possible time-

derivatives of the asymptotic field. We remind the reader that ρ̃ ∼ v2/c2 is the Jordan

frame density. In the weak-field limit, we can therefore ignore all factors of k(φ), since

they multiply terms that are higher-order than v2/c2.7 We may ignore this contribu-

tion. With these approximations, one has R̃ ≈ −T̃m/Mpl ≈ ρ̃/Mpl
2 so that Eq. (3.38)

becomes (sending � → ∇2 as time-derivatives are of order v/c in the Newtonian

limit)

∇2φ =
dV (φ)

dφ
+

β(φ0)ρ̃

Mpl
. (3.42)

This is none other than Eq. (2.7) (the Einstein frame scalar equation of motion) with

the Einstein frame density replaces by the Jordan frame density. In fact, since T̃
μν
m =

A−6T
μν
m one has T̃m = A−4Tm so that ρ̃ = ρ +O(v4/c4). The equation of motion for

the scalar is therefore identical in both frames in the weak-field limit. Non-relativistic

screening, which is all we are concerned with in this review, therefore works identically

in both frames.

In order to find the fifth-force, one can perform the Weyl-rescaling g̃μν = A2(φ)gμν

[taking the weak-field limit (3.41)] on Eq. (3.20) to find

ds̃ =
(

−1 + 2Φ + 2
β(φ0)φ

Mpl

)

dt2 +
(

1 + 2Ψ − 2
β(φ0)φ

Mpl

)

δi j dx i dx j (3.43)

so that the Jordan frame potentials are

Φ̃ = Φ +
β(φ0)φ

Mpl
and (3.44)

Ψ̃ = Ψ −
β(φ0)φ

Mpl
. (3.45)

In the weak-field limit, the force is

F = −∇Φ̃ = −∇Φ −
β(φ0)

Mpl
∇φ. (3.46)

7 Technically one does have an O(1) contribution to k(φ) ≈ 1 + 6Mpl
2/M2 which can be ≫ 1 for

some values of M considered here. In fact, it should be the canonically normalized field, ϕ =
√

k(φ)φ ∼
O(v2/c2) (at this order), which is why we can neglect this contribution.
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The second term is the fifth force, which is identical to the total force calculated in the

Einstein frame.

4 Experimental tests

In this section, we summarize the present experimental tests of chameleon and

symmetron screening, which range from particle-collider and precision-laboratory

experiments to astrophysical tests using stars and galaxies.

4.1 Fifth-force searches

Fifth-force searches aim to directly measure the force between two objects and search

for deviations from Newton’s law. The experiment is performed inside a vacuum

chamber to reduce noise, and the geometry of the experiment is designed to minimize

the Newtonian force. Recently, some experiments have been designed specifically for

the task of searching for chameleons, either by adapting the geometry to maximize

the chameleon force, or by varying the density inside the vacuum chamber. Typically,

scales of order µm or greater are probed.

4.1.1 Torsion balance experiments

Torsion balance experiments typically consist of one mass that acts as a pendulum

suspended above a second that sources a gravitational field and acts as an attractor.

The two masses are arranged in a manner that cancels the inverse-square contribution

to the total force so that the experiment is sensitive to any deviations.

The state-of-the-art in torsion balance tests is the Eöt-Wash experiment (Adelberger

et al. 2003; Kapner et al. 2007; Lambrecht et al. 2005), which uses two circular disks

as test-masses. The disks have holes bored into them which act as missing masses,

giving rise to a net torque due to dipole (and higher-order multipole) moments. The

upper disk is rotated at an angular velocity such that the contribution from any inverse-

square forces to the torque is zero and, therefore, any residual force is non-Newtonian.

The absence of any such forces places strong constraints on non-inverse-square law

modifications of gravity. This includes any scalar–tensor theory where the field is

massive, including Yukawa interactions, and chameleons.

In order to reduce electromagnetic noise, the pendulum and attractor are coated in

gold and a beryllium-copper membrane is placed between them. This poses no addi-

tional problems for linear theories such as Yuakawa forces, but does present several

technical complications for chameleon theories. The membrane may or may not have a

thin shell depending on the parameters under study, and the highly non-linear nature of

the field equations make the theoretical modelling of this non-symmetric system diffi-

cult. Over time, several works have appeared with the aim of improving the accuracy

of the theoretical calculation of the chameleon torque (Brax et al. 2008; Adelberger

et al. 2007; Mota and Shaw 2006, 2007; Upadhye 2012b), the most recent being the

work of Upadhye (2012a), which uses the so-called one-dimensional plane-parallel

approximation to include the effects of the missing masses on the chameleon force
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profile. A similar effort has been undertaken for symmetron models, with the most

stringent constraints presented in Upadhye (2013).

4.1.2 Casimir-force tests

The Casimir force (or Casimir–Polder force) is a prediction of quantum electrody-

namics. Classically, two uncharged parallel plates placed in a vacuum would source

no electromagnetic fields and, therefore, would feel no force; quantum mechanically,

they interact with virtual photons of the vacuum resulting in a net force that can be

interpreted as being due to the zero-point energy of the field between the plates. This

force scales as d−4 (d is the distance between the plates) and is hence sub-dominant

to the Newtonian force except at small separations.

This intriguing force has inspired several experiments to measure it, many of which

operate at sub-mm (and even sub-micron) distances (Lamoreaux and Buttler 2005;

Lambrecht and Reynaud 2011). A chameleon force (per unit area) between the two

plates would scale as (Mota and Shaw 2007; Brax et al. 2007b; Brax and Davis 2015)

Fcham

A
∝ d− 2n

n+2 , (4.1)

which always scales with a power ≥ −4 (the bound is saturated when n = −4). This

would dominate over the Casimir force at large separations and, therefore, the absence

of any deviation from the Casimir prediction can constrain chameleon models.

In practice, it is difficult to keep the plates perfectly parallel, and very smooth

plates are required for high-precision results. A more convenient scenario is the case

where one of the plates is replaced by a sphere whose radius is larger compared with

the separation. In this case, the Casimir force scales as d−3 and the chameleon force

would scale as

Fcham

A
∝ d

2−n
n+2 . (4.2)

Again, this power is always ≥ −3.

The current generation of Casimir force experiments place strong constraints on

n = −4 and n = −6 chameleon models when Λc is fixed to the dark energy scale.

The constraints on other models are not presently competitive with other experiments

discussed in this review. The next generation of experiments will use larger separations

where the chameleon force is more pronounced (Lambrecht et al. 2005; Lamoreaux

and Buttler 2005) so more stringent constraints on a broader class of models are

expected.

Interestingly, experiments such as these can be adapted to the chameleon’s unique

properties because one can vary the density of the partial vacuum inside the chamber

where the experiment operates. By changing the pressure of the ambient gas, one can

look for a density-dependent change in the force, which would be a smoking gun of

chameleon models (Brax et al. 2010b; Almasi et al. 2015).
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At the present time, Casimir force experiments have not been applied to symmetron

models, mainly due to the lack of any theoretical calculations of the symmetron force

between objects of different geometries.

4.1.3 Levitated microspheres

A recent addition to the fifth-force hunter’s arsenal, optically-levitated microspheres

are capable of probing forces <
∼ O(10−8 N) (Geraci et al. 2010). The spheres have

radii of O(µm) and, in the context of chameleon models, they would, therefore, be

unscreened when Λc ≥ 4.6 meV (a factor of two above the dark energy scale). The

spheres are held in an upward pointing laser beam trap by virtue of radiation pressure

so as to counteract the Earth’s gravity; any anomalous motion would then be due to

non-gravitational interactions. In the case of chameleon models, a microsphere held

in a chameleon gradient would experience a additional force given by

F = λ

(

ρ

Mc

) ∫

sphere

d3x
∂φ

∂z
, (4.3)

where z is the vertical direction and the sphere’s density ρ is assumed to be constant.

The parameter λ is the scalar charge of the sphere. When the sphere is unscreened,

which is the case for Mc
<
∼ 1010 TeV, the chameleon force is unsuppressed and λ = 1.

When the sphere has a thin shell, one has λ < 1 and the constraints are not as stringent

in this regime.

An experiment measuring forces using levitated microspheres has recently been

applied to chameleon models resulting in new constraints on n = 1 models (Rider

et al. 2016); other models have yet to be considered. Constraints on symmetron models

are not currently competitive with other experiments (Burrage et al. 2016b).

4.2 Precision atomic tests

Precision atomic tests search for corrections to the structure of hydrogenic atoms by

looking for non-standard perturbations to the Hamiltonian. In the case of chameleons,

electrons would feel a chameleon potential in addition to the Coulomb potential given

by

δH =
me

Mc
φN, (4.4)

where φN is the chameleon field sourced by the nucleus. Since the vacuum chamber

shields the experiment from the effects of the external field, chameleons with strong

couplings to matter can be probed by looking for the shifts in the atomic energy levels

due to this perturbation. In particular, this shielding implies that the nucleus is fully

unscreened so that the shifts to the lowest energy levels are (Brax and Burrage 2011)

ΔE1s = −
Zm N me

4πa0 M2
c

(4.5)
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ΔE2s = ΔE2p = −
Zm N me

16πa0 M2
c

, (4.6)

where Z is the atomic number, m N is the nucleon mass, and a0 is the Bohr radius. The

potential coupling of the chameleons to photons will break the degeneracy between

the 2S and 2P levels.

Presently, the 1S–2S transition in atomic hydrogen is the best constrained, having

a total uncertainty of 10−9 eV (at 1σ ) (Jaeckel and Roy 2010; Schwob et al. 1999;

Simon et al. 1980). The excellent agreement with standard atomic theory constrains

the chameleon coupling

Mc
>
∼ 10 TeV. (4.7)

The effects of symmetron models on atomic transitions has yet to be investigated,

although the Z2 means that the effective interaction with nucleons and electrons is

higher-order i.e.

L ⊃ me

φ2

2M2
s

ēe, (4.8)

so that one would not expect this test to be as constraining.

4.3 Atom interferometry

Atom interferometry is a hybridization of classical interferometric experiments and

quantum mechanical double slit experiments. Atoms can be put into a superposition

of two states, which travel along different paths and hence act like the arms of an

interferometer. The two paths can be recombined later to produce an interference

pattern that can be measured.

The atoms can be moved within the interferometer by shining laser light on them.

If an atom absorbs a photon, it will be excited into a higher energy state and acquire

the photon’s momentum, resulting in some linear motion. In the absence of any obser-

vation, the atom is in a superposition of the ground state (where it is stationary) and

an excited state (where it is in motion). The atom can be put into a superposition of

states that travel along different paths by repeating this process several times.

The probability of measuring the atom in an excited state at the output of the

interferometer is a function of the difference in phases accumulated by the wave

functions on the two paths. If the atom is moving in an external force field that causes

some constant acceleration a then this probability is

P =∝ cos2

[

akT 2

h̄

]

, (4.9)

where k is the photon momentum and T is the duration of the experiment.

A massive object placed inside the vacuum chamber will source a gravitational

field that contributes to a. If, in addition to this, the object sources a chameleon field
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then this too contributes and the probability of measuring excited atoms is sensitive to

it. Since atoms placed in vacuum chambers are unscreened over a large range of the

parameter space, this experiment is incredibly sensitive to chameleon and symmetron

forces (Burrage et al. 2015; Burrage and Copeland 2016; Elder et al. 2016). Indeed, the

first generation of atom interferometry experiments designed to test screened modi-

fied gravity was able to constrain any anomalous acceleration down to levels of 10−6g

(g ≡ G M⊕/R⊕ is the gravitational acceleration at the surface of the Earth), placing

new constraints on chameleons and symmetrons that vastly reduced the viable param-

eter space (Hamilton et al. 2015; Burrage et al. 2016b). The current generation of

experiments has constrained this further to � 10−8g, reducing the parameter space

further (Jaffe et al. 2017).

4.4 Precision neutron tests

Neutrons are perfect objects for testing short-range gravitational physics because they

are electrically neutral and are, therefore, not sensitive to electromagnetic noise such

as background fields and van der Walls forces.8 This has motivated a recent interest in

using neutrons to test chameleon models, which we summarize below. At the present

time, all of the constraints derived using neutron experiments fix Λc to the dark-energy

scale.

4.4.1 Ultra-cold neutrons

It is possible to arrange for neutrons produced in nuclear reactors to bounce above a

mirror. These neutrons interact with the Newtonian potential of the Earth leading to a

quantized energy spectrum. The mirror itself could source a chameleon field, which

would act as a perturbation to the neutron Hamiltonian given by (Brax and Pignol

2011; Ivanov et al. 2013)

ΔH =
m N

Mc
φ =

2.2 keV2

Mc

(

z

82 µm

)

, (4.10)

where z is the distance above the mirror. If this perturbation were large enough, new

bound states would appear in the spectrum. No such states have been observed by a

qBounce experiment at the Institut Laue–Langevin in Grenoble, which immediately

places a new constraint (Brax and Pignol 2011)

Mc > 104 TeV. (4.11)

Away from this regime, the perturbation (4.10) leads to a shift in the energy levels.

This can be probed using resonance spectroscopy, the most constraining transition

8 Atoms are neutral as well but one advantage of neutrons is that their polarizability is 15 orders of magnitude

smaller, making van der Waals forces less of a background. We are grateful to Tobias Jenke for pointing

this out to us.
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being |3〉 → |1〉. The absence of any observed shift leads to the stronger constraint

(Jenke et al. 2014)

Mc > 1.7 × 106 TeV (4.12)

for n = 1. In this review, we use the most up to date (at the time of writing) constraints

given in Cronenberg et al. (2015).9

Bouncing neutron techniques have not yet been applied to symmetron models. The

effective interaction for these models would be

m N

φ2

M2
s

n̄n, (4.13)

and so one may expect a similar issue to testing symmetrons using precision atomic

tests i.e. the higher-order nature of the interaction means that it would be naturally

suppressed, leading to weaker constraints than chameleons.

4.4.2 Neutron interferometry

In an analogous manner to optical interferometry, a coherent beam of neutrons can be

split and later recombined to produce interesting interference patterns (Pokotilovski

2013; Brax et al. 2013c). A mono-silicone crystal plate can be used for this purpose.

The proposal for testing chameleons using this technique is to introduce a cell

composed of two parallel plates into the path one of the beams. A chameleon profile

will develop between the two plates leading to a phase shift for the neutrons given by

(Brax et al. 2013c; Brax 2014)

δϕ =
m2

N

h̄2k Mc

∫ d

−d

φ(x) dx, (4.14)

where x is the horizontal direction and the plates are located at x = ± d. This

phase shift is maximum if the plates are in vacuum (or, rather, a partial vacuum) but

diminishes if one were to inject gas at a higher density due to the suppression of the

chameleon field. Such an experiment has been performed by two groups (Lemmel

et al. 2015; Li et al. 2016), who report consistent bounds in the range

M > 107–108 TeV (4.15)

for models with 1 ≤ n ≤ 6, with stronger bounds being obtained for lower n.

4.5 Astrophysical tests

In this section, we describe tests of chameleon and symmetron models using astro-

physical objects. In many cases, the constraints are phrased in terms of χ0 and β(φ0)

9 We thank Tobias Jenke for providing us with the numeric values.
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and so the specific model is not important. We will not include bounds from binary

pulsars since they are uncompetitive and subject to astrophysical uncertainties to do

with the screening level of the Milky Way (Brax et al. 2014; Zhang et al. 2017).

4.5.1 Distance indicator tests

Determining the distance to astrophysical objects is a notoriously difficult task because

only the flux of emitted photons, can be measured. Since this depends on both the

distance and the absolute luminosity of the source via

F =
L

4πd2
, (4.16)

some knowledge of the luminosity L is needed to infer the distance. Distance indicators

are objects with some intrinsic or empirical relation between their luminosity and

other observable properties. One famous example are type-Ia supernovae, where the

luminosity can be found by fitting their light curve, making them standard candles.

In the context of modified gravity, it is possible that the relation used to determine

the luminosity is sensitive to gravitational physics. If the relation has been calculated

using general relativity, or has been determined empirically using local (screened)

observations, then it will give incorrect distances when applied to unscreened galaxies.

In contrast, relations that are insensitive to the theory of gravity will always give the

correct distance. Comparing how well different distance estimates to theoretically

unscreened galaxies agree can therefore yield new constraints.

One robust distance indicator that is not sensitive to screened modified grav-

ity is the tip of the red-giant branch (TRGB). Low-mass post-main-sequence stars

(M⊙ <
∼ M <

∼ 2M⊙) in the process of ascending the red-giant branch (RGB) consist

of an isothermal helium core surrounded by a thin hydrogen-burning shell. The hydro-

gen in this shell is continually processed into helium that is deposited onto the core,

causing its temperature to rise steadily as the RGB is ascended. When the temperature

is sufficiently high, the triple-α process (core helium burning) can proceed efficiently,

at which point the star moves to the asymptotic giant branch in a very short time-scale.

This leaves a visible discontinuity in the I-band. The discontinuity occurs at fixed

luminosity [I = 4.0 ± 0.1, the error is due to a very weak metallicity dependence

(Sakai 1999; Freedman and Madore 2010; Beaton et al. 2016)], making the TRGB a

standard candle. Importantly, the physics of the helium flash is set by nuclear physics

and is non-gravitational in origin, elucidating our earlier assertion that this distance

indicator is insensitive to modified gravity.10

Cepheid variable stars are distance indicators that are sensitive to modified gravity.

With masses between 4 and 10M⊙, these stars enter a phase where their structure is

dominated by semi-convection—a convective process driven by inverse-gradients in

10 Technically, this is only the case when χ <∼ 10−6, corresponding to parameters where the hydrogen

burning shell becomes unscreened. When this happens, the core temperature increases at a faster rate leading

to a reduction of the tip luminosity because the star has less time time to ascend the RGB. We will see

shortly that χ > 10−6 can be ruled out by other, independent means and so we will not dwell on this too

much here.
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the chemical composition—shortly after ascending the RGB, resulting in large tem-

perature increases with a relatively small change in luminosity. This results in so called

blue loops in the Hertzprung–Russell (or color-magnitude) diagram. Whilst traversing

the blue loop, the star crosses the instability strip where it is unstable to pulsations

due to the presence of a layer of doubly-ionized helium.11 Cepheids pulsate with a

well-measured period-luminosity relation (PLR), where the period Π ∝
√

R3/GM.

This relation is, therefore, different in unscreened galaxies and, in particular, if one

applies the locally measured formula to an unscreened galaxy one under-estimates the

distance by a factor

Δd

d
≈ −0.3

ΔG

G
. (4.17)

The screening mechanisms above can therefore be tested by comparing TRGB and

Cepheid distances to unscreened galaxies. Jain et al. (2013a) have done precisely this

for a sample of 25 galaxies taken from the screening map (Cabre et al. 2012). They

also compared distances to a similar sample of screened galaxies as a control set.

They found a similar agreement and scatter in both cases, and a χ2-fit to both GR and

modified gravity models yielded constraints12 in the χ0–β(φ0) plane that we translate

into chameleon, symmetron, and f (R) parameters in Sect. 5.

4.5.2 Rotation-curve tests

The circular velocity of objects orbiting the center of galaxies is given by

v2
c =

GMgal(r)

r2

(

1 + 2β(φ0)
Q

M

)

, (4.18)

where the scalar charge Q is defined in Eq. (3.34) and Mgal(r) is the galactic mass

enclosed by r . If 10−8 <
∼ χ0

<
∼ 10−6, then dwarf galaxies are unscreened but their

constituent stars are not because their Newtonian potential allows them to self screen

(see Table 1). Stars in unscreened dwarf galaxies therefore have Q/M = 0. In contrast,

diffuse hydrogen gas with ΦN ∼ 10−11–10−12 cannot self-screen and has Q/M =
β(φ0). Assuming that the galaxy is completely unscreened, the ratio of the circular

velocity of stars and gas is then

vc, gas

vc, ⋆

=
√

1 + 2β2(φ0), (4.19)

implying that the galactic rotation curve measured using stellar observations will

disagree with the rotation curve measured using observations of the interstellar gas.

This is a direct consequence of the equivalence principle violation (i.e. Q �= M).

11 This has the result that small compressions result in an increased opacity that in turn causes an increase

in the energy absorbed. The energy dammed up by this compression drives the pulsations. This is known

as the κ-mechanism.

12 Metallicity and other corrections produce a positive Δd/d, which makes the constraints even stronger.

123



Tests of chameleon gravity Page 37 of 58 1

Measurements of the galactic rotation curves typically use either Hα emission or the

21-cm line, both of which probe the gaseous component. An alternate but less prevalent

method involves measuring the Mgb triplet lines, which are due to absorption in the

atmosphere of K- and G-stars (0.45M⊙ <
∼ M <

∼ 1.2M⊙). At present, the screening

map contains six unscreened dwarf galaxies, for which both Mgb and either Hα or

21-cm data (or both) are available. Using this, Vikram et al. (2014) have reconstructed

both the gaseous and stellar rotation curves, and have used them to test the prediction

(4.19) using a separate χ2 fit for each galaxy. This has placed new constraints in the

χ0–β(φ0) plane, which are comparable with the Cepheid bounds.

4.5.3 Galaxy clusters

The predicted difference between the dynamical and lensing masses discussed in

Sect. 3.1.2 can be tested using observations of galaxy clusters, for which there is a

wealth of X-ray and weak-lensing data available. The X-ray brightness temperature is

a measure of the mass of the hot gas in the intra-cluster medium, which is in hydrostatic

equilibrium and hence satisfies13

dP

dr
= −

GMdynρ

r2
. (4.20)

X-ray observations, therefore, probe the dynamical mass, whereas weak lensing probes

the lensing mass, so comparing the two places new constraints on screening. This was

first done by Terukina et al. (2014) using observations of the Coma cluster to find

the new constraint fR0 < 6 × 10−5. Wilcox et al. (2016) subsequently applied the

same methodology to a sample of 58 clusters using X-ray data from the XMM Cluster

Survey and weak-lensing data from CFHTLenS to obtain further constraints on more

general chameleon models.

4.6 f (R) specific tests

In this section, we will briefly summarize tests that have been specifically designed

to test the Hu and Sawicki (2007) f (R) theories discussed in Sect. 2.1.1. Note that,

since these theories correspond to chameleons with −1 < n < −1/2, many of these

tests are unconstraining for more general chameleon models. Similarly, specific tests

are needed to target this parameter range. Note also, that f (R) models are designed

to be cosmologically relevant, and so the majority of the tests discussed here are

astrophysical in nature. In what follows, we will only focus on b = 1 (n = −1/2)

models because the majority of tests have reported constraints for this model only.

Larger values of b are more readily screened and so one would expect the constraints

to be weaker. Note that some tests mentioned above report bounds on fR0. We will not

13 This assumes that the gas entirely supported by thermal pressure. In practice, one expects a small amount

of non-thermal pressure but N-body simulations of chameleon theories have shown this to be negligible

(Wilcox et al. 2016).
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repeat that discussion here. A full list of constraints on fR0 can be found in Table 1

of Lombriser (2014).

4.6.1 Solar-system bounds

One can solve the field equations sourced by the Sun to find a bound on the the value

of f
gal
R = d f (R)/ dR(ρgal) (defined as d f (R)/ dR at the Milky Way density) (Hu

and Sawicki 2007)

f
gal
R = (γ − 1)

GM⊙
R⊙

<
∼ 4.9 × 10−11, (4.21)

where γ is the Eddington light-bending parameter in the PPN formalism. Relating the

galactic density to the cosmological density (ρgal = 10−24 g cm−3) one finds

fR0 < 74(1.23 × 106)b−1

[

R0

μ2

Ωmh2

0.13

]−(b+1)

, (4.22)

which gives fR0
<
∼ 0.03 for b = 1.

4.6.2 Strong gravitational lensing

Another method to probe the predicted discrepancy between the dynamical and lensing

mass of an object is to use strong lensing by individual galaxies. In this case, one can

use the stellar dispersion relation to calculate the dynamical mass. Smith (2009) has

performed such a test for a sample of galaxies from the Sloan Lens ACS (SLACS)

survey and find a constraint fR0 < 2.5 × 10−6.

4.6.3 Cluster density profiles

N-body simulations of f (R) gravity have repeatedly predicted an enhancement in the

dark matter halo density profiles around the virial radius compared with GR (Schmidt

et al. 2009a; Schmidt 2009). This is an artefact of the late-time unscreening in f (R)

models. The center of the galaxy is largely unaffected because it is both screened

and formed earlier when the screening was more efficient. In contrast, there is a

pile-up of mass in the outer regions, which form at later times, due to the weaker

screening. Lombriser et al. (2012b) has used weak lensing data for the Max-BCG

galaxy cluster sample from the SDSS to probe this potential novel feature, finding a

constraint fR0 < 3.5 × 10−3.

4.6.4 Cluster abundances

The statistics of galaxy clusters is very sensitive to the theory of gravity. For f (R)

theories, the enhanced gravitational force results in a higher abundance of rare massive

clusters compared with GR (Schmidt et al. 2009a) meaning the halo mass function is
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modified. Making quantitative theoretical predictions for this requires knowledge of

physics deep within the non-linear cosmological regime and so N-body simulations

and spherical collapse halo models calibrated on them are required in order to make

quantitative predictions.

The first bound obtained by looking at cluster abundances yielded fR0 < 1.2 ×
10−4 (Schmidt et al. 2009b). This was obtained by using X-ray inferred clusters in

combination with a variety of different cosmological datasets available at the time.

A stronger bound fR0 < 1.6 × 10−5 has subsequently been obtained by Cataneo

et al. (2015) using a full MCMC analysis of the cluster likelihood function for updated

datasets from more recent cosmological surveys.

4.6.5 Cosmic microwave background

Modifications of GR change the structure of the equations describing linear cosmo-

logical perturbations, and can hence effect the cosmic microwave background (CMB)

(Zhang 2006; Song et al. 2007; Dossett et al. 2014). Updating various CMB codes to

include the effects of f (R) gravity, several groups have all obtained a similar bound

fR0 < 10−3 (Song et al. 2007; Dossett et al. 2014; Raveri et al. 2014; Cataneo et al.

2015).

4.6.6 Scalar radiation

As was first pointed out by Silvestri (2011), pulsating stars should source scalar radi-

ation and hence lose energy over time. If too much scalar monopole radiation (which

is absent in GR) is emitted, then the pulsations may quench. This was investigated by

Upadhye and Steffen (2013), who found that the energy loss to monopole radiation is

too weak to place any meaningful bounds. They identified another scenario whereby

the scalar radiation sourced by an expanding type II supernovae could drain the kinetic

energy of the expanding matter and significantly impede the expansion. This places

the weak constraint fR0 < 10−2.

4.6.7 Redshift-space distortions

The clustering of matter can be greatly modified in f (R) cosmologies compared with

GR, and this can be particularly pronounced in redshift space (Jennings et al. 2012;

Bose and Koyama 2016, 2017). The possibility of testing this was first investigated

by Yamamoto et al. (2010), who examined a sample of luminous red galaxies (LRGs)

from the SDSS to find a bound fR0 < 10−4. A more recent study, combining redshift-

space distortion observations with other cosmological datasets, found the stronger

bound fR0 < 2.6 × 10−6 (Xu 2015).

4.7 Tests of the coupling to photons

In this section, we summarize experimental tests of the coupling to photons discussed

in Sect. 2.3. We will restrict our attention to chameleon models, for which the coupling
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to photons has been widely studied. Extending these constraints to other models with

screening remains a topic for future work.

4.7.1 PVLAS

The PVLAS experiment (Zavattini et al 2006) studied the polarisation of light prop-

agating through a magnetic field. The presence of an axion, or axion-like particle

coupled as in Eq. (2.35) would mean that, in the presence of a magnetic field, one

polarisation of the propagating photon can convert into the scalar particle and vice

versa. The second polarisation will propagate through unimpeded (Raffelt and Stodol-

sky 1988). This induces rotation and ellipticity into the polarisation of the incoming

laser beam. The PVLAS experiment bounded the induced rotation to be less than

1.2 × 108 rad at 5 T and 1.0 × 108 rad at 2.3 T, and the induced ellipticity to be less

than 1.4×108 at 2.3 T. This constraints the coupling strength Mγ of a light axion-like

particle.

In such experiments chameleon particles behave very differently to standard axion-

like particles, precisely because of their density dependent mass. If standard axion-like

particles were produced in PVLAS, they would pass through the walls at the end of the

vacuum chamber without interacting and so leave the experiment. For a chameleon

to pass through the wall, the chameleon particle must have enough energy that it can

adjust its mass to the higher value needed for it to exist inside the wall. If it does not

have this energy, it is instead reflected from the wall and back into the vacuum chamber

(Brax et al. 2007a, c). This leads to a large ratio of the rotation to the ellipticity of the

polarisation which is a unique signal of chameleon models. For a chameleon with

a potential V (φ) = (2.3 × 10−3 eV)5/φ, and assuming the coupling to photons is

the same as the coupling to other matter fields, the results of the PVLAS experiment

constrain Mc = Mγ > 2 × 106 GeV.

4.7.2 GammeV-CHASE

A second commonly used experimental design to look for axion-like particles, light-

shining-through-walls, also needs to be modified in order to search for chameleon

particles. Experiments searching for standard ALPs rely on the ability of ALPs to pass

through walls which are impermeable to photons. Light is shone into a cavity across

which a magnetic field is applied. A wall is then placed in this cavity; in the absence

of ALPs, no light would be seen on the far side of the wall. But if a photon converts

into an ALP before hitting the wall this ALP can pass through and then may reconvert

into a photon on the far side of the wall.

As discussed in the previous subsection, chameleon ALPs cannot pass through walls

in the way that standard ALPs do, and so light-shining through walls experiments

cannot constrain chameleons. However, this inability to pass through walls can be

developed into a new type of experiment specifically designed to look for chameleons;

these are known as after-glow experiments (Gies et al. 2008; Ahlers et al. 2008).

The basic design of the experiment is to shine a laser beam into a vacuum chamber

across which a magnetic field is applied. If there is a non-zero probability of the

photons converting into chameleons, then the number of chameleons trapped inside
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the chamber (because they cannot pass through the walls) will increase the longer the

laser beam is on. The laser is then turned off, but the magnetic field is left on. Then

the chameleons can reconvert into photons, leading to a detection of light, after the

laser has been turned off.

This experiment was successfully performed by the GammeV collaboration, and

was known as GammeV-CHASE (GammeV CHameleon Afterglow SEarch) (Upadhye

et al. 2010). Constraints were placed on values of the chameleon coupling to photons, as

a function of the effective chameleon mass in the chamber (Chou et al. 2009). This mass

depends on the choice of the chameleon potential and the strength of the coupling to

other matter fields. For the lightest chameleons inside the vacuum chamber, GammeV-

CHASE constrains the coupling to photons to be Mγ > 3 × 107 GeV (Steffen et al.

2010; Upadhye et al. 2012b). The constraints weaken if the effective mass of the

chameleon is above 10−3 eV.

The modelling of how the chameleon behaves inside the experiment requires care.

Whilst a semi-classical approximation would predict that the chameleon bounces off

the walls of the vacuum chamber unchanged, considering the chameleons as fluctua-

tions in a quantum field opens up the possibility that the non-trivial self interactions

of the chameleon field could allow a chameleon particle to fragment into a number of

lower energy chameleons as it hits the wall. This was shown not to be a significant

effect in the GammeV-CHASE experiment for the benchmark potentials V (φ) = λφ4

and V (φ) = Λ5/φ (Brax and Upadhye 2014). However, for steeper potentials this

effect will start to become relevant.

4.7.3 ADMX

Axion Dark Matter eXperiment (ADMX), is another experiment aiming to detect

axions and axion-like particles through the Primakov effect (Asztalos 2010, 2004).

However, in this case, the axions come from outside the experiment, and are hypothe-

sised to be responsible for the dark matter in our galaxy (Sikivie 1983). This set up has

been used to constrain chameleon theories using the same afterglow effect discussed

above (Rybka et al. 2010), but using microwave photons trapped in a cavity instead of

laser light. The experiment excluded couplings 5 × 103 GeV < Mγ < 1 × 109 GeV

for effective chameleon masses in the cavity ∼ 1.95 µeV.

4.7.4 CAST

The CERN Axion Solar Telescope (CAST) experiment searches for axions produced

in the Sun, by looking for their reconversion into photons in the bore of a decommis-

sioned LHC magnet (Zioutas et al. 2005). Results from this search can be applied to

chameleons, if they are also produced in the Sun. At the particle level, the processes

that produce chameleons are the same as those that produce scalar axion-like particles,

but determining the total flux of chameleons from the Sun requires taking into account

the added complication that the mass of the chameleon field varies with the density of

the solar medium (Brax and Zioutas 2010).

CAST has not yet detected a signal from the Sun, and so bounds can be placed on

the chameleon couplings. They exclude photon couplings Mγ ≥ 2.6 × 107GeV, for
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a range of couplings to matter 1012 GeV ≤ Mc ≤ 1018 GeV, assuming that the bare

chameleon potential is V (φ) = (10−3 eV)5/φ (Anastassopoulos et al. 2015).

There are also proposals by the CAST collaboration to detect solar chameleons

using a novel force sensor (Baum et al. 2014). While chameleons may be produced in

the Sun due to the coupling to photons, the detection mechanism itself does not rely

on the coupling in Eq. (2.35). The detection relies on having a force sensor sufficiently

sensitive that it can measure the chameleon radiation pressure (Karuza et al. 2016),

which comes about as the chameleons emitted from the Sun bounce off the sensor, for

the same reason that chameleons are reflected from the walls of vacuum chambers,

the chameleon particle does not have enough energy to adjust its mass sufficiently to

pass through the membrane of the sensor.

4.7.5 Collider constraints

The collider constraints on chameleon models can also be extended to include the

coupling to photons in Eq. (2.35). This leads to additional loops, which should be

inserted into the diagrams, and allows for additional production and decay processes

which should be included. Analysis of precision electro-weak data from LEP con-

strains Mγ � 103 GeV (Brax et al. 2009).

4.7.6 Galactic and extra-galactic constraints

The effects of the chameleon on light propagating through magnetic fields, originating

in the interaction of Eq. (2.35), can also be relevant to astrophysical observations. For

many observations, light from distant sources has to propagate through galactic, intra-

cluster, or extra-galactic magnetic fields in order to reach us. Whilst the magnetic

fields strengths are much lower than those achievable in the laboratory, they extend

over much larger distances, meaning that the astrophysical constraints can in principle

be more stringent that those achieved in the laboratory. They do, however, come with

much larger uncertainties around the initial luminosity of the source, the polarisation of

the light it emits, and over the structure of the magnetic fields. Astrophysical magnetic

fields also display much more structure than the coherent magnetic fields used in

laboratory, which adds to the complexity of the calculations.

In Burrage et al. (2009b), it was shown that chameleons coupled to photons can

induce both linear and circular polarisation into light from stars. As long as the

chameleon mass is smaller than the local plasma density, then it can be neglected

in these calculations, meaning that the constraints are largely model independent as

long as the chameleon is light on astrophysical scales. Within the galaxy this requires

mφ < 1.3 × 10−11 eV. From measurements of the polarisation of galactic stars,

expected to be largely unpolarized initially, the bound Mγ > 1.1 × 109 GeV was

derived. Assuming the magnetic field strength of the intergalactic medium is B ≈ 3 µG

and the coherence length is 20 pc. The polarisation of light from the Crab nebula, type

Ia supernova, high-redshift quasars, gamma-ray bursts, and the CMB was also anal-

ysed but the bounds were weaker than those from observations of stars.

Looking for the depletion in luminosity of astrophysical sources from photons con-

verting into chameleons is difficult because there is, generally, no way of determining
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the intrinsic luminosity of the source. However, for some astrophysical objects, correla-

tions have been observed between the luminosity of the source and a second observable

that should not be affected by the coupling to chameleons. The best constraints of this

form on chameleons come from looking at Active Galactic Nuclei (AGN), where the

X-ray luminosity at 2 keV is observed to be tightly correlated with the optical lumi-

nosity at 5 eV (Steffen et al. 2006; Young et al. 2009). Similar luminosity relations

exist for blazars and gamma ray bursts, but these give rise to weaker constraints. As

the probability of a photon converting into a chameleon increases with the frequency

of the photon, the effects of the chameleon on the X-ray luminosity of the AGN can

be significant, whilst the effects on the optical luminosity remain small. Therefore, the

luminosity relation can be used to constrain the chameleon (Burrage et al. 2009a), with

the current best constraint Mγ � 1011 GeV assuming, again, that the chameleons are

sufficiently light, mφ < 10−12 eV, on astrophysical distance scales that the effects of

their mass are negligible (Burrage et al. 2009a; Pettinari and Crittenden 2010).

The conversion of photons into chameleons also will increase the opacity of the

universe at high frequencies. In Avgoustidis et al. (2010), tests of the distance duality

relation, which relates luminosity distance and angular diameter distance to sources,

were used to derive constraints on cosmic opacity. This can be viewed as a test of

chameleons because depletion of photons from the source will change the luminosity

distance, whilst leaving the angular diameter distance unaffected. Constraints are cur-

rently not competitive with those from starlight polarisations, but should be expected

to improve significantly with new data from upcoming cosmological surveys.

Light from the cosmic microwave background also passes through magnetic fields

on its way to us, although constraints from CMB intensity and polarisation data

are difficult to apply because of our lack of knowledge about primordial magnetic

fields (Schelpe 2010). Knowledge of the magnetic fields of localised objects, such as

the Coma cluster, mean that constraints can be obtained from measurements of the

Sunyaev–Zel’dovich (SZ) effect. The SZ effect is the distortion of the CMB spectrum

by inverse Compton scattering of high-energy electrons. The effect of converting pho-

tons into chameleons in the cluster’s magnetic field, also depletes the expected photon

number, but with a very different frequency dependence. Knowledge of the Coma

cluster’s magnetic fields leads to the constraint 1.1 × 109 GeV � Mγ (Davis et al.

2011).

4.8 Summary of tests

Here, we briefly summarize the tests that have been used to probe screened modified

gravity to date. The summary is given in Table 2; we do not include f (R)-specific

tests, because they do not carry over to more general models.

5 Constraints

In this section, we convert the constraints discussed in the previous section into a

single and familiar parametrization and combine them to show the presently allowed

parameter ranges.
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Table 2 Summary of present

tests of chameleon and

symmetron theories

Test Chameleons Symmetrons

Eöt-Wash ✓ ✓

Casimir force ✓ ✗

Microspheres ✓ ✗

Precision atomic tests ✓ ✗

Atom interferometry ✓ ✓

Cold neutrons ✓ ✗

Neutron interferometry ✓ ✗

Distance indicators ✓ ✓

Rotation curves ✓ ✓

Cluster lensing ✓ ✗
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Fig. 4 Current bounds on the parameters Mc and Λ for n = 1 chameleon models. The regions excluded by

each specific test are indicated in the figure; the region labelled astrophysics contains the bounds from both

Cepheid and rotation curve tests. The dashed line indicates the dark energy scale Λ = 2.4 meV. The black,

red, and blue arrows show the lower bound on Mc coming from neutron bouncing and interferometry. The

blue corresponds to the bounds of Lemmel et al. (2015) and the red to the bounds of Li et al. (2016)

5.1 Chameleon constraints

The current bounds on chameleon models are shown below. We cover the two most

commonly studied models n = 1 (Fig. 4) and n = −4 (Fig. 5). In these cases, we plot

Λ versus Mc. Furthermore, many experiments focus on the case Λ = ΛDE = 2.4
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Fig. 5 Current bounds on the parameters Mc and Λ for n = −4 chameleon models. The regions excluded

by each specific test are indicated in the figure. Comparing Eqs 2.16 with 2.17 reveals that λc = (Λ/ΛDE)4

and so the values of λc plotted here cover the same range of Λ as Fig. 4. The black dashed line at λc = 1

therefore corresponds to the dark energy scale Λ = ΛDE

meV (the dark energy scale) and so for this choice we plot Mc versus n for both

positive (Fig. 6) and negative n (Fig. 7).

5.1.1 f (R) constraints

We show the current constraints on the Hu and Sawicki b = 1 f (R) model (2.19) in

Fig. 8. The x-axis labels each specific test and the y-axis shows the resultant upper

limit on fR0. It is common to express constraints on fR0 showing the length scale

on which they were obtained (e.g., Lombriser 2014). Whilst complementary tests on

all scales are crucial consistency checks of the theory, it is important to note that this

length is not a new parameter appearing in the theory, and that it is the same parameter

fR0 being constrained no matter the test or the length scale that it probes. For this

reason, we have included the typical length scale for each test in the figure.

The point labelled “Milky Way” is not derived from any specific test and is simply

the statement that the fR0 should be smaller than the Newtonian potential of the Milky

Way. One does not need to impose this a priori because it is not clear whether or not

the Milky Way is screened by the local group; we include it here for completeness,

and to make contact with those parts of the literature that take this constraint as

given.
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Fig. 6 Current bounds on the parameters n and Mc when Λ is fixed to the dark energy scale ΛDE and

n > 0. The regions excluded by each specific test are indicated in the figure. The blue region corresponds to

astrophysical tests, which includes both Cepheid and rotation curve tests. The blue and red arrows indicate

the lower bounds coming from the neutron interferometry experiments of Lemmel et al. (2015) and Li et al.

(2016) respectively
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Fig. 7 Current bounds on the parameters n and Mc when Λ is fixed to the dark energy scale ΛDE and

n < 0. The red hashed region indicates values of n where the model is not a chameleon, and the reader is

reminded that only negative even integers are chameleons. The regions excluded by each specific test are

indicated in the figure; the region labelled astrophysics contains the bounds from both Cepheid and rotation

curve tests. The blue arrow indicates the lower bound coming from the neutron interferometry experiment

of Lemmel et al. (2015)
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Fig. 8 Constraints on fR0 for b = 1 Hu and Sawicki f (R) models (see Eq. (2.19)). The red dots indicate

the upper limit for the specific test given on the x-axis and the points are labelled by the typical distance

scale associated with the relevant test

5.1.2 Constraints on the coupling to photons

The constraints on the coupling to photons are shown in Fig. 9. We only show con-

straints for n = 1 models since many experiments only report bounds for these

models at the present time. Furthermore, many of the experiments restrict to the case

Λ = ΛDE = 2.4 meV and so we do the same here. The results from ADMX are not

included since they are presented in terms of meff rather than the fundamental param-

eters. One could convert the constraints into the Mc–Mγ plane, but this depends on the

geometry and densities of the experimental apparatus, which are not sufficiently well

known. Similarly, we do not include astrophysical bounds due to the need to make

assumptions about the strength of magnetic fields and the value of the ambient density.

5.2 Symmetron constraints

The current bounds on the symmetron parameters Ms and λ are shown in Fig. 10 for

some commonly studied values of µ indicated in the caption.

6 Conclusions and outlook

Chameleon and symmetron models have been a paragon for viable, interesting, and

relevant infrared modifications of general relativity for over a decade. The screening

mechanism has resulted in theories of gravity that are perfectly consistent with general

relativity’s predictions in the solar system, but are yet falsifiable using novel approaches
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Fig. 9 Current constraints on the chameleon coupling to photons, Mγ , for n = 1 models with Λ set to the

dark energy scale. The bounds coming from each specific test are indicated in the figure

such as astrophysical phenomena in distant galaxies, as well as specifically targeted

laboratory searches. In many cases, these models may be relevant on linear (and non-

linear) cosmological scales.

In this review, we have surveyed the omnibus of literature providing constraints

and have translated them into a single parametrization in order to assess the current

viability of the models. The main results are presented in Figs. 4, 5, 6, 7, 8, 9 and 10,

which can be summarized as follows:

– n = 1 and n = −4 chameleon models (two of the most commonly studied) are

tightly constrained but there is a large parameter space remaining for n > 1 and

n < −4 when Λ is fixed to the dark energy scale. Away from this, the constraints

are not as strong. In many cases, this is because bounds on other models are not

reported.

– Symmetron models are well-constrained by astrophysical probes and atom inter-

ferometry but there is a lack of theoretical work translating the bounds from

existing experimental results into symmetron constraints. This has resulted in a

desert separating astrophysical and laboratory tests [this could be filled in partially

by constraints from future space-based tests of relativistic gravitation (Sakstein

2017)].

– The coupling of chameleons to photons for n = 1 models is tightly constrained

and there is only a narrow window remaining. The coupling of symmetrons to

photons and chameleon models with n �= 1 has yet to be explored.

– Hu and Sawicki f (R) models (Hu and Sawicki 2007) are well-constrained for

b = 1 but, presently, there are not enough reported bounds on larger values to
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Fig. 10 The current bounds on the symmetron parameters Ms and λ. The region of parameter space

excluded by each specific test is indicated in the figure. The Eöt-Wash region corresponds to μ =
2.4 meV; the outlines for values μ = {10−4, 10−3, 10−2}eV are shown by the solid, dashed, and

dotted green lines respectively. The atom interferometry lines correspond to the regions excluded for

μ = {10−4, 10−4.5, 10−5, 10−5, 2.4 × 10−3}eV from top to bottom respectively, the latter value corre-

sponding to the dark energy scale. The astrophysical bounds are insensitive to the value of μ for the values

considered here

make a meaningful comparison. For b = 1 the bounds on fR0 are at the 10−7

level. In theory, 10−8 would be achievable with better statistics; below this, dwarf

galaxies begin to become screened and higher-precision tests are necessary.

– At the present time, the environment-dependent dilaton, which screens in a distinct

manner from chameleon and symmetron models, has not been studied sufficiently

in the context of laboratory and astrophysical tests to produce any meaningful

constraints.

6.1 Prospects for future bounds

We end by discussing the prospects for future tests of screened modified gravity.

6.1.1 Laboratory tests

As new experimental techniques are been developed, and existing ones are improved

we can expect bounds on chameleon and symmetron models of screening to continue

to improve. It is to be expected that this will be a combination of the reinterpretation

of experimental results obtained when searching for other types of new physics, and

a smaller number of experiments dedicated to directly searching for screening.
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It is difficult to imagine that a single experiment could cover all of the remaining

chameleon and symmetron parameter space, and so ideally a combination of tech-

niques and searches are needed in order to fully rule out the possibility that screened

scalars exist in our Universe.

6.1.2 Astrophysical tests

Astrophysical objects show strong deviations from GR when the Newtonian potential

ΦN < χ0 (∼ fR0 for f (R) theories). Given that current bounds place χ0
<
∼ O(10−7),

the only objects in the Universe with a low enough Newtonian potential to exhibit

novel effects are dwarf galaxies located in voids, and several tests using such galaxies

have been proposed.

The rotation-curve test described in Sect. 4.5.2 suffers from a lack of unscreened

galaxies, and a larger sample would improve the constraints. Future and upcoming data

releases, in particular SDSS-MaNGA, can provide a larger sample size that would

significantly improve the bounds. Additional tests, such as the warping of galactic

disks due to equivalence principle violations have been proposed (Jain and VanderPlas

2011), although a test using SDSS optical and ALFALFA radio observations did not

yield any bounds on the model parameters (Vikram et al. 2013). Future radio surveys

such as VLT may be more fruitful.

Finally, N-body simulations are uncovering a variety of novel phenomena exhibited

by chameleons on non-linear cosmological scales (Jain et al. 2013b). Many of these

are clear smoking-gun signals that could be measured with upcoming peculiar velocity

and galaxy redshift surveys (Hellwing et al. 2014).

6.1.3 Tests of the coupling to photons

The increase in interest in axions and axion-like particles as dark matter candidates

has lead to a series of proposals and experiments aimed at further constraining these

particles which, in many cases, focus on their interactions with photons. These exper-

iments present an exciting opportunity for new constraints on theories with screening,

but the details of how powerful these constraints can be remain to be worked out.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abbott BP et al (2016a) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett

116:061102. https://doi.org/10.1103/PhysRevLett.116.061102. arXiv:1602.03837

Abbott BP et al (2016b) Tests of general relativity with GW150914. Phys Rev Lett 116:221101. https://doi.

org/10.1103/PhysRevLett.116.221101. arXiv:1602.03841

Abbott BP et al (2017a) GW170817: observation of gravitational waves from a binary neutron star inspiral.

Phys Rev Lett 119:161101. https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
http://arxiv.org/abs/1602.03841
https://doi.org/10.1103/PhysRevLett.119.161101
http://arxiv.org/abs/1710.05832


Tests of chameleon gravity Page 51 of 58 1

Abbott BP et al (2017b) Multi-messenger observations of a binary neutron star merger. Astrophys J 848:L12.

https://doi.org/10.3847/2041-8213/aa91c9. arXiv:1710.05833

Adelberger EG, Heckel BR, Nelson AE (2003) Tests of the gravitational inverse square law. Annu Rev Nucl

Part Sci 53:77–121. https://doi.org/10.1146/annurev.nucl.53.041002.110503. arXiv:hep-ph/0307284

Adelberger EG, Heckel BR, Hoedl SA, Hoyle CD, Kapner DJ, Upadhye A (2007) Particle physics impli-

cations of a recent test of the gravitational inverse sqaure law. Phys Rev Lett 98:131104. https://doi.

org/10.1103/PhysRevLett.98.131104. arXiv:hep-ph/0611223

Ahlers M, Lindner A, Ringwald A, Schrempp L, Weniger C (2008) Alpenglow: a signature for chameleons

in axion-like particle search experiments. Phys Rev D 77:015018. https://doi.org/10.1103/PhysRevD.

77.015018. arXiv:0710.1555

Almasi A, Brax P, Iannuzzi D, Sedmik RIP (2015) Force sensor for chameleon and Casimir force experi-

ments with parallel-plate configuration. Phys Rev D 91:102002. https://doi.org/10.1103/PhysRevD.

91.102002. arXiv:1505.01763

Anastassopoulos V et al (2015) Search for chameleons with CAST. Phys Lett B 749:172–180. https://doi.

org/10.1016/j.physletb.2015.07.049. arXiv:1503.04561

Asztalos SJ et al (2004) Improved RF cavity search for halo axions. Phys Rev D 69:011101. https://doi.

org/10.1103/PhysRevD.69.011101. arXiv:astro-ph/0310042

Asztalos SJ et al (2010) SQUID-based microwave cavity search for dark-matter axions. Phys Rev Lett

104:041301. https://doi.org/10.1103/PhysRevLett.104.041301. arXiv:0910.5914

Avgoustidis A, Burrage C, Redondo J, Verde L, Jimenez R (2010) Constraints on cosmic opacity and

beyond the standard model physics from cosmological distance measurements. J Cosmol Astropart

Phys 2010(10):024. https://doi.org/10.1088/1475-7516/2010/10/024. arXiv:1004.2053

Babichev E, Deffayet C (2013) An introduction to the Vainshtein mechanism. Class Quantum Grav

30:184001. https://doi.org/10.1088/0264-9381/30/18/184001. arXiv:1304.7240

Babichev E, Langlois D (2010) Relativistic stars in (R) and scalar–tensor theories. Phys Rev D 81:124051.

https://doi.org/10.1103/PhysRevD.81.124051. arXiv:0911.1297

Babichev E, Koyama K, Langlois D, Saito R, Sakstein J (2016) Relativistic stars in beyond Horn-

deski theories. Class Quantum Grav 33:235014. https://doi.org/10.1088/0264-9381/33/23/235014.

arXiv:1606.06627

Baker T, Bellini E, Ferreira PG, Lagos M, Noller J, Sawicki I (2017) Strong constraints on cosmological

gravity from GW170817 and GRB 170817A. Phys Rev Lett 119:251301. https://doi.org/10.1103/

PhysRevLett.119.251301. arXiv:1710.06394

Bartolo N, Karmakar P, Matarrese S, Scomparin M (2017) Cosmic structures and gravitational waves in

ghost-free scalar–tensor theories of gravity. ArXiv e-prints arXiv:1712.04002

Baum S, Cantatore G, Hoffmann DHH, Karuza M, Semertzidis YK, Upadhye A, Zioutas K (2014) Detecting

solar chameleons through radiation pressure. Phys Lett B 739:167–173. https://doi.org/10.1016/j.

physletb.2014.10.055. arXiv:1409.3852

Beaton RL et al (2016) The Carnegie-Chicago Hubble program. I. An independent approach to the extra-

galactic distance scale using only population II distance indicators. Astrophys J 832:210. https://doi.

org/10.3847/0004-637X/832/2/210. arXiv:1604.01788

Bekenstein JD (1993) The relation between physical and gravitational geometry. Phys Rev D 48:3641–3647.

https://doi.org/10.1103/PhysRevD.48.3641. arXiv:gr-qc/9211017

Bellini E, Sawicki I (2014) Maximal freedom at minimum cost: linear large-scale structure in general

modifications of gravity. J Cosmol Astropart Phys 2014(07):050. https://doi.org/10.1088/1475-7516/

2014/07/050. arXiv:1404.3713

Blas D, Lim E (2015) Phenomenology of theories of gravity without Lorentz invariance: the preferred frame

case. Int J Mod Phys D 23:1443009. https://doi.org/10.1142/S0218271814430093. arXiv:1412.4828

Bose B (2017) A perturbative approach to the redshift space correlation function: beyond the stan-

dard model. J Cosmol Astropart Phys 2017(08):029. https://doi.org/10.1088/1475-7516/2017/08/029.

arXiv:1705.09181

Bose B, Koyama K (2016) A perturbative approach to the redshift space power spectrum: beyond the

standard model. J Cosmol Astropart Phys 08:032. https://doi.org/10.1088/1475-7516/2016/08/032.

arXiv:1606.02520

Brax P (2014) Testing chameleon fields with ultra cold neutron bound states and neutron interferometry.

Phys Procedia 51:73–77. https://doi.org/10.1016/j.phpro.2013.12.017

Brax P, Burrage C (2011) Atomic precision tests and light scalar couplings. Phys Rev D 83:035020. https://

doi.org/10.1103/PhysRevD.83.035020. arXiv:1010.5108

123

https://doi.org/10.3847/2041-8213/aa91c9
http://arxiv.org/abs/1710.05833
https://doi.org/10.1146/annurev.nucl.53.041002.110503
http://arxiv.org/abs/hep-ph/0307284
https://doi.org/10.1103/PhysRevLett.98.131104
https://doi.org/10.1103/PhysRevLett.98.131104
http://arxiv.org/abs/hep-ph/0611223
https://doi.org/10.1103/PhysRevD.77.015018
https://doi.org/10.1103/PhysRevD.77.015018
http://arxiv.org/abs/0710.1555
https://doi.org/10.1103/PhysRevD.91.102002
https://doi.org/10.1103/PhysRevD.91.102002
http://arxiv.org/abs/1505.01763
https://doi.org/10.1016/j.physletb.2015.07.049
https://doi.org/10.1016/j.physletb.2015.07.049
http://arxiv.org/abs/1503.04561
https://doi.org/10.1103/PhysRevD.69.011101
https://doi.org/10.1103/PhysRevD.69.011101
http://arxiv.org/abs/astro-ph/0310042
https://doi.org/10.1103/PhysRevLett.104.041301
http://arxiv.org/abs/0910.5914
https://doi.org/10.1088/1475-7516/2010/10/024
http://arxiv.org/abs/1004.2053
https://doi.org/10.1088/0264-9381/30/18/184001
http://arxiv.org/abs/1304.7240
https://doi.org/10.1103/PhysRevD.81.124051
http://arxiv.org/abs/0911.1297
https://doi.org/10.1088/0264-9381/33/23/235014
http://arxiv.org/abs/1606.06627
https://doi.org/10.1103/PhysRevLett.119.251301
https://doi.org/10.1103/PhysRevLett.119.251301
http://arxiv.org/abs/1710.06394
http://arxiv.org/abs/arXiv:1712.04002
https://doi.org/10.1016/j.physletb.2014.10.055
https://doi.org/10.1016/j.physletb.2014.10.055
http://arxiv.org/abs/1409.3852
https://doi.org/10.3847/0004-637X/832/2/210
https://doi.org/10.3847/0004-637X/832/2/210
http://arxiv.org/abs/1604.01788
https://doi.org/10.1103/PhysRevD.48.3641
http://arxiv.org/abs/gr-qc/9211017
https://doi.org/10.1088/1475-7516/2014/07/050
https://doi.org/10.1088/1475-7516/2014/07/050
http://arxiv.org/abs/1404.3713
https://doi.org/10.1142/S0218271814430093
http://arxiv.org/abs/1412.4828
https://doi.org/10.1088/1475-7516/2017/08/029
http://arxiv.org/abs/1705.09181
https://doi.org/10.1088/1475-7516/2016/08/032
http://arxiv.org/abs/1606.02520
https://doi.org/10.1016/j.phpro.2013.12.017
https://doi.org/10.1103/PhysRevD.83.035020
https://doi.org/10.1103/PhysRevD.83.035020
http://arxiv.org/abs/1010.5108


1 Page 52 of 58 C. Burrage, J. Sakstein

Brax P, Burrage C (2014) Constraining disformally coupled scalar fields. Phys Rev D 90:104009. https://

doi.org/10.1103/PhysRevD.90.104009. arXiv:1407.1861

Brax P, Davis AC (2012) Modified gravity and the CMB. Phys Rev D 85:023513. https://doi.org/10.1103/

PhysRevD.85.023513. arXiv:1109.5862

Brax P, Davis AC (2015) Casimir, gravitational and neutron tests of dark energy. Phys Rev D 91:063503.

https://doi.org/10.1103/PhysRevD.91.063503. arXiv:1412.2080

Brax P, Davis AC (2016) Atomic interferometry test of dark energy. Phys Rev D 94:104069. https://doi.

org/10.1103/PhysRevD.94.104069. arXiv:1609.09242

Brax P, Pignol G (2011) Strongly coupled chameleons and the neutronic quantum bouncer. Phys Rev Lett

107:111301. https://doi.org/10.1103/PhysRevLett.107.111301. arXiv:1105.3420

Brax P, Upadhye A (2014) Chameleon fragmentation. J Cosmol Astropart Phys 2014(02):018. https://doi.

org/10.1088/1475-7516/2014/02/018. arXiv:1312.2747

Brax P, Zioutas K (2010) Solar chameleons. Phys Rev D 82:043007. https://doi.org/10.1103/PhysRevD.

82.043007. arXiv:1004.1846

Brax P, van de Bruck C, Davis AC (2004a) Is the radion a chameleon? J Cosmol Astropart Phys 2004(11):004.

https://doi.org/10.1088/1475-7516/2004/11/004. arXiv:astro-ph/0408464

Brax P, van de Bruck C, Davis AC, Khoury J, Weltman A (2004b) Detecting dark energy in orbit:

the cosmological chameleon. Phys Rev D 70:123518. https://doi.org/10.1103/PhysRevD.70.123518.

arXiv:astro-ph/0408415

Brax P, van de Bruck C, Davis AC (2007a) Compatibility of the chameleon-field model with fifth-force

experiments, cosmology, and PVLAS and CAST results. Phys Rev Lett 99:121103. https://doi.org/

10.1103/PhysRevLett.99.121103. arXiv:hep-ph/0703243

Brax P, van de Bruck C, Davis AC, Mota DF, Shaw DJ (2007b) Detecting chameleons through

Casimir force measurements. Phys Rev D 76:124034. https://doi.org/10.1103/PhysRevD.76.124034.

arXiv:0709.2075

Brax P, van de Bruck C, Davis AC, Mota DF, Shaw DJ (2007c) Testing chameleon theories with light

propagating through a magnetic field. Phys Rev D 76:085010. https://doi.org/10.1103/PhysRevD.76.

085010. arXiv:0707.2801

Brax P, van de Bruck C, Davis AC, Shaw DJ (2008) f (R) gravity and chameleon theories. Phys Rev D

78:104021. https://doi.org/10.1103/PhysRevD.78.104021. arXiv:0806.3415

Brax P, Burrage C, Davis AC, Seery D, Weltman A (2009) Collider constraints on interactions of dark

energy with the standard model. JHEP 09:128. https://doi.org/10.1088/1126-6708/2009/09/128.

arXiv:0904.3002

Brax P, van de Bruck C, Davis AC, Shaw D (2010a) The dilaton and modified gravity. Phys Rev D 82:063519.

https://doi.org/10.1103/PhysRevD.82.063519. arXiv:1005.3735

Brax P, van de Bruck C, Davis AC, Shaw DJ, Iannuzzi D (2010b) Tuning the mass of chameleon fields

in Casimir force experiments. Phys Rev Lett 104:241101. https://doi.org/10.1103/PhysRevLett.104.

241101. arXiv:1003.1605

Brax P, Burrage C, Davis AC, Seery D, Weltman A (2010c) Higgs production as a probe of chameleon dark

energy. Phys Rev D 81:103524. https://doi.org/10.1103/PhysRevD.81.103524. arXiv:0911.1267

Brax P, van de Bruck C, Davis AC, Li B, Shaw DJ (2011a) Nonlinear structure formation with the environ-

mentally dependent dilaton. Phys Rev D 83:104026. https://doi.org/10.1103/PhysRevD.83.104026.

arXiv:1102.3692

Brax P, Burrage C, Davis AC, Seery D, Weltman A (2011b) Anomalous coupling of scalars to gauge fields.

Phys Lett B 699:5–9. https://doi.org/10.1016/j.physletb.2011.03.047. arXiv:1010.4536

Brax P, Davis AC, Li B (2012a) Modified gravity tomography. Phys Lett B 715:38–43. https://doi.org/10.

1016/j.physletb.2012.08.002. arXiv:1111.6613

Brax P, Davis AC, Li B, Winther HA (2012b) Unified description of screened modified gravity. Phys Rev

D 86:044015. https://doi.org/10.1103/PhysRevD.86.044015. arXiv:1203.4812

Brax P, Davis AC, Sakstein J (2013a) Dynamics of supersymmetric chameleons. J Cosmol Astropart Phys

2013(10):007. https://doi.org/10.1088/1475-7516/2013/10/007. arXiv:1302.3080

Brax P, Davis AC, Sakstein J (2013b) SUPER-screening. Phys Lett B 719:210–217. https://doi.org/10.

1016/j.physletb.2013.01.044. arXiv:1212.4392

Brax P, Pignol G, Roulier D (2013c) Probing strongly coupled chameleons with slow neutrons. Phys Rev

D 88:083004. https://doi.org/10.1103/PhysRevD.88.083004. arXiv:1306.6536

Brax P, Davis AC, Sakstein J (2014) Pulsar constraints on screened modified gravity. Class Quantum Grav

31:225001. https://doi.org/10.1088/0264-9381/31/22/225001. arXiv:1301.5587

123

https://doi.org/10.1103/PhysRevD.90.104009
https://doi.org/10.1103/PhysRevD.90.104009
http://arxiv.org/abs/1407.1861
https://doi.org/10.1103/PhysRevD.85.023513
https://doi.org/10.1103/PhysRevD.85.023513
http://arxiv.org/abs/1109.5862
https://doi.org/10.1103/PhysRevD.91.063503
http://arxiv.org/abs/1412.2080
https://doi.org/10.1103/PhysRevD.94.104069
https://doi.org/10.1103/PhysRevD.94.104069
http://arxiv.org/abs/1609.09242
https://doi.org/10.1103/PhysRevLett.107.111301
http://arxiv.org/abs/1105.3420
https://doi.org/10.1088/1475-7516/2014/02/018
https://doi.org/10.1088/1475-7516/2014/02/018
http://arxiv.org/abs/1312.2747
https://doi.org/10.1103/PhysRevD.82.043007
https://doi.org/10.1103/PhysRevD.82.043007
http://arxiv.org/abs/1004.1846
https://doi.org/10.1088/1475-7516/2004/11/004
http://arxiv.org/abs/astro-ph/0408464
https://doi.org/10.1103/PhysRevD.70.123518
http://arxiv.org/abs/astro-ph/0408415
https://doi.org/10.1103/PhysRevLett.99.121103
https://doi.org/10.1103/PhysRevLett.99.121103
http://arxiv.org/abs/hep-ph/0703243
https://doi.org/10.1103/PhysRevD.76.124034
http://arxiv.org/abs/0709.2075
https://doi.org/10.1103/PhysRevD.76.085010
https://doi.org/10.1103/PhysRevD.76.085010
http://arxiv.org/abs/0707.2801
https://doi.org/10.1103/PhysRevD.78.104021
http://arxiv.org/abs/0806.3415
https://doi.org/10.1088/1126-6708/2009/09/128
http://arxiv.org/abs/0904.3002
https://doi.org/10.1103/PhysRevD.82.063519
http://arxiv.org/abs/1005.3735
https://doi.org/10.1103/PhysRevLett.104.241101
https://doi.org/10.1103/PhysRevLett.104.241101
http://arxiv.org/abs/1003.1605
https://doi.org/10.1103/PhysRevD.81.103524
http://arxiv.org/abs/0911.1267
https://doi.org/10.1103/PhysRevD.83.104026
http://arxiv.org/abs/1102.3692
https://doi.org/10.1016/j.physletb.2011.03.047
http://arxiv.org/abs/1010.4536
https://doi.org/10.1016/j.physletb.2012.08.002
https://doi.org/10.1016/j.physletb.2012.08.002
http://arxiv.org/abs/1111.6613
https://doi.org/10.1103/PhysRevD.86.044015
http://arxiv.org/abs/1203.4812
https://doi.org/10.1088/1475-7516/2013/10/007
http://arxiv.org/abs/1302.3080
https://doi.org/10.1016/j.physletb.2013.01.044
https://doi.org/10.1016/j.physletb.2013.01.044
http://arxiv.org/abs/1212.4392
https://doi.org/10.1103/PhysRevD.88.083004
http://arxiv.org/abs/1306.6536
https://doi.org/10.1088/0264-9381/31/22/225001
http://arxiv.org/abs/1301.5587


Tests of chameleon gravity Page 53 of 58 1

Brax P, Burrage C, Davis AC (2016) The speed of galileon gravity. J Cosmol Astropart Phys 2016(03):004.

https://doi.org/10.1088/1475-7516/2016/03/004. arXiv:1510.03701

Brax P, Davis AC, Jha R (2017) Neutron stars in screened modified gravity: chameleon vs dilaton. Phys

Rev D 95:083514. https://doi.org/10.1103/PhysRevD.95.083514. arXiv:1702.02983

Bull P et al (2016) Beyond ΛCDM: problems, solutions, and the road ahead. Phys Dark Univ 12:56–99.

https://doi.org/10.1016/j.dark.2016.02.001. arXiv:1512.05356

Burrage C, Copeland EJ (2016) Using atom interferometry to detect dark energy. Contemp Phys 57:164.

https://doi.org/10.1080/00107514.2015.1060058. arXiv:1507.07493

Burrage C, Sakstein J (2016) A compendium of chameleon constraints. J Cosmol Astropart Phys

2016(11):045. https://doi.org/10.1088/1475-7516/2016/11/045. arXiv:1609.01192

Burrage C, Davis AC, Shaw DJ (2009a) Active galactic nuclei shed light on axion-like-particles. Phys Rev

Lett 102:201101. https://doi.org/10.1103/PhysRevLett.102.201101. arXiv:0902.2320

Burrage C, Davis AC, Shaw DJ (2009b) Detecting chameleons: the astronomical polarization produced by

chameleon-like scalar fields. Phys Rev D 79:044028. https://doi.org/10.1103/PhysRevD.79.044028.

arXiv:0809.1763

Burrage C, Copeland EJ, Hinds EA (2015) Probing dark energy with atom interferometry. J Cosmol

Astropart Phys 2015(03):042. https://doi.org/10.1088/1475-7516/2015/03/042. arXiv:1408.1409

Burrage C, Copeland EJ, Millington P (2016a) Radiative screening of fifth forces. Phys Rev Lett 117:211102.

https://doi.org/10.1103/PhysRevLett.117.211102. arXiv:1604.06051

Burrage C, Kuribayashi-Coleman A, Stevenson J, Thrussell B (2016b) Constraining symmetron fields

with atom interferometry. J Cosmol Astropart Phys 2016(12):041. https://doi.org/10.1088/1475-7516/

2016/12/041. arXiv:1609.09275

Cabre A, Vikram V, Zhao GB, Jain B, Koyama K (2012) Astrophysical tests of modified gravity: a screening

map of the nearby universe. J Cosmol Astropart Phys 2012(07):034. https://doi.org/10.1088/1475-

7516/2012/07/034. arXiv:1204.6046

Cai YC, Padilla N, Li B (2015) Testing gravity using cosmic voids. Mon Not R Astron Soc 451:1036–1055.

https://doi.org/10.1093/mnras/stv777. arXiv:1410.1510

Cataneo M, Rapetti D, Schmidt F, Mantz AB, Allen SW, Applegate DE, Kelly PL, von der Linden A, Morris

RG (2015) New constraints on f (R) gravity from clusters of galaxies. Phys Rev D 92:044009. https://

doi.org/10.1103/PhysRevD.92.044009. arXiv:1412.0133

Chiba T (2003) 1/R gravity and scalar–tensor gravity. Phys Lett B 575:1–3. https://doi.org/10.1016/j.

physletb.2003.09.033. arXiv:astro-ph/0307338

Chou AS et al (2009) Search for chameleon particles using a photon-regeneration technique. Phys Rev Lett

102:030402. https://doi.org/10.1103/PhysRevLett.102.030402. arXiv:0806.2438

Clifton T, Ferreira PG, Padilla A, Skordis C (2012) Modified gravity and cosmology. Phys Rep 513:1–189.

https://doi.org/10.1016/j.physrep.2012.01.001. arXiv:1106.2476

Coleman SR, Weinberg EJ (1973) Radiative corrections as the origin of spontaneous symmetry breaking.

Phys Rev D 7:1888–1910. https://doi.org/10.1103/PhysRevD.7.1888

Conlon JP, Pedro FG (2011) Moduli-induced vacuum destabilisation. JHEP 05:079. https://doi.org/10.1007/

JHEP05(2011)079. arXiv:1010.2665

Copeland EJ, Sami M, Tsujikawa S (2006) Dynamics of dark energy. Int J Mod Phys D 15:1753–1936.

https://doi.org/10.1142/S021827180600942X. arXiv:hep-th/0603057

Creminelli P, Vernizzi F (2017) Dark energy after GW170817 and GRB170817A. Phys Rev Lett 119:251302.

https://doi.org/10.1103/PhysRevLett.119.251302. arXiv:1710.05877

Crisostomi M, Koyama K (2018) Vainshtein mechanism after GW170817. Phys Rev D 97:021301. https://

doi.org/10.1103/PhysRevD.97.021301. arXiv:1711.06661

Cronenberg G, Filter H, Thalhammer M, Jenke T, Abele H, Geltenbort P (2015) A gravity of Earth mea-

surement with a qBOUNCE experiment. In: Proceedings of the European Physical Society conference

on high energy physics (EPS-HEP 2015), SISSA, Trieste, PoS, vol 234, pp PoS(EPS–HEP2015)408.

https://pos.sissa.it/234/408/. arXiv:1512.09134

Damour T, Polyakov AM (1994) The string dilaton and a least coupling principle. Nucl Phys B423:532–558.

https://doi.org/10.1016/0550-3213(94)90143-0. arXiv:hep-th/9401069

Davis AC, Schelpe CAO, Shaw DJ (2011) The chameleonic contribution to the Sunyaev-Zel’dovich radial

profile of the Coma cluster. Phys Rev D 83:044006. https://doi.org/10.1103/PhysRevD.83.044006.

arXiv:1008.1880

Davis AC, Lim EA, Sakstein J, Shaw D (2012) Modified gravity makes galaxies brighter. Phys Rev D

85:123006. https://doi.org/10.1103/PhysRevD.85.123006. arXiv:1102.5278

123

https://doi.org/10.1088/1475-7516/2016/03/004
http://arxiv.org/abs/1510.03701
https://doi.org/10.1103/PhysRevD.95.083514
http://arxiv.org/abs/1702.02983
https://doi.org/10.1016/j.dark.2016.02.001
http://arxiv.org/abs/1512.05356
https://doi.org/10.1080/00107514.2015.1060058
http://arxiv.org/abs/1507.07493
https://doi.org/10.1088/1475-7516/2016/11/045
http://arxiv.org/abs/1609.01192
https://doi.org/10.1103/PhysRevLett.102.201101
http://arxiv.org/abs/0902.2320
https://doi.org/10.1103/PhysRevD.79.044028
http://arxiv.org/abs/0809.1763
https://doi.org/10.1088/1475-7516/2015/03/042
http://arxiv.org/abs/1408.1409
https://doi.org/10.1103/PhysRevLett.117.211102
http://arxiv.org/abs/1604.06051
https://doi.org/10.1088/1475-7516/2016/12/041
https://doi.org/10.1088/1475-7516/2016/12/041
http://arxiv.org/abs/1609.09275
https://doi.org/10.1088/1475-7516/2012/07/034
https://doi.org/10.1088/1475-7516/2012/07/034
http://arxiv.org/abs/1204.6046
https://doi.org/10.1093/mnras/stv777
http://arxiv.org/abs/1410.1510
https://doi.org/10.1103/PhysRevD.92.044009
https://doi.org/10.1103/PhysRevD.92.044009
http://arxiv.org/abs/1412.0133
https://doi.org/10.1016/j.physletb.2003.09.033
https://doi.org/10.1016/j.physletb.2003.09.033
http://arxiv.org/abs/astro-ph/0307338
https://doi.org/10.1103/PhysRevLett.102.030402
http://arxiv.org/abs/0806.2438
https://doi.org/10.1016/j.physrep.2012.01.001
http://arxiv.org/abs/1106.2476
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1007/JHEP05(2011)079
https://doi.org/10.1007/JHEP05(2011)079
http://arxiv.org/abs/1010.2665
https://doi.org/10.1142/S021827180600942X
http://arxiv.org/abs/hep-th/0603057
https://doi.org/10.1103/PhysRevLett.119.251302
http://arxiv.org/abs/1710.05877
https://doi.org/10.1103/PhysRevD.97.021301
https://doi.org/10.1103/PhysRevD.97.021301
http://arxiv.org/abs/1711.06661
https://pos.sissa.it/234/408/
http://arxiv.org/abs/1512.09134
https://doi.org/10.1016/0550-3213(94)90143-0
http://arxiv.org/abs/hep-th/9401069
https://doi.org/10.1103/PhysRevD.83.044006
http://arxiv.org/abs/1008.1880
https://doi.org/10.1103/PhysRevD.85.123006
http://arxiv.org/abs/1102.5278


1 Page 54 of 58 C. Burrage, J. Sakstein

De Felice A, Tsujikawa S (2010) f (R) theories. Living Rev Relativ 13:3. https://doi.org/10.12942/lrr-

2010-3. arXiv:1002.4928

de Rham C (2014) Massive gravity. Living Rev Relativ 17:7. https://doi.org/10.12942/lrr-2014-7.

arXiv:1401.4173

de Rham C, Gabadadze G, Tolley AJ (2011) Resummation of massive gravity. Phys Rev Lett 106:231101.

https://doi.org/10.1103/PhysRevLett.106.231101. arXiv:1011.1232

de Rham C, Deskins JT, Tolley AJ, Zhou SY (2017) Graviton mass bounds. Rev Mod Phys 89:025004.

https://doi.org/10.1103/RevModPhys.89.025004. arXiv:1606.08462

Dima A, Vernizzi F (2017) Vainshtein screening in scalar–tensor theories before and after GW170817:

constraints on theories beyond Horndeski. ArXiv e-prints arXiv:1712.04731

Dossett J, Hu B, Parkinson D (2014) Constraining models of f (R) gravity with Planck and WiggleZ power

spectrum data. J Cosmol Astropart Phys 2014(03):046. https://doi.org/10.1088/1475-7516/2014/03/

046. arXiv:1401.3980

Elder B, Khoury J, Haslinger P, Jaffe M, Müller H, Hamilton P (2016) Chameleon dark energy and atom inter-

ferometry. Phys Rev D 94:044051. https://doi.org/10.1103/PhysRevD.94.044051. arXiv:1603.06587

Erickcek AL, Barnaby N, Burrage C, Huang Z (2013) Catastrophic consequences of kicking the chameleon.

Phys Rev Lett 110:171101. https://doi.org/10.1103/PhysRevLett.110.171101. arXiv:1304.0009

Erickcek AL, Barnaby N, Burrage C, Huang Z (2014) Chameleons in the early universe: kicks, rebounds,

and particle production. Phys Rev D 89:084074. https://doi.org/10.1103/PhysRevD.89.084074.

arXiv:1310.5149

Ezquiaga JM, Zumalacárregui M (2017) Dark energy after GW170817: dead ends and the road ahead. Phys

Rev Lett 119:251304. https://doi.org/10.1103/PhysRevLett.119.251304. arXiv:1710.05901

Fomalont E, Kopeikin S, Lanyi G, Benson J (2009) Progress in measurements of the gravitational bending

of radio waves using the VLBA. Astrophys J 699:1395–1402. https://doi.org/10.1088/0004-637X/

699/2/1395. arXiv:0904.3992

Freedman WL, Madore BF (2010) The Hubble constant. Annu Rev Astron Astrophys 48:673–710. https://

doi.org/10.1146/annurev-astro-082708-101829. arXiv:1004.1856

Garbrecht B, Millington P (2015) Self-consistent solitons for vacuum decay in radiatively generated poten-

tials. Phys Rev D 92:125022. https://doi.org/10.1103/PhysRevD.92.125022. arXiv:1509.08480

Geraci AA, Papp SB, Kitching J (2010) Short-range force detection using optically-cooled levi-

tated microspheres. Phys Rev Lett 105:101101. https://doi.org/10.1103/PhysRevLett.105.101101.

arXiv:1006.0261

Gessner E (1992) A new scalar tensor theory for gravity and the flat rotation curves of spiral galaxies.

Astrophys Space Sci 196:29–43. https://doi.org/10.1007/BF00645239

Gies H, Mota DF, Shaw DJ (2008) Hidden in the light: magnetically induced afterglow from

trapped chameleon fields. Phys Rev D 77:025016. https://doi.org/10.1103/PhysRevD.77.025016.

arXiv:0710.1556

Hamilton P, Jaffe M, Haslinger P, Simmons Q, Müller H, Khoury J (2015) Atom-interferometry constraints

on dark energy. Science 349:849–851. https://doi.org/10.1126/science.aaa8883. arXiv:1502.03888

Hees A, Fuzfa A (2012) Combined cosmological and solar system constraints on chameleon mechanism.

Phys Rev D 85:103005. https://doi.org/10.1103/PhysRevD.85.103005. arXiv:1111.4784

Hellwing WA, Barreira A, Frenk CS, Li B, Cole S (2014) A clear and measurable signature of modified

gravity in the galaxy velocity field. Phys Rev Lett 112:221102. https://doi.org/10.1103/PhysRevLett.

112.221102. arXiv:1401.0706

Hinterbichler K (2012) Theoretical aspects of massive gravity. Rev Mod Phys 84:671–710. https://doi.org/

10.1103/RevModPhys.84.671. arXiv:1105.3735

Hinterbichler K, Khoury J (2010) Symmetron fields: screening long-range forces through local sym-

metry restoration. Phys Rev Lett 104:231301. https://doi.org/10.1103/PhysRevLett.104.231301.

arXiv:1001.4525

Hinterbichler K, Khoury J, Levy A, Matas A (2011a) Symmetron cosmology. Phys Rev D 84:103521.

https://doi.org/10.1103/PhysRevD.84.103521. arXiv:1107.2112

Hinterbichler K, Khoury J, Nastase H (2011b) Towards a UV completion for chameleon scalar theories.

JHEP 03:061. https://doi.org/10.1007/JHEP03(2011)061, addendum: JHEP 06(2011):072 (2011).

arXiv:1012.4462

Hu W, Sawicki I (2007) Models of f (R) cosmic acceleration that evade solar-system tests. Phys Rev D

76:064004. https://doi.org/10.1103/PhysRevD.76.064004. arXiv:0705.1158

123

https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.12942/lrr-2010-3
http://arxiv.org/abs/1002.4928
https://doi.org/10.12942/lrr-2014-7
http://arxiv.org/abs/1401.4173
https://doi.org/10.1103/PhysRevLett.106.231101
http://arxiv.org/abs/1011.1232
https://doi.org/10.1103/RevModPhys.89.025004
http://arxiv.org/abs/1606.08462
http://arxiv.org/abs/arXiv:1712.04731
https://doi.org/10.1088/1475-7516/2014/03/046
https://doi.org/10.1088/1475-7516/2014/03/046
http://arxiv.org/abs/1401.3980
https://doi.org/10.1103/PhysRevD.94.044051
http://arxiv.org/abs/1603.06587
https://doi.org/10.1103/PhysRevLett.110.171101
http://arxiv.org/abs/1304.0009
https://doi.org/10.1103/PhysRevD.89.084074
http://arxiv.org/abs/1310.5149
https://doi.org/10.1103/PhysRevLett.119.251304
http://arxiv.org/abs/1710.05901
https://doi.org/10.1088/0004-637X/699/2/1395
https://doi.org/10.1088/0004-637X/699/2/1395
http://arxiv.org/abs/0904.3992
https://doi.org/10.1146/annurev-astro-082708-101829
https://doi.org/10.1146/annurev-astro-082708-101829
http://arxiv.org/abs/1004.1856
https://doi.org/10.1103/PhysRevD.92.125022
http://arxiv.org/abs/1509.08480
https://doi.org/10.1103/PhysRevLett.105.101101
http://arxiv.org/abs/1006.0261
https://doi.org/10.1007/BF00645239
https://doi.org/10.1103/PhysRevD.77.025016
http://arxiv.org/abs/0710.1556
https://doi.org/10.1126/science.aaa8883
http://arxiv.org/abs/1502.03888
https://doi.org/10.1103/PhysRevD.85.103005
http://arxiv.org/abs/1111.4784
https://doi.org/10.1103/PhysRevLett.112.221102
https://doi.org/10.1103/PhysRevLett.112.221102
http://arxiv.org/abs/1401.0706
https://doi.org/10.1103/RevModPhys.84.671
https://doi.org/10.1103/RevModPhys.84.671
http://arxiv.org/abs/1105.3735
https://doi.org/10.1103/PhysRevLett.104.231301
http://arxiv.org/abs/1001.4525
https://doi.org/10.1103/PhysRevD.84.103521
http://arxiv.org/abs/1107.2112
https://doi.org/10.1007/JHEP03(2011)061
http://arxiv.org/abs/1012.4462
https://doi.org/10.1103/PhysRevD.76.064004
http://arxiv.org/abs/0705.1158


Tests of chameleon gravity Page 55 of 58 1

Hui L, Nicolis A, Stubbs C (2009) Equivalence principle implications of modified gravity models. Phys

Rev D 80:104002. https://doi.org/10.1103/PhysRevD.80.104002. arXiv:0905.2966

Ip HY, Sakstein J, Schmidt F (2015) Solar system constraints on disformal gravity theories. J Cosmol

Astropart Phys 10:051. https://doi.org/10.1088/1475-7516/2015/10/051. arXiv:1507.00568

Ivanov AN, Hollwieser R, Jenke T, Wellenzohen M, Abele H (2013) Influence of the chameleon field

potential on transition frequencies of gravitationally bound quantum states of ultracold neutrons. Phys

Rev D 87:105013. https://doi.org/10.1103/PhysRevD.87.105013. arXiv:1207.0419

Jaeckel J, Roy S (2010) Spectroscopy as a test of Coulomb’s law: a probe of the hidden sector. Phys Rev D

82:125020. https://doi.org/10.1103/PhysRevD.82.125020. arXiv:1008.3536

Jaffe M, Haslinger P, Xu V, Hamilton P, Upadhye A, Elder B, Khoury J, Müller H (2017) Testing sub-

gravitational forces on atoms from a miniature, in-vacuum source mass. Nat Phys 13:938–942. https://

doi.org/10.1038/nphys4189. arXiv:1612.05171

Jain B, VanderPlas J (2011) Tests of modified gravity with dwarf galaxies. J Cosmol Astropart Phys

2011(10):032. https://doi.org/10.1088/1475-7516/2011/10/032. arXiv:1106.0065

Jain B, Vikram V, Sakstein J (2013a) Astrophysical tests of modified gravity: constraints from distance

indicators in the nearby universe. Astrophys J 779:39. https://doi.org/10.1088/0004-637X/779/1/39.

arXiv:1204.6044

Jain B, et al (2013b) Novel probes of gravity and dark energy. ArXiv e-prints arXiv:1309.5389

Jenke T et al (2014) Gravity resonance spectroscopy constrains dark energy and dark matter scenarios. Phys

Rev Lett 112:151105. https://doi.org/10.1103/PhysRevLett.112.151105. arXiv:1404.4099

Jennings E, Baugh CM, Li B, Zhao GB, Koyama K (2012) Redshift space distortions in f (R) grav-

ity. Mon Not R Astron Soc 425:2128–2143. https://doi.org/10.1111/j.1365-2966.2012.21567.x.

arXiv:1205.2698

Joyce A, Jain B, Khoury J, Trodden M (2015) Beyond the cosmological standard model. Phys Rep 568:1–98.

https://doi.org/10.1016/j.physrep.2014.12.002. arXiv:1407.0059

Kaplunovsky V, Louis J (1994) Field dependent gauge couplings in locally supersymmetric effective

quantum field theories. Nucl Phys B 422:57–124. https://doi.org/10.1016/0550-3213(94)00150-2.

arXiv:hep-th/9402005

Kapner DJ, Cook TS, Adelberger EG, Gundlach JH, Heckel BR, Hoyle CD, Swanson HE (2007) Tests of

the gravitational inverse-square law below the dark-energy length scale. Phys Rev Lett 98:021101.

https://doi.org/10.1103/PhysRevLett.98.021101. arXiv:hep-ph/0611184

Karuza M, Cantatore G, Gardikiotis A, Hoffmann DHH, Semertzidis YK, Zioutas K (2016) KWISP: an

ultra-sensitive force sensor for the dark energy sector. Phys Dark Univ 12:100–104. https://doi.org/

10.1016/j.dark.2016.02.004. arXiv:1509.04499

Khoury J, Weltman A (2004a) Chameleon cosmology. Phys Rev D 69:044026. https://doi.org/10.1103/

PhysRevD.69.044026. arXiv:astro-ph/0309411

Khoury J, Weltman A (2004b) Chameleon fields: awaiting surprises for tests of gravity in space. Phys Rev

Lett 93:171104. https://doi.org/10.1103/PhysRevLett.93.171104. arXiv:astro-ph/0309300

Koyama K (2016) Cosmological tests of modified gravity. Rep Prog Phys 79:046902. https://doi.org/10.

1088/0034-4885/79/4/046902. arXiv:1504.04623

Lambrecht A, Reynaud S (2011) Casimir and short-range gravity tests. In: Augé E, Dumarchez J, Trân

Thanh Vân J (eds) Proceedings of the XLVIth Rencontres de Moriond and GPhyS Colloquium: 2011

Gravitational Waves and Experimental Gravity, Thê Gioi Publisher, pp 199–206. https://inspirehep.

net/record/914261/. arXiv:1106.3848

Lambrecht A, Nesvizhevsky VV, Onofrio R, Reynaud S (2005) Development of a high-sensitivity torsional

balance for the study of the Casimir force in the 1–10 micrometre range. Class Quantum Grav 22:5397–

5406. https://doi.org/10.1088/0264-9381/22/24/012

Lamoreaux SK, Buttler WT (2005) Thermal noise limitations to force measurements with torsion pendu-

lums: applications to the measurement of the Casimir force and its thermal correction. Phys Rev E

71:036109. https://doi.org/10.1103/PhysRevE.71.036109

Langlois D, Saito R, Yamauchi D, Noui K (2017) Scalar–tensor theories and modified gravity in the wake

of GW170817. ArXiv e-prints arXiv:1711.07403

Lemmel H, Brax P, Ivanov AN, Jenke T, Pignol G, Pitschmann M, Potocar T, Wellenzohn M, Zawisky

M, Abele H (2015) Neutron Interferometry constrains dark energy chameleon fields. Phys Lett B

743:310–314. https://doi.org/10.1016/j.physletb.2015.02.063. arXiv:1502.06023

Li B, Zhao GB, Koyama K (2012) Halos and voids in f (R) gravity. Mon Not R Astron Soc 421:3481.

https://doi.org/10.1111/j.1365-2966.2012.20573.x. arXiv:1111.2602

123

https://doi.org/10.1103/PhysRevD.80.104002
http://arxiv.org/abs/0905.2966
https://doi.org/10.1088/1475-7516/2015/10/051
http://arxiv.org/abs/1507.00568
https://doi.org/10.1103/PhysRevD.87.105013
http://arxiv.org/abs/1207.0419
https://doi.org/10.1103/PhysRevD.82.125020
http://arxiv.org/abs/1008.3536
https://doi.org/10.1038/nphys4189
https://doi.org/10.1038/nphys4189
http://arxiv.org/abs/1612.05171
https://doi.org/10.1088/1475-7516/2011/10/032
http://arxiv.org/abs/1106.0065
https://doi.org/10.1088/0004-637X/779/1/39
http://arxiv.org/abs/1204.6044
http://arxiv.org/abs/arXiv:1309.5389
https://doi.org/10.1103/PhysRevLett.112.151105
http://arxiv.org/abs/1404.4099
https://doi.org/10.1111/j.1365-2966.2012.21567.x
http://arxiv.org/abs/1205.2698
https://doi.org/10.1016/j.physrep.2014.12.002
http://arxiv.org/abs/1407.0059
https://doi.org/10.1016/0550-3213(94)00150-2
http://arxiv.org/abs/hep-th/9402005
https://doi.org/10.1103/PhysRevLett.98.021101
http://arxiv.org/abs/hep-ph/0611184
https://doi.org/10.1016/j.dark.2016.02.004
https://doi.org/10.1016/j.dark.2016.02.004
http://arxiv.org/abs/1509.04499
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevD.69.044026
http://arxiv.org/abs/astro-ph/0309411
https://doi.org/10.1103/PhysRevLett.93.171104
http://arxiv.org/abs/astro-ph/0309300
https://doi.org/10.1088/0034-4885/79/4/046902
https://doi.org/10.1088/0034-4885/79/4/046902
http://arxiv.org/abs/1504.04623
https://inspirehep.net/record/914261/
https://inspirehep.net/record/914261/
http://arxiv.org/abs/1106.3848
https://doi.org/10.1088/0264-9381/22/24/012
https://doi.org/10.1103/PhysRevE.71.036109
http://arxiv.org/abs/arXiv:1711.07403
https://doi.org/10.1016/j.physletb.2015.02.063
http://arxiv.org/abs/1502.06023
https://doi.org/10.1111/j.1365-2966.2012.20573.x
http://arxiv.org/abs/1111.2602


1 Page 56 of 58 C. Burrage, J. Sakstein

Li K et al (2016) Neutron limit on the strongly-coupled chameleon field. Phys Rev D 93:062001. https://

doi.org/10.1103/PhysRevD.93.062001. arXiv:1601.06897

Lombriser L (2014) Constraining chameleon models with cosmology. Ann Phys 526:259–282. https://doi.

org/10.1002/andp.201400058. arXiv:1403.4268

Lombriser L, Koyama K, Zhao GB, Li B (2012a) Chameleon f (R) gravity in the virialized cluster. Phys

Rev D 85:124054. https://doi.org/10.1103/PhysRevD.85.124054. arXiv:1203.5125

Lombriser L, Schmidt F, Baldauf T, Mandelbaum R, Seljak U, Smith RE (2012b) Cluster density profiles

as a test of modified gravity. Phys Rev D 85:102001. https://doi.org/10.1103/PhysRevD.85.102001.

arXiv:1111.2020

Lombriser L, Li B, Koyama K, Zhao GB (2013) Modeling halo mass functions in chameleon f (R) gravity.

Phys Rev D 87:123511. https://doi.org/10.1103/PhysRevD.87.123511. arXiv:1304.6395

Miller C, Erickcek AL (2016) Quartic chameleons: safely scale-free in the early universe. Phys Rev D

94:104049. https://doi.org/10.1103/PhysRevD.94.104049. arXiv:1607.07877

Minamitsuji M, Silva HO (2016) Relativistic stars in scalar–tensor theories with disformal coupling. Phys

Rev D 93:124041. https://doi.org/10.1103/PhysRevD.93.124041. arXiv:1604.07742

Mota DF, Shaw DJ (2006) Strongly coupled chameleon fields: new horizons in scalar field theory. Phys

Rev Lett 97:151102. https://doi.org/10.1103/PhysRevLett.97.151102. arXiv:hep-ph/0606204

Mota DF, Shaw DJ (2007) Evading equivalence principle violations, cosmological and other experimental

constraints in scalar field theories with a strong coupling to matter. Phys Rev D 75:063501. https://

doi.org/10.1103/PhysRevD.75.063501. arXiv:hep-ph/0608078

Nastase H, Weltman A (2013) Chameleons on the racetrack. JHEP 08:059. https://doi.org/10.1007/

JHEP08(2013)059. arXiv:1301.7120

Nastase H, Weltman A (2015) A natural cosmological constant from chameleons. Phys Lett B 747:200–204.

https://doi.org/10.1016/j.physletb.2015.05.066. arXiv:1302.1748

Olive KA, Pospelov M (2008) Environmental dependence of masses and coupling constants. Phys Rev D

77:043524. https://doi.org/10.1103/PhysRevD.77.043524. arXiv:0709.3825

Padilla A, Platts E, Stefanyszyn D, Walters A, Weltman A, Wilson T (2016) How to avoid a swift kick

in the chameleons. J Cosmol Astropart Phys 2016(03):058. https://doi.org/10.1088/1475-7516/2016/

03/058. arXiv:1511.05761

Padmanabhan T (2010) Gravitation: foundations and frontiers. Cambridge University Press, Cambridge

Pettinari GW, Crittenden R (2010) On the evidence for axion-like particles from active galactic nuclei. Phys

Rev D 82:083502. https://doi.org/10.1103/PhysRevD.82.083502. arXiv:1007.0024

Pietroni M (2005) Dark energy condensation. Phys Rev D 72:043535. https://doi.org/10.1103/PhysRevD.

72.043535. arXiv:astro-ph/0505615

Pokotilovski YN (2013) Strongly coupled chameleon fields: possible test with a neutron Lloyd’s

mirror interferometer. Phys Lett B 719:341–345. https://doi.org/10.1016/j.physletb.2013.01.022.

arXiv:1203.5017

Raffelt G, Stodolsky L (1988) Mixing of the photon with low mass particles. Phys Rev D 37:1237. https://

doi.org/10.1103/PhysRevD.37.1237

Raveri M, Hu B, Frusciante N, Silvestri A (2014) Effective field theory of cosmic acceleration: constraining

dark energy with CMB data. Phys Rev D 90:043513. https://doi.org/10.1103/PhysRevD.90.043513.

arXiv:1405.1022

Rider AD, Moore DC, Blakemore CP, Louis M, Lu M, Gratta G (2016) Search for screened interactions

associated with dark energy below the 100 μm length scale. Phys Rev Lett 117:101101. https://doi.

org/10.1103/PhysRevLett.117.101101. arXiv:1604.04908

Rybka G et al (2010) A search for scalar chameleons with ADMX. Phys Rev Lett 105:051801. https://doi.

org/10.1103/PhysRevLett.105.051801. arXiv:1004.5160

Saaidi K, Mohammadi A, Sheikhahmadi H (2011) γ Parameter and solar system constraint in

chameleon-Brans-Dicke theory. Phys Rev D 83:104019. https://doi.org/10.1103/PhysRevD.83.

104019. arXiv:1201.0271

Sakai S (1999) The Tip of the Red Giant Branch as a Population II distance indicator. In: Sato K (ed)

Cosmological parameters and the evolution of the universe. Kluwer Academic, Dordrecht, Boston,

IAU Symposium, vol 183, p 48

Sakstein J (2013) Stellar oscillations in modified gravity. Phys Rev D 88:124013. https://doi.org/10.1103/

PhysRevD.88.124013. arXiv:1309.0495

Sakstein J (2014a) Astrophysical tests of modified gravity. PhD thesis, University of Cambridge.

arXiv:1502.04503

123

https://doi.org/10.1103/PhysRevD.93.062001
https://doi.org/10.1103/PhysRevD.93.062001
http://arxiv.org/abs/1601.06897
https://doi.org/10.1002/andp.201400058
https://doi.org/10.1002/andp.201400058
http://arxiv.org/abs/1403.4268
https://doi.org/10.1103/PhysRevD.85.124054
http://arxiv.org/abs/1203.5125
https://doi.org/10.1103/PhysRevD.85.102001
http://arxiv.org/abs/1111.2020
https://doi.org/10.1103/PhysRevD.87.123511
http://arxiv.org/abs/1304.6395
https://doi.org/10.1103/PhysRevD.94.104049
http://arxiv.org/abs/1607.07877
https://doi.org/10.1103/PhysRevD.93.124041
http://arxiv.org/abs/1604.07742
https://doi.org/10.1103/PhysRevLett.97.151102
http://arxiv.org/abs/hep-ph/0606204
https://doi.org/10.1103/PhysRevD.75.063501
https://doi.org/10.1103/PhysRevD.75.063501
http://arxiv.org/abs/hep-ph/0608078
https://doi.org/10.1007/JHEP08(2013)059
https://doi.org/10.1007/JHEP08(2013)059
http://arxiv.org/abs/1301.7120
https://doi.org/10.1016/j.physletb.2015.05.066
http://arxiv.org/abs/1302.1748
https://doi.org/10.1103/PhysRevD.77.043524
http://arxiv.org/abs/0709.3825
https://doi.org/10.1088/1475-7516/2016/03/058
https://doi.org/10.1088/1475-7516/2016/03/058
http://arxiv.org/abs/1511.05761
https://doi.org/10.1103/PhysRevD.82.083502
http://arxiv.org/abs/1007.0024
https://doi.org/10.1103/PhysRevD.72.043535
https://doi.org/10.1103/PhysRevD.72.043535
http://arxiv.org/abs/astro-ph/0505615
https://doi.org/10.1016/j.physletb.2013.01.022
http://arxiv.org/abs/1203.5017
https://doi.org/10.1103/PhysRevD.37.1237
https://doi.org/10.1103/PhysRevD.37.1237
https://doi.org/10.1103/PhysRevD.90.043513
http://arxiv.org/abs/1405.1022
https://doi.org/10.1103/PhysRevLett.117.101101
https://doi.org/10.1103/PhysRevLett.117.101101
http://arxiv.org/abs/1604.04908
https://doi.org/10.1103/PhysRevLett.105.051801
https://doi.org/10.1103/PhysRevLett.105.051801
http://arxiv.org/abs/1004.5160
https://doi.org/10.1103/PhysRevD.83.104019
https://doi.org/10.1103/PhysRevD.83.104019
http://arxiv.org/abs/1201.0271
https://doi.org/10.1103/PhysRevD.88.124013
https://doi.org/10.1103/PhysRevD.88.124013
http://arxiv.org/abs/1309.0495
http://arxiv.org/abs/1502.04503


Tests of chameleon gravity Page 57 of 58 1

Sakstein J (2014b) Disformal theories of gravity: from the solar system to cosmology. J Cosmol Astropart

Phys 2014(12):012. https://doi.org/10.1088/1475-7516/2014/12/012. arXiv:1409.1734

Sakstein J (2015) Towards viable cosmological models of disformal theories of gravity. Phys Rev D

91:024036. https://doi.org/10.1103/PhysRevD.91.024036. arXiv:1409.7296

Sakstein J (2017) Tests of gravity with future space-based experiments. ArXiv e-prints arXiv:1710.03156

Sakstein J, Jain B (2017) Implications of the neutron star merger GW170817 for cosmological

scalar–tensor theories. Phys Rev Lett 119:251303. https://doi.org/10.1103/PhysRevLett.119.251303.

arXiv:1710.05893

Sakstein J, Verner S (2015) Disformal gravity theories: a Jordan frame analysis. Phys Rev D 92:123005.

https://doi.org/10.1103/PhysRevD.92.123005. arXiv:1509.05679

Sakstein J, Babichev E, Koyama K, Langlois D, Saito R (2017) Towards strong field tests of beyond

Horndeski gravity theories. Phys Rev D 95:064013. https://doi.org/10.1103/PhysRevD.95.064013.

arXiv:1612.04263

Schärer A, Angélil R, Bondarescu R, Jetzer P, Lundgren A (2014) Testing scalar–tensor theories and

parametrized post-Newtonian parameters in Earth orbit. Phys Rev D 90:123005. https://doi.org/10.

1103/PhysRevD.90.123005. arXiv:1410.7914

Schelpe CAO (2010) Chameleon-photon mixing in a primordial magnetic field. Phys Rev D 82:044033.

https://doi.org/10.1103/PhysRevD.82.044033. arXiv:1003.0232

Schmidt F (2009) Cosmological simulations of normal-branch braneworld gravity. Phys Rev D 80:123003.

https://doi.org/10.1103/PhysRevD.80.123003. arXiv:0910.0235

Schmidt F (2010) Dynamical masses in modified gravity. Phys Rev D 81:103002. https://doi.org/10.1103/

PhysRevD.81.103002. arXiv:1003.0409

Schmidt F, Lima MV, Oyaizu H, Hu W (2009a) Non-linear evolution of f (R) cosmologies III: Halo

statistics. Phys Rev D 79:083518. https://doi.org/10.1103/PhysRevD.79.083518. arXiv:0812.0545

Schmidt F, Vikhlinin A, Hu W (2009b) Cluster constraints on f (R) gravity. Phys Rev D 80:083505. https://

doi.org/10.1103/PhysRevD.80.083505. arXiv:0908.2457

Schwob C, Jozefowski L, de Beauvoir B, Hilico L, Nez F, Julien L, Biraben F, Acef O, Zondy JJ, Clairon

A (1999) Optical frequency measurement of the 2S-12D transitions in hydrogen and deuterium:

Rydberg constant and Lamb shift determinations. Phys Rev Lett 82:4960–4963. https://doi.org/10.

1103/PhysRevLett.82.4960

Sikivie P (1983) Experimental tests of the invisible axion. Phys Rev Lett 51:1415–1417. https://doi.org/10.

1103/PhysRevLett.51.1415, https://doi.org/10.1103/PhysRevLett.52.695.2 [Erratum: Phys Rev Lett

52:695 (1984)]

Silvestri A (2011) Scalar radiation from chameleon-shielded regions. Phys Rev Lett 106:251101. https://

doi.org/10.1103/PhysRevLett.106.251101. arXiv:1103.4013

Simon GG, Schmitt C, Borkowski F, Walther VH (1980) Absolute electron proton cross-sections at low

momentum transfer measured with a high pressure gas target system. Nucl Phys A 333:381–391.

https://doi.org/10.1016/0375-9474(80)90104-9

Smith TL (2009) Testing gravity on kiloparsec scales with strong gravitational lenses. ArXiv e-prints

arXiv:0907.4829

Song YS, Peiris H, Hu W (2007) Cosmological constraints on f (R) acceleration models. Phys Rev D

76:063517. https://doi.org/10.1103/PhysRevD.76.063517. arXiv:0706.2399

Steffen AT, Strateva I, Brandt WN, Alexander DM, Koekemoer AM, Lehmer BD, Schneider DP, Vignali C

(2006) The x-ray-to-optical properties of optically-selected active galaxies over wide luminosity and

redshift ranges. Astron J 131:2826–2842. https://doi.org/10.1086/503627. arXiv:astro-ph/0602407

Steffen JH, Upadhye A, Baumbaugh A, Chou AS, Mazur PO, Tomlin R, Weltman A, Wester W (2010)

Laboratory constraints on chameleon dark energy and power-law fields. Phys Rev Lett 105:261803.

https://doi.org/10.1103/PhysRevLett.105.261803. arXiv:1010.0988

Terukina A, Lombriser L, Yamamoto K, Bacon D, Koyama K, Nichol RC (2014) Testing chameleon gravity

with the Coma cluster. J Cosmol Astropart Phys 2014(04):013. https://doi.org/10.1088/1475-7516/

2014/04/013. arXiv:1312.5083

Upadhye A (2012a) Dark energy fifth forces in torsion pendulum experiments. Phys Rev D 86:102003.

https://doi.org/10.1103/PhysRevD.86.102003. arXiv:1209.0211

Upadhye A (2012b) Particles and forces from chameleon dark energy. In: 8th Patras workshop on Axions,

WIMPs and WISPs (AXION-WIMP 2012) Chicago, Illinois, July 18–22, 2012. https://inspirehep.

net/record/1204935/. arXiv:1211.7066

123

https://doi.org/10.1088/1475-7516/2014/12/012
http://arxiv.org/abs/1409.1734
https://doi.org/10.1103/PhysRevD.91.024036
http://arxiv.org/abs/1409.7296
http://arxiv.org/abs/arXiv:1710.03156
https://doi.org/10.1103/PhysRevLett.119.251303
http://arxiv.org/abs/1710.05893
https://doi.org/10.1103/PhysRevD.92.123005
http://arxiv.org/abs/1509.05679
https://doi.org/10.1103/PhysRevD.95.064013
http://arxiv.org/abs/1612.04263
https://doi.org/10.1103/PhysRevD.90.123005
https://doi.org/10.1103/PhysRevD.90.123005
http://arxiv.org/abs/1410.7914
https://doi.org/10.1103/PhysRevD.82.044033
http://arxiv.org/abs/1003.0232
https://doi.org/10.1103/PhysRevD.80.123003
http://arxiv.org/abs/0910.0235
https://doi.org/10.1103/PhysRevD.81.103002
https://doi.org/10.1103/PhysRevD.81.103002
http://arxiv.org/abs/1003.0409
https://doi.org/10.1103/PhysRevD.79.083518
http://arxiv.org/abs/0812.0545
https://doi.org/10.1103/PhysRevD.80.083505
https://doi.org/10.1103/PhysRevD.80.083505
http://arxiv.org/abs/0908.2457
https://doi.org/10.1103/PhysRevLett.82.4960
https://doi.org/10.1103/PhysRevLett.82.4960
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.52.695.2
https://doi.org/10.1103/PhysRevLett.106.251101
https://doi.org/10.1103/PhysRevLett.106.251101
http://arxiv.org/abs/1103.4013
https://doi.org/10.1016/0375-9474(80)90104-9
http://arxiv.org/abs/arXiv:0907.4829
https://doi.org/10.1103/PhysRevD.76.063517
http://arxiv.org/abs/0706.2399
https://doi.org/10.1086/503627
http://arxiv.org/abs/astro-ph/0602407
https://doi.org/10.1103/PhysRevLett.105.261803
http://arxiv.org/abs/1010.0988
https://doi.org/10.1088/1475-7516/2014/04/013
https://doi.org/10.1088/1475-7516/2014/04/013
http://arxiv.org/abs/1312.5083
https://doi.org/10.1103/PhysRevD.86.102003
http://arxiv.org/abs/1209.0211
https://inspirehep.net/record/1204935/
https://inspirehep.net/record/1204935/
http://arxiv.org/abs/1211.7066


1 Page 58 of 58 C. Burrage, J. Sakstein

Upadhye A (2013) Symmetron dark energy in laboratory experiments. Phys Rev Lett 110:031301. https://

doi.org/10.1103/PhysRevLett.110.031301. arXiv:1210.7804

Upadhye A, Steffen JH (2013) Monopole radiation in modified gravity. ArXiv e-prints arXiv:1306.6113

Upadhye A, Steffen JH, Weltman A (2010) Constraining chameleon field theories using the Gam-

meV afterglow experiments. Phys Rev D 81:015013. https://doi.org/10.1103/PhysRevD.81.015013.

arXiv:0911.3906

Upadhye A, Hu W, Khoury J (2012a) Quantum stability of chameleon field theories. Phys Rev Lett

109:041301. https://doi.org/10.1103/PhysRevLett.109.041301. arXiv:1204.3906

Upadhye A, Steffen JH, Chou AS (2012b) Designing dark energy afterglow experiments. Phys Rev D

86:035006. https://doi.org/10.1103/PhysRevD.86.035006. arXiv:1204.5476

Vikram V, Cabré A, Jain B, VanderPlas JT (2013) Astrophysical tests of modified gravity: the morphology

and kinematics of dwarf galaxies. J Cosmol Astropart Phys 2013(08):020. https://doi.org/10.1088/

1475-7516/2013/08/020. arXiv:1303.0295

Vikram V, Sakstein J, Davis C, Neil A (2014) Astrophysical tests of modified gravity: stellar and gaseous

rotation curves in dwarf galaxies. ArXiv e-prints arXiv:1407.6044

Wald R (2010) General relativity. University of Chicago Press, Chicago

Wang J, Hui L, Khoury J (2012) No-go theorems for generalized chameleon field theories. Phys Rev Lett

109:241301. https://doi.org/10.1103/PhysRevLett.109.241301. arXiv:1208.4612

Weinberg S (1965) Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s

equations. Phys Rev 138:B988–B1002. https://doi.org/10.1103/PhysRev.138.B988

Wilcox H, Nichol RC, Zhao GB, Bacon D, Koyama K, Romer AK (2016) Simulation tests of galaxy

cluster constraints on chameleon gravity. Mon Not R Astron Soc 462:715–725. https://doi.org/10.

1093/mnras/stw1617. arXiv:1603.05911

Will CM (2004) The confrontation between general relativity and experiment. Pramana 63:731–740. https://

doi.org/10.1007/BF02705195

Williams JG, Turyshev SG, Boggs DH (2004) Progress in lunar laser ranging tests of relativistic gravity.

Phys Rev Lett 93:261101. https://doi.org/10.1103/PhysRevLett.93.261101. arXiv:gr-qc/0411113

Xu L (2015) Constraint on f (R) gravity through the redshift space distortion. Phys Rev D 91:063008.

https://doi.org/10.1103/PhysRevD.91.063008. arXiv:1411.4353

Yamamoto K, Nakamura G, Hutsi G, Narikawa T, Sato T (2010) Constraint on the cosmological f (R)

model from the multipole power spectrum of the SDSS luminous red galaxy sample and prospects

for a future redshift survey. Phys Rev D 81:103517. https://doi.org/10.1103/PhysRevD.81.103517.

arXiv:1004.3231

Young M, Elvis M, Risaliti G (2009) The fifth data release Sloan Digital Sky Survey/XMM-Newton quasar

survey. Astrophys J Suppl 183:17. https://doi.org/10.1088/0067-0049/183/1/17. arXiv:0905.0496

Zavattini E et al (2006) Experimental observation of optical rotation generated in vacuum by a magnetic

field. Phys Rev Lett 96:110406. https://doi.org/10.1103/PhysRevLett.99.129901, https://doi.org/10.

1103/PhysRevLett.96.110406 [Erratum: Phys Rev Lett 99:129901 (2007)]. arXiv:hep-ex/0507107

Zhang P (2006) Testing gravity against the early time integrated Sachs–Wolfe effect. Phys Rev D 73:123504.

https://doi.org/10.1103/PhysRevD.73.123504. arXiv:astro-ph/0511218

Zhang X, Zhao W, Huang H, Cai Y (2016) Post-Newtonian parameters and cosmological constant of

screened modified gravity. Phys Rev D 93:124003. https://doi.org/10.1103/PhysRevD.93.124003.

arXiv:1603.09450

Zhang X, Liu T, Zhao W (2017) Gravitational radiation from compact binary systems in screened modified

gravity. Phys Rev D 95:104027. https://doi.org/10.1103/PhysRevD.95.104027. arXiv:1702.08752

Zioutas K et al (2005) First results from the CERN Axion Solar Telescope (CAST). Phys Rev Lett 94:121301.

https://doi.org/10.1103/PhysRevLett.94.121301. arXiv:hep-ex/0411033

Zumalacárregui M, García-Bellido J (2014) Transforming gravity: from derivative couplings to matter to

second-order scalar-tensor theories beyond the Horndeski Lagrangian. Phys Rev D 89:064046. https://

doi.org/10.1103/PhysRevD.89.064046. arXiv:1308.4685

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

https://doi.org/10.1103/PhysRevLett.110.031301
https://doi.org/10.1103/PhysRevLett.110.031301
http://arxiv.org/abs/1210.7804
http://arxiv.org/abs/arXiv:1306.6113
https://doi.org/10.1103/PhysRevD.81.015013
http://arxiv.org/abs/0911.3906
https://doi.org/10.1103/PhysRevLett.109.041301
http://arxiv.org/abs/1204.3906
https://doi.org/10.1103/PhysRevD.86.035006
http://arxiv.org/abs/1204.5476
https://doi.org/10.1088/1475-7516/2013/08/020
https://doi.org/10.1088/1475-7516/2013/08/020
http://arxiv.org/abs/1303.0295
http://arxiv.org/abs/arXiv:1407.6044
https://doi.org/10.1103/PhysRevLett.109.241301
http://arxiv.org/abs/1208.4612
https://doi.org/10.1103/PhysRev.138.B988
https://doi.org/10.1093/mnras/stw1617
https://doi.org/10.1093/mnras/stw1617
http://arxiv.org/abs/1603.05911
https://doi.org/10.1007/BF02705195
https://doi.org/10.1007/BF02705195
https://doi.org/10.1103/PhysRevLett.93.261101
http://arxiv.org/abs/gr-qc/0411113
https://doi.org/10.1103/PhysRevD.91.063008
http://arxiv.org/abs/1411.4353
https://doi.org/10.1103/PhysRevD.81.103517
http://arxiv.org/abs/1004.3231
https://doi.org/10.1088/0067-0049/183/1/17
http://arxiv.org/abs/0905.0496
https://doi.org/10.1103/PhysRevLett.99.129901
https://doi.org/10.1103/PhysRevLett.96.110406
https://doi.org/10.1103/PhysRevLett.96.110406
http://arxiv.org/abs/hep-ex/0507107
https://doi.org/10.1103/PhysRevD.73.123504
http://arxiv.org/abs/astro-ph/0511218
https://doi.org/10.1103/PhysRevD.93.124003
http://arxiv.org/abs/1603.09450
https://doi.org/10.1103/PhysRevD.95.104027
http://arxiv.org/abs/1702.08752
https://doi.org/10.1103/PhysRevLett.94.121301
http://arxiv.org/abs/hep-ex/0411033
https://doi.org/10.1103/PhysRevD.89.064046
https://doi.org/10.1103/PhysRevD.89.064046
http://arxiv.org/abs/1308.4685

	Tests of chameleon gravity
	Abstract
	1 Introduction
	2 Screening mechanisms
	2.1 Chameleon screening
	2.1.1 f(R) models
	2.1.2 UV properties

	2.2 Symmetron screening
	2.2.1 Generalized symmetrons
	2.2.2 Radiatively-stable symmetrons

	2.3 Coupling to photons

	3 Screening
	3.1 Astrophysical screening: the thin-shell effect
	3.1.1 Screening in f(R) theories
	3.1.2 Gravitational lensing: dynamical versus lensing masses

	3.2 Solar-system tests
	3.2.1 PPN parameters
	3.2.2 Lensing revisited

	3.3 Equivalence principle violations
	3.4 Laboratory screening
	3.5 Screening in the Jordan frame

	4 Experimental tests
	4.1 Fifth-force searches
	4.1.1 Torsion balance experiments
	4.1.2 Casimir-force tests
	4.1.3 Levitated microspheres

	4.2 Precision atomic tests
	4.3 Atom interferometry
	4.4 Precision neutron tests
	4.4.1 Ultra-cold neutrons
	4.4.2 Neutron interferometry

	4.5 Astrophysical tests
	4.5.1 Distance indicator tests
	4.5.2 Rotation-curve tests
	4.5.3 Galaxy clusters

	4.6 f(R) specific tests
	4.6.1 Solar-system bounds
	4.6.2 Strong gravitational lensing
	4.6.3 Cluster density profiles
	4.6.4 Cluster abundances
	4.6.5 Cosmic microwave background
	4.6.6 Scalar radiation
	4.6.7 Redshift-space distortions

	4.7 Tests of the coupling to photons
	4.7.1 PVLAS
	4.7.2 GammeV-CHASE
	4.7.3 ADMX
	4.7.4 CAST
	4.7.5 Collider constraints
	4.7.6 Galactic and extra-galactic constraints

	4.8 Summary of tests

	5 Constraints
	5.1 Chameleon constraints
	5.1.1 f(R) constraints
	5.1.2 Constraints on the coupling to photons

	5.2 Symmetron constraints

	6 Conclusions and outlook
	6.1 Prospects for future bounds
	6.1.1 Laboratory tests
	6.1.2 Astrophysical tests
	6.1.3 Tests of the coupling to photons


	References


