TESTS OF COMPOSITE HYPOTHESES FOR THE MULTIVARIATE
EXPONENTIAL FAMILY!

By T. K. Marraes anp D. R. TRUAX‘
Unaversity of Oregon

0. Summary. This paper is concerned with testing the hypothesis that the
parameter in a multivariate exponential distribution lies in a linear subspace of
the natural parameter space. Our main result characterizes a complete class of
tests which is independent of the particular exponential distribution. This class
is, in fact, complete relative to the stronger ordering among tests which compares
conditional power, given a certain statistic, pointwise. The conclusion holds
without any restriction on the exponential distribution. Many of the tests are
admissible, but examples show that although the class is essentially the smallest
class complete relative to all exponential distributions, it is not in general
minimally complete. Some special cases where the class is minimally complete
are discussed.

1. Introduction. Suppose that X, , X,, - - - , X, is a random sample of k-dimen-
sional vectors each having the distribution

(1.1) Py(A) = ¢(0) [4 & N(dx)

where \ is a finite measureon R¥,0 = (6,,0:, -+ ,0:), 0z = 25—y 0. Asis well
known, D7 X is a sufficient statistic and also has an exponential distribution.
Therefore, for testing hypotheses concerning 6, it will be sufficient to consider
only samples of size one. Let @ denote the ‘“natural” parameter space:
Q = {6eR": [ & N(dz) < »}.Qis clearly convex. Let 2 be an r-dimensional
linear subspace (r < k) of R*. We will be concerned with tests of the null hy-
pothesis 8 £ @ n Q. Notice that if T is any linear transformation on R*, TX again
has an exponential distribution. It is clear that by choosing T’ to be an appropriate
orthogonal transformation the problem can be put into the canonical form

Ho:0¢+1=07+2= =0k=0-

Note that the linear transformation may change A and hence ¢(8). In order to
simplify notation we will write the sample space as X x Y, where X = R,
Y = R*”7, and a sample point as (z, y). Similarly the parameter point will be
expressed as the pair (6, w) where 6 is an r-vector, and w is a (kK — r)-vector.
Thus, the hypothesis, in canonical form, is Ho : @ = 0. Throughout this paper
it will be assumed that the origin is an interior point of Q. Furthermore, there is
no loss in generality in assuming that \ is normalized to be a probability measure
on the Borel sets of R*.

The case r = 0—the case of no nuisance parameters—was first investigated
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by A. Birnbaum [1]. He showed that the class of tests which accept the hypothesis
when Y is in some convex set in Y is a complete class, although his statement
involved the restriction that the probability distributions be absolutely con-
tinuous. Birnbaum’s proof, however; contains an essential error which was cor-
rected by J. Sacks [8] in an unpublished paper. Since a corrected proof has not
appeared in print we give in Section 2 a short proof which also extends the
theorem to the case of general measures \.

The case r = k — 1, that is, when the parameter  is real, has been studied
extensively by Lehmann [6] who finds the complete class of tests when the
alternative is one sided. Completeness in the two sided case appears to be un-
treated.

In Section 3 the main result characterizes a complete class of tests of w = 0
as those tests whose acceptance regions have convex Z-sections. The proof of
this result utilizes the Birnbaum theorem of Section 2, and in fact the theorem
is clearly motivated by the Birnbaum theorem. If one denotes by u. the con-
ditional measure on Y determined by A for a fixed z ¢ X, then given a test ¢ one
can find, by Birnbaum’s theorem, a test ¢.(y) with convex acceptance region
which conditionally dominates y. The crux of the matter is the fact that con-
sidered as a function on X x Y, ¢ may not be jointly measurable. In fact, due to
the non-uniqueness of the dominating test for the simple hypothesis it is easy to
construct, in this manner, many non-measurable ¢ which dominate ¢ for each
fixed z. Our construction in Section 3 is essentially to insure that we end up with
a measurable test.

Another possible approach to proving the main theorem would seem to be
what was essentially Birnbaum’s approach. Under Wald’s topology of regular
convergence which in our case is equivalent to weak * convergence of functions
in L. , the closure of the class ® of Bayes tests is essentially complete. It
is easily established that the Bayes tests have acceptance regions with convex
z-sections (henceforth the class of such tests will be denoted by ®g), i.e.
® C ®g . Even though ® is extremely difficult to characterize, it would be
enough to show, as Birnbaum does in the simple hypothesis case that &g = &g ,
where the closure is in the sense of weak * convergence. This, in fact, is not true
if 7 > 0, and it is quite easy to produce a sequence in ®5 whose weak * limit is
completely randomized. We hope that this discussion will provide some sort of
justification for the somewhat technical nature of our proof, and the measure
theoretical difficulties which must be circumvented.

Some results on admissibility of tests are given in Section 4. Admissibility
of tests with convex acceptance regions has been well studied and established
in certain circumstances. Birnbaum was the first to give sufficient conditions,
using a technique generalized by Stein [9] in order to prove admissibility of
Hotelling’s 7” test. A Bayes approach was used by Kiefer and Schwartz [5] in
order to show that many of the classical tests used in multivariate analysis are
adissible. The latter paper also contains an extensive bibliography pertaining
to admissibility. Actually, the tests Kiefer and Schwartz consider appear to
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have, like the T° test, convex acceptance regions, and not merely acceptance
regions with convex z-sections. The difficulties inherent to admissibility are
great in the multivariate case, and it is not surprising that our knowledge of
admissibility of tests in the larger class ®g is unsatisfactory. From a more
practical point of view, undue emphasis on the admissibility question is un-
rewarding inasmuch as one is not concerned with the power of a test at all al-
ternatives, but only at certain more important points. In this connection we feel
that likelihood ratio tests (which do indeed belong to ®4) for multivariate ex-
ponential problems should possess desirable properties in general, as demonstrated
by Hoeffding [4] in the multinomial case.

Finally, we have relegated the proof or a crucial but technical Main Lemma
3.2 to an appendix.

2. Testing a simple hypothesis. Before taking up thé main result it is necessary
to consider the case of testing a simple hypothesis. We observe a random vector
Y in R* and suppose Y has density

Pu(y) = c("-’)ewy
with respect to a dominating measure p in Y. The hypothesis to be tested is

w = 0, the alternative o #% 0.
Let @ denote the class of closed convex sets in Y. A test ¢ is said to have a

convex acceptance region if for some C ¢ @,

o(y) = 0, y eint C,
= v(y), yeaC,
=1, yeC'.

Here, 0 = v £ 1 is a (measurable) randomization, dC denotes the boundary
of C, and the prime on a set denotes complement. Let us denote the class of all
tests with convex acceptance regions by ®e .

It is shown in [1] that every Bayes test belongs to ®¢ , so to prove that ®¢
is essentially complete it is enough to prove that ®e is closed in the topology
of weak % convergence, i.e., if ¢, ¢ Pe and lim,, f o fdp = fd)f du for all
integrable f, then ¢ ¢ ®¢ . This will be shown in Theorem 2.1 with the aid of the
Blaschke selection theorem.

If S, denotes the solid sphere of radius 7 in R*, and A and B are closed sub-
sets of S, , the Hausdorff distance between 4 and B is

d(A, B) = inf {e: A © N(B), B C N.(4)}

where N.(A) denotes the e-neighborhood of A. The class of all closed subsets of
S, becomes a metric space with this distance function.

Levmma 2.1. (Blaschke Selection Theorem, [11].) Given any sequence of closed
convex subsets of S, , say {C.}, there exists a subsequence {Ch,} and a closed convex
set C < 8, such that limg.. d(Cy, ,C) = 0.
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TreorEM 2.1. For any o-finile measure u, Pe is closed in the weak * topology.

Proor. Let ¢ & ¢ . There exists a sequence of tests ¢, & ®e such that
limpw ¢n = ¢. Bach ¢, is associated with a set C,, ¢ €.

We outline an extension of Lemma 2.1 that gives a subsequence n; and a
closed convex set C such that for all sufficiently large r d(C,; 0 S.,Cn S,) — 0
as 1 — «. Two cases may arise. If for every positive r, C,, n S, is non-empty for
only finitely many n, we take C to be empty. Otherwise, there is some r such that
C, n 8, is non-empty for infinitely many n. We may as well assume C, a S, is
non-empty for all n. Lemma 2.1 gives a subsequence ny; and a closed non-empty
convex set C* < 8, for which d(C,,; n S, , C*) — 0 as 7 —> . There is a further
subsequence ny; and a closed non-empty convex set ¢° C S, such that
d(Chry; © 8r, ) — 0. It is not difficult to show that C* n S, = C*. In fact, this
would follow from Theorem 31 of [3] in case C* meets 8, at an interior point of
8. . This restriction is not needed in the present case, however. Proceeding
inductively, one obtains further subsequences, and finally a diagonal sequence
n; and closed non-empty convex sets C” such that C* n 8, = C? whenever
p=Zqzr andd(CpnS,,C?") —>0asi—> . Define C = U5, C?. It is seen
easily that C is closed and convex and that forallp = r, d(Cy;n S, ,CnS,) — 0.

The following argument applies when C is non-empty. Otherwise, if for each
r, C, 0 S, is empty for all but finitely many =, the result below gives ¢ = 1 [u],
which is an element of &¢ .

Let A be a compact set disjoint from C. Then there exists an ¢ > 0 such that
N.(A) is disjoint from C. Choose r such that N.(4) < S, . Then if

d(Coin S, 008 < ¢
it follows that C,, and A are disjoint, or 4 C C, , - Hence,
fA ¢fdl~“ = ﬁmi»oc fA ¢nlfdp' = fAfd“

for all integrable f because ¢n, —* ¢ and ¢,, = 1 on '}, . Therefore, ¢ must be
one on A [u]. But € can be covered by a denumerable number of compact sets
A,50¢ = 1onC [u]. A similar argument shows ¢ = 0 on int C [u]. Thus, ¢ is
equal almost everywhere to an element of ®¢ .

3. Testing composite hypotheses. We return now to the original problem
of testing Ho : w = 0 where 6 is unknown. A test 0 = ¢ = 1 is now a measur-
able function on X x Y. The test ¢ is said to have convex acceptance sections if
there exists a measurable set C C X x Y, each of whose z-sections are closed
and convex in Y, and

(3.1) ¢(z,9) =0, yeint C(a),
=1, yeC'(z).
,On the boundaries of C(z) ¢ may be randomized. The family of all tests with
convex acceptance sections will be denoted by @, .

Our main theorem below states that &4 is a complete class of tests. Moreover,
it is shown that ®4 is a complete class relative to the ordering which at each z
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compares pointwise the conditional power E.{¢(X, Y) | X = z}. The obvious
methods of attack which one might consider to prove completeness were dis-
cussed in the introduction and are inadequate to handle the measure theoretical
difficulties. Lo

In order to circumvent these difficulties we first discretize X in such a way
that only a denumerable number of sections need be considered. The Birnbaum
theorem is applied to each of these sections to obtain a test in ®¢ which dominates
a given test ¢. The piecing together of all these conditional tests then presents
no difficulty. Thus, relative to the nth discretization there is a test in @4, which
dominates the discretized version of . Now, a further difficulty arises in extract-
ing, in some sense, a limit point of these C,(z). It is inadequate to consider, for
example, weak * convergence in X of a denumerable number of hyperplanes
characterizing C,(z) because in general this kind of eonvergence does not yield
convergence of the power function, which is what we want. We are instead forced
to consider a rather unusual limit point of {C,(z)} in Lemma 3.2. This lemma is a
non-trivial generalization of the Blaschke theorem to the case of a sequence of
convex sets which depend measurably on an indexing variable z.

As a preliminary some notation is introduced relating to the discretization.
As we mentioned in the introduction the dominating measure X on X x Y may
be taken to be a probability distribution. The marginal distribution of X and the
conditional distribution of Y given X = z determined by N will be denoted by
v and p(dy; z) respectively. Thus, forany A C X x Y,

MA) = Jxu(A(2); @) di(2),

where A(z) is the section of 4 at z.
When (X, V) has density (1.1), the marginal density of X with respect to »

is easily seen to be

po.o(2) = (8, @)™ [y ¢ uldy; x);
the conditional density of ¥ given X = z, with respect to u(dy; z) is
(3.2) pa(y|2) = ¢/ [y ™ u(du; z).

Consider any partition of X into a finite or denumerable number of Borel
sets, and let ® denote the o-field which such a partition generates. In fact, we
shall need a sequence of partitions which are successive refinements, with asso-
ciated o-fields &, , n = 1, 2, - -+, such that the smallest o-field B, containing
them all is the class of Borel sets of X.

Associated with ®, is the o-field inX x Y

F, = (B x Y): Be®,}, 1=n g o,
In terms of &, , define the conditional discretized probability measures u(dy; , n)
inY:
(3.3) W(Csz,m) = NX x C|5n)
= NB x C)/v(B)
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if 2 is in an atom B of &, , C a Borel set in Y, »(B) > 0. If »(B) = 0 define
p(+; z, n) arbitrarily.

In the next lemma E, denotes expectation when (8, w) = 0, i.e., with respect
to A. -

Levma 3.1. Let ¢ be any test and define ¥, by

(3.4) ¥n = Bo{y |5, V1.
Then, whenever (0, w) € Q,
(3.5) limasw [ €%z, Yudy; 2, 1) = [ W, y)u(dy; z) bl
Proor. Let f be any function in X x Y, integrable with respect to A. The

sequence Ey(f | F):1 £ n £ « is a martingale. From the martingale convergence
theorem one obtains

limasw Bo(f | $4) = Eo(f|Fa) [2].

If, in addition, f is measurable with respect to ¥, and Y an easy calculation with
definition (3.3) shows that Eo(f| %) = ff(x, y)u(dy; z, n) if z is in an atom
B of ®, . By assumption the function whose value is ¢“*¥(z, y) is integrable.

Consequently,
J €Mz, )u(dy; 7, n) = Bl Ya(X, ¥) | 5l
= Bo{Eoe" Yu(X, Y) | Fu, ¥) | Fu}

= Bo{e""Y(X, Y) | Fa}
= Eofe""Y(X, Y) | o} [1]
= [ &"W(x, y)u(dy; z).

This convergence is (3.5) and proves the lemma.
We can now state the principal result. Set @ = {w: [ ¢*"N\(dy) < =}.
TarEorEM 3.1. Let ¢ be any test of Ho : 0 = 0. Then there exists a test ¢ ¢ Pq
with the property that for each w &

(3.6) | oz, 9)e**uldy; =) = [z, y)e’uldy; z) b,

with equality in case w = 0.

Observe that the integrals in (3.6) are the conditional powers of the two tests
up to the common factor [[ ¢*’u(dy; z)]™, as the conditional density (3.2)
shows. It follows immediately from (3.6) that ¢ is at least as good as ¢ in the
usual sense, implying that &g is complete.

The proof of this theorem, which is essentially constructive, is given in several
steps.

1°. Application of the Birnbaum Theorem. Let ¢ be an arbitrary test and define
¥» as in (3.4) for each n. Relative to each one of the measures u(dy; x, n) the
functions e”? determine an exponential family of distributions as » ranges in €; .
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For each = ¢ X and each n, application of the generalized Birnbaum theorem
yields a conditional test ¢.(z, -) which accepts Ho on a closed convex set and
satisfies

(37) fewy¢n(x, ?/)ﬂ(dy, &yt n) g f ewy¢n($, y)}l.(dy, z, ’/I/), w 891 3
with equality when o = 0. More precisely,
(3.8) du(z,y) =0, yeint Cu(x),

=1, yeC/(=),

with randomization possible on the boundary of C.(z). Since ¢, is measurable
with respect to the o-field generated by 5, and Y, and the measure u(-; z, n)
depends only on that atom of ®, containing z, it is clear that we may take C,(z)
to be the same for each z in an atom of ®, . Thus, at most a denumerable number
of sections are involved, and the resulting ¢, is a test.

2° (MaiN) Lemma 3.2. There exists a Borel set C € X x Y, each of whose
sections C(zx) is closed and convex in Y, satisfying (1) for each x, there is a sub-
sequence {ni(x)} iz for which

(3.9) iy d(Cryn(z) 0 Sy, C(z) 0 S,) = 0,

for r sufficiently large; and (i1) ni(z) s Borel measurable for each 1.

There is no difficulty obtaining a limit point of {Cn(2)} for each z. Generally,
there may exist many limit points. The essential content of this lemama is the
measurability of C. Regarding the subsequence n.(z), the fact that no fixed
subsequence exists, independent of z, suggests that the lemma is non-trivial.
The proof of Lemma, 3.2 is postponed to an appendix in view of its technicality.

We remark that the proof of Theorem 3.1 could be briefly concluded were it
assumed that N is absolutely continuous, or merely that the measures u(-; z)
are continuous on boundaries of convex sets in Y. In that case all tests could be
non-randomized. Lemma 3.1 together with an argument as in [7] would show
that the test ¢ which accepts Ho on C would dominate .

Continuing with the proof in the general case, it is clear from the construction
that the function d(C,(z) n S,, Cu(z) n 8,) is measurable for each m and r.
The same is true of d(Cun(z) n S, , Ch,y(z) 0 8,) and d(Cu(z) n S, ,C(z) nS,),
by Lemma 3.2. Define the functions

(310)  ga(m, @) = [ *u(dy;z,n)  g(z, 0) = [ Vu(dy; @)
It follows from Lemma 3.1 that for w e @,
(3.11) limaw ga(2) = g(2) ).

3°. Choice of a measurable subsequence. We now redefine the subsequence in
. Lemma 3.2 as follows, although using the same notation for it for economy’s
sake. First of all, let Qo = {w;}i=1 be dense in & , and containing w = 0. For
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i=1,2, --- wedefine n;(x) to be the first integer n = 4 for which®
(312) (1) SUPm>n Igm(x, O)) - g(x7 w)| = 1; for w = WL, W2, ., Wi
(ii) d(Cu(z) n S;,C(2z)n 8;) = 1/4.

In view of its countable descripﬁon and earlier remarks, n.(z) here defined is

still measurable.
Define the measurable functions

fi(x7 O)) = J ewyl‘l‘(dy; Z, ni(x)); well.

Lemma 3.3. For each w e Qo , lim,e fi(, ) = g(x, ») ], and the convergence

s dominated.
Proor. Convergence, pointwise, follows from (3.11). Domination follows

from (3.12i) in the definition of n:(z), in view of
fi(x’ w) = gﬂi(z)(xy w) =1 + g(x; w)

for sufficiently large ¢, and the fact that the dominating function is integrable.

4°. Denumerable approximating convex sections. In order to capture the effect of
randomization, consider a denumerable subclass & of @, and dense in the class
of all bounded convex sets (in the sense of the Hausdorff metric). Our aim is
to approximate Cn;(2) closely from within and without by a member of %.
Let & be ordered in some way. Then, define Ki;(z) and K:(z) to be the first
elements K; and K., respectively, in X, for which

(313) NZ/i(Kl) c Cn,;(a:)(x) n S'L c N3/i(K1);
Noji(Cryr(2) n 8:) C Ky © Nyyo( Coyy(2) n Se).

If there is no K; with the required property, define K;,(z) to be the empty set.
Because n,(x) is measurable it is clear that the set of x for which K;.(z) equals
a particular set in & is measurable, and likewise for K.(z). Also, it is easily
verified that the set inX x Y, whose z-sectionis Ki,(z) (or Ks:()) is measurable.
The neighborhoods in (3.13) are chosen so that Ky,(x) and K.,(x) approximate
C(z) from within and without:

(314) Nl/i(Kl) C C(x) n S; C N4/7;(K1),
Ny(C(z) n 8;) C K; C Nyuo(C(z) n 8y).
CoroLLARY 3.3.1. Foreach w e wo, eachr = 1,2, -+ jandk = 1, 2,

(315) limi—wo ka,(:v) ewy”(dy; z, nl(x)) = ka,(:n) ewy“(dy; x) [V];

and the convergence is dominated.
This follows in case of integration over a fixed set K from Lemma 3.1. In the
present case (3.15) still holds because Ky, (x) is one of at most denumerably many

sets from K.

2 If either Cn(z) N S; or C(x) N S; is empty, let n;(z) be defined by condition (i). By the
construction, these are measurable conditions.
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5°. Evaluation of some limits. Replacing n by n{z) in (3.7) gives
(3.16) [ e""$nim(z, ¥)u(dy; @, ni(@)) Z [ € "Yuso (@, y)uldy; ;5 ni(z))
for all w £ & , with equality Whelznd:w = (). By Lemma 3.1,
(317)  limy [ € "Yni(2, ¥)p(dy; 7, ni(@)) = [ € "Y(a, y)u(dy; ) ).
Let us break the left hand integral in (3.16) into the three pieces
Ii(@, 0,7) = [x1,0 $n.0( 1) u(dy; 2, n(z)),
(3.18) L@, 0,7) = [x1,0 i (3, ¥)e" w(dy; x, ni(z)),
Isi(@, 0,7) = 5,0 $nso(@, )€ "uldy; 2, nix),

where B,(z) = Ks.(x)\K1.(z). .

Considering the first integral in (3.18), if ¢ > r a simple set inclusion argu-
ment, taking into account (3.12) and (3.13) shows that if y ¢ Ky, (x) then
y € int Cp (), so that ¢, (z, ¥) = 0. It follows trivially that

(3.19) lim, e lim,.e I1:(2, @, 7) = 0 [v].

Consider briefly the second integral in (3.18). Another application of Lemma
3.1, Corollary 3.3.1, and (3.14) shows in similar fashion

(3.20) lim,, e im0 Loi( 2, w, 1) = fol($) ¢ Yu(dy; ) [v].

The details are omitted.

6°. Representation of the randomization. It remains to consider the limit of the
third term in (3.18). For each w & @ the functions {I3:(-, @, 7):¢ =1, 2, --- ;
r = 1,2 ---} are dominated in IL;(X, ») according to Lemma 3.3. It follows
([2], p. 292) that these functions have a weak sequential limit point. To avoid
introducing still another subsequence, let us suppose it has already been extracted
so that for each w e Qo

(3.21) limyoe liMine T3z, @, 7) = L(z, o)

in the weak sense.
In order to represent L(z, w), consider the functional

(3.22) F(f,0) = [xf(x)L(z, w)v(dz),
where f ¢ Lo(X, v), w & Q . Substituting in (3.21),

F(f, ®) = liMew liMise [x [5 @ f(2)6" " nia(@, ¥)u(dy; @, ndz))v(dz).
Denote the linear subspace of Zi(X x Y, \) spanned by functions of the form
f(z)e"? by £, where f is chosen from L.(X, ») and w ¢ Q .

Let {Ba} be a finite set of real numbers associated with the functions {f.(z)}
and parameters {w.}. Because of the linearity of the integral, setting g(z, y) =
D Ba fulZ)e**”, we get

(328) |20 BuF (fu, )]
< lim sup, lim sup; [x 5, l9(2, ¥)| u(dy; @, ni(z)r(da).



690 T. K. MATTHES AND D. R. TRUAX

For any finite set of constants {ca},

(8.24)  liMise f5,00 | 20 ca™*| u(dy; @, ni2)) = [5,m | 20 cat™"| u(dy; @) ).

Because of continuity of | c.e®*?| in the ca , it follows from (3.24) that
limisw 5, 9(2, ¥)| 0(dy; 2, nd(2)) = [5,0 l9(z, ¥)| u(dy; z) Bl.

Since the last functions are dominated, we may integrate with respect to » and
then interchange the order of limit and integration to obtain

(8.25) liMese [x 5,0 l9(2, ¥)| (dy; 2, ni(x))r(de)
= Jx [0 l9(z, ¥)| w(dy; x)v(dz).

As seen from (3.14), B,(x) converges to B(z), the boundary of C(z) asr — .
Let B be the set with sections B(z). That B is measurable follows from the re-
marks made prior to Corollary 3.3.1.

Taking the limit as r — <« in (3.25) then yields

lityw [x 5,0 g2, )| w(dy; 2)0(dz) = fx [5e l9(2, ¥)| #(dy; z)v(de)

= fB Ig l dA.
Consequently, the limits taken successively in (3.23) show that
(3.26) |22 BF (fu, wa)| = [z lg] M.

Inequality (3.26) guarantees that F, defined by (3.22), can be unambiguously
linearly extended to £ without increasing its norm. Moreover, the value of F ex-
tended at g ¢ £ is determined by the restriction of g to B, as (3.26) shows. There-
fore, one may regard F as a bounded linear functional defined on the restriction
of £ to B, a linear subspace in Ly(B, N). In this event the Hahn Banach Theorem
states that F can be extended to all of Ly(B, N) without increase in norm. Ex-
ploiting the representation of the dual of L,(B, \), there exists a measurable func-
tion ¢» with |¢p5| < 1, giving the representation

(3.27) F(f,0) = [5¢s(z, y)f(z)e”” d\.

It does not follow directly that ¢ = 0, but a minor circumlocution would show
that there is at least one non-negative ¢5 .

The equality of (3.22) and (3.27) for each f ¢ L.(X, ») yields immediately for
we D 5
(3.28) L(z, ©) = [5@ ¢s(x, y)e *u(dy; z) ).

The proof of Theorem 3.1 can now be concluded. Limits of the three terms in
(3.18) are evaluated in (3.19), (3.20), and (3.21) and (3.28) together, first as ¢,
and then r tend to infinity. Define a test ¢ ¢ ®q, by

o(z, y) = 0, y e int C(x),
= d)B(xJ y)7 yeB(m).
=1, yel'(z).



TESTS FOR MULTIVARIATE EXPONENTIAL FAMILY 691

The evaluations above show that
limise | € %n;m (2, ¥)p(dy; , nix)) = D e lim, lim, Iz, o, 7)
= [ o(x, y)e*u(dy; z) [v],

for w & Q9. Recalling the limit (3.17) already found for the right hand side of
(3.16), there results

(3.29) [ oz, y)eu(dy; ) = [ ¥z, y)eu(dy; z) [,

whenever w ¢ wo , with equality when « = 0. Because of continuity in « the in-
equality in (3.29) must hold for all w e Q . This completes the proof of the
theorem.

4. Admissibility. Admissibility of tests in ®g with-convex sections is naturally
related to admissibility of tests whose acceptance regions are convex. Stein [9]
has given an important sufficient condition for admissibility of tests with closed
convex acceptance regions. Essentially, the condition is that for each supporting
hyperplane, there exist parameter points in the set of alternatives arbitrarily far
out on some perpendicular. Thus,in the event that the parameter space is the full
Euclidean k-space, and the null hypothesis is a bounded set (for example, a
simple hypothesis), any test with closed convex acceptance region is admissible.
This is true for all dominating measures satisfying the condition on the parameter
space. But, if the measure does not assign measure zero to the boundaries of con-
vex sets, Stein’s theorem does not apply to convex acceptance regions with ran-
domization on the boundary.

Turning to the composite hypothesis of Section 3, we find that the question of
admissibility of tests in &g, is quite complicated, and intimately tied up with the
dominating measure \. First of all, we remark that &g is essentially the smallest
class of tests which is complete for every dominating measure A. That is, if
¢ & &g, , there is some measure A such that v{ze} = 1 for some o, and u (- ; zo) is
absolutely continuous and such that the natural parameter space associated
with u(-; xo) is the full Euclidean &k — r space. Stein’s theorem applies to the
conditional test at xo, and shows that ¢ cannot be dominated at this section.
Since this is the only relevant section, ¢ must be admissible.

There is one special case in which the admissibility question can be satis-
factorily answered. Suppose that wisreal (r = k — 1). We can then assert that
all tests in @4, are admissible. In order to demonstrate this we first show that if
a test ¢ is at least as good as a test ¢ then ¢ and ¢ must have the same size and
“center of gravity” with respect to each of the conditional distributions u( - ; z).
That is

(4.1) Iy (=, y) — o(z, y))u(dy; ) = 0 [,
and
4.2) Jyy(W(z, y) — ¢(z, y))u(dy; ) = 0 [3].

If ¥ is at least as good as ¢, then [ (¢ — ¢)e™ ™Y d\ = 0 for all (6, w) £, with
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equality whenever w = 0. A completeness argument shows (4.1). Then, (4.1)
together with the validity of the above inequality for all w in a neighborhood of
the origin show that for each 8, [ y(¢ — ¢)e’ d\ = 0. Again, completeness yields
(4.2). Now, if ¢ ¢ 4, were inadmissible, there would exist an essentially distinct
test ¢ ¢ g satisfying (4.1), (4.2).. But now the conditional tests accept on inter-
vals of the real line. An interval, together with the randomization at the end
points, is determined by the size and “center of gravity.” Hence, the conditions
mentioned imply ¢ = ¢, so that ¢ cannot be dominated.

In the following paragraphs we list a few examples of admissible tests in ®q, ,
and finally, an example of a non-admissible test. Perhaps these examples are not
very important from a practical point of view, but they do, at least illustrate the
complicated nature of admissibility.

(a) Suppose that the measure u(-; z) is independent of x (and hereafter de-
noted by u) and has finite support. We suppose, also, that = is real, and that
1 — ¢z, y) = Teea(x)e,(y) + ITn<o(2)e,(y), where Cy and C: are closed
convex sets in Y. We will show that ¢ is admissible. The reader can easily extend
this to the case of any finite number of convex sections. We suppose that there is
a test ¢ which is at least as good as ¢. Since u has finite support there are only a
finite number of subsets of the support of p which we enumerate as
Ci,Cy,--+,Cy. First of all, one can represent ¢ as 1 — ¥(x, y) =
Dand@)I e, (y), where 0 = N(z), 2.1 N(z) = 1. This is merely a conse-
quence of the fact that the set of all tests is convex, and the extreme points are
Ic,(z). Now, set gi(w) = [c; €°? du. The fact that ¢ is at least as good as ¢ can
be expressed as

(4.3)  quw) [T dr + ga(w) [Lae® dv 2 21 gi(w) [ Ni(2)e”™ dv

for all 6, w, with equality holding when «w = 0. In turn, this becomes

(44) gi(w) [T (1 —N(2))e"dr 2 —ga(w) [Yoe™ dv + gi(w) [ToM(2)e™ dv
+ 227 giw) [ N@)e™ do

If N is not equal to one [v] for z = 0 divide both sides of (4.4) by
[8 (1 — M(2))e* dv. The terms (5 Nu(z)e™ dv)/([§ (1 — N(z))e™ dv) are
bounded and by choosing an appropriate sequence 6, and letting 8, — « have a
limit v:,0 € 74, D 1= vs = 1. All other terms will have limit zero, so

(4.5) g(w) Z 2 vgiw)

for all » with equality when « = 0. If one were to consider testing the simple
hypothesis @ = 0 on the basis of observing y, (4.5) says that the test which
accepts with probability DIV § c;{y) 1s at least as good as the test which
accepts when y is in the closed convex set Ci. According to Stein’s theorem
equality must hod for all win (4.5), and completeness yields I ¢, = DY vl o, lul.
This is impossible since Cy, Cy, - -+, Cy are distinet sets in the support of p.
Consequently, on z = 0 we have M(z) = 1 [y]. Then (4.3) becomes

go(@) [Ywe®dv 2 D0 gi(w) [YeNi(z)e™ dv
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for all 8, w with equality when » = 0. Again, Stein’s theorem yields equality for
all 8, » and completeness gives ¢ = ¢ [\].

(b) In this example we suppose that » has finite support, and show that if
every z-section of ¢ is an admissible test for testing the simple hypothesis w = 0,
then ¢ is admissible for the composite hypothesis. Let us denote the support of »
by 8, and let 2o be an extreme point of the convex hull of 8. If a test ¢ is at least as
good as ¢ then

(4.6) e € [ (W(x, y) — oz, y))u(dy; z)viz} = 0

for all 6, w with equality when w = 0. Consider a hyperplane a(z — z,) = 0 which
supports the convex hull of 8 at x, and such that a(x — x;) < 0 forall z¢8,
x # z0. In (4.6) let 6 = na, and multiply (4.6) by ¢ ", Letting n — o, we
obtain .

(4.7) J e (W(xo, y) — d(x0,y))u(dy; o) Z O

for all w, with equality when « = 0. If the z¢-section of ¢ is admissible, this
gives a contradiction unless equality holds for all w, and then completeness gives
&(zo, ) = ¥(xo, )1 +; z0)]. In the latter case we can replace $ by 8 — {zo} in
(4.6) and repeat the argument for an extreme point of § — {xo}. After finitely
many steps we must either arrive at a contradiction, or conclude ¢ = ¢ [A].

(¢) In order to apply the result of (b) to the case where N has finite support
(say, in the multinomial case) one needs conditions to guarantee that the sections
are admissible for testing the simple hypothesis w = 0 when the dominating meas-
ure p has finite support. For testing such a simple hypothesis on the basis of Y,
we will show that a test ¢ vs admissible if and only if the set C = {y e Y: ¢(y) < 1}
28 convex, and for every y which is not an extreme point of C, ¢(y) = 0. First, sup-
pose that the conditions on ¢ hold. Then, if ¢ is dominated by a test y, there must
exist some point g in the support of u such that ¢(ye) > ¥ (). Otherwise, the
tests could not have the same size. Because of the conditions on ¢ we see that
yo must either belong to the complement of C, or be an extreme point of C. In
either case there is a hyperplane a(y — yo) = 0 containing yo with a(y — y,) < 0
forall y e C, y # 3o . Letting w = na, the fact that ¢ dominates ¢ gives

0= ¢ Bu(y —¢) = [ (¥ — 6)"" " du

which converges to (¢(yo) — ¢(¥o) )u{ye} asn — «. Thus, ¥(yo) = ¢(%s), so that
7o would have to be a non-extreme point of C. Again, this is impossible because
¢ = 0 at all non-extreme points. Hence, ¢ is admissible.

On the other hand, if ¢ is admissible, it must belong to the complete class ¢
so there is some closed convex set C such that ¢ = 0 on the interior of C, and
¢ = 1 on the complement of C. We can clearly suppose that ¢(y) < 1 at all
extreme points of C, for otherwise we could simply delete that extreme
point from C and consider a new convex set C; having the same proper-
ties. If there were some yo £ C, not an extreme point, with ¢{yo) > 0, we will
show that ¢ could be strictly dominated. Such a ¥, in C can be expressed as
Yo = D.tuNys, where 0 < N, 2 'aNi = 1,and 41, 42, * - - , Ya are extreme
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points of C. Define ¢ = min {¢(yo), Minicicn (1 — ¢(y i) /moNs}, where
wi= plyd,2=0,1, --- ;n. Thensete; = eouo)\/ul.Deﬁnecb (y:) = ¢(y:) + &,
1=1,2--,mn,¢ (yo) &(o)) — e, and ¢* = & otherw1se Note that
o(y:) < ¢ (‘/1) < 1, and é(y0) > ¢* (%) = 0. To show that ¢™ dominates ¢
consider

R (¢* —¢) = 2 emie” YT — equo .

Note that by our construction > ems = e, and using the fact that e
convex we get

VB (6% — @) Z eopo(exp [w 2 (eqi/emo) (s — Yo)] — 1)
eomo(exp [ 2 Ni(y: — ?/Q] —-1)=0

for all w. In fact, there would be strict inequality for some w, showing that ¢
could be dominated. Thus, if ¢ is to be admissible ¢ must be zero at all non-
extreme points of C.

(d) Returning to the case of composite hypothe ses, we suppose A has finite
support. Probably the most important special case of this is the multinomial case.
Let ¢ be a test and let C = {(z,y): ¢(z, y) < 1}. Then ¢ ¢s admissible if and only
if, [\], every z-section of C is convex [u(-; )] and ¢( -, ) = 0 at all non-extreme
points of the section C. . We showed in (c) that the above condition implies that
each’ section is admissible for testing the simple hypothesis, and (b) says ¢ is
admissible. Conversely, if ¢ is admissible and there is an o in the support of A
such that C,, does not satisfy the condition, then there is a yo in the convex hull
of (., which is not an extreme pomt such that ¢(2o, yo) > 0. The construction
in (¢) allows us to find a new test ¢™ which strictly dominates ¢ at the zo-section,
and whose condltlonal power is the same at all other sections. Since x, is in the
support of \, ¢* would then strictly dominate ¢.

(e) Our final example shows that 5 contains tests which are not admissible,
at least for some choices of N. Let X = R', Y = R’, and define the sets

= {(£1,0),(£2,0)},C = {(0,£1),(0, :1:2)} ,and Co = {(£1,0), (0, £1)}.
For each x let u(-; ) be uniform on Cy u C:, and let X be a product measure on
X x Y. We compare the test ¢o which accepts when y ¢ C , regardless of z, with
the test ¢ which accepts when y e C1, z ¢ A, and when y ¢ Cy, z ¢ A. An easy
calculation shows that ¢ 4 is dominated by ¢, provided, for each 8, + < Pys(A) < £.
Hence, in order for ¢ to be inadmissible one need only mix its sections sufficiently
rapidly to meet this condition. This is always possible if 6 is a translation param-
eter for the distribution of X.

wy-

%

Il

5. Likelihood ratio tests. For testing a simple hypothesis it was shown in
[1] that likelihood ratio tests have convex acceptance regions. Likewise, we shall
show for composite hypotheses of the type we have treated that likelihood ratio
tests are in ®g. To see this, consider a likelihood ratio test which accepts

Hy':w = 0 when
(51) Supe- p(l, Y; 0,; O)/Sup((oyw):w?éo} p(x’ y; 6, w) =k
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For a given z, the acceptance set in (5.1) may be expressed as
N {B(6, w): (8, w) eQ, w = 0}.

where B(6, @) = {y:supe p(z,y;6',0) = kp(z,y;0, w)}. Here, supy p(,y;0’,0)
is constant as far as y is concerned, while p(z, ¥; 6, w) is a convex function of y.
It follows that the sets B(f, w) are closed and convex in Y so that their inter-
section is also closed and convex.

6. Appendix. In this section we give a proof of the Main Lemma 3.2. This
proof is patterned after one of the standard proofs of the Blaschke convergence
theorem which can be found in [11]. First partition Y into cubes of side 1/2" in such
a manner that the (k¥ 4+ 1)st partition is a refinement of the kth partition
k=1,2,---. Consider the set of all finite unions of cells in the kth partition.
Such a finite union will be denoted by D with appropriate affixes. We will suppose
that for each k the set of finite unions of cells is given some definite ordering:
D, DS, - -- . Note that each D.* will always appear as some D,/

At first, we will fix a sphere of radius r about the origin, S, , and suppose that
for all n and z, C,(z) < S, . We will say that D is a minimal cover for C,(z) if
C.(z) € DF and C,(z) intersects every cell of D;*. There must be some D,
which is a minimal cover for infinitely many C,(z), since there are only finitely
many minimal covers and infinitely many C,(z) in S, . Such a D,* will simply be
called minimal af z.

Define D'(z) to be the first (in our given ordering) D.' which is minimal at z.
Suppose that D'(z), D*(z), - -+ , D*(x) have already been defined. Then there
is some D} contained in D*(z) which is minimal at z. Define D*(z) to be the
first such D with this property. Finally, let C(z) = N =1 D¥(z).

We now show that C = {(x,y):yeC(x)} is a Borel set. Since
C = Nia {(z, y):y e D*(z)}, it will be sufficient to show {(z, y):y e D*(x)} isa
Borel set for each k. But, {(z, y): ye D*()} = U.{(z, »): yeD*(=),
D(z) = D¥} = U,{z: D’(z) = D!} x D/}, so it is sufficient to show that
{x:D¥z) = D/} is a Borel set for every  and k. We prove this by induction on &.
Ifk = 1, {x: D'(z) = D}} = {x: D; is minimal at z} n ()= {z: D," is not mini-
mal at 2}, so it need only be shown that the first set is a Borel set. But {z: D" is
minimal at 2z} = lim sup {z: D, is a minimal cover for C.(z)}, and {z: D.' is a
minimal cover for C,(z)} is a union of atoms of ®, according to the manner in
which the C,(x) were defined. Thus, the assertion is true for £ = 1. Suppose that
the assertion is true for & — 1. Then, {z: D" = D*(2)} = {z: D" is minimal at z,
D} < D*(2)} n Nt {x: D}* is minimal at z, D;* € D*7'(z)}’. We need only
show that the first set is a Borel set, and this in turn is the intersection of two
sets. {z: D is minimal at z} is a Borel set by the argument given for k = 1.

{x: Dz'k c Dk—l(x)} = Ulj;p;kcpjk_l} {x: Djk—l = D'“l(x)},

and this is a Borel set by the induction hypothesis. This completes the induction.
No6w we must show (i) C(z) is closed and convex; (ii) for each z there exists
subsequence {nx(x)} such that Cry(z) — C(2); (iii) ny(z) is Borel measurable.
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By definition of D'(z), there are infinitely many n such that D'(z) is a minimal
cover for C,(z). Let ni(x) be the first such n. Also, there are infinitely many n
such that all the sets D'(z), D*(z), - -+ , D*(z) are minimal covers for Cn(z).
After my(z), ne(z), -+ -, nz—1(x) have been defined, let niy(x) be the first such n
which is greater than n,_i(z). Then {z: m(x) = j} = {z: D'(x) is a minimal
cover for C;(x)} n i<t {z: D'(x) is not & minimal cover for C;(x)}. Arguments
as before show that this is a Borel set. It is an easy induction argument to show
that nx(x) is Borel measurable for every k.

In the kth refinement, let ¢, be the cell diameter. We have limy,.., & = 0. More-
over,

Cor(z) C Dk(x) C N(Cry»r(2), &),

because D*(z) is a minimal cover for C,, (). Hence, d( Co (), D(2)) £ &
and has limit zero as k — «. Also,

d(Cry(2), C(2)) S d(Cuyiar , D'(2)) + (D), C(2)) — 0

as k — «. The convexity and closure now follow from the Blaschke convergence
theorem.

The next step is to modify the above construction to take care of the case when
the C,(z) are not all contained in a fixed sphere. Define C,'(z) = C.(z) n S, .
According to the above construction, there exists a measurable set C' € X x Y
such that for each z, C'(z) is closed and convex, and a measurable sequence
ni'(2) such that C3Le(x) — C'(x). Define Cl(z) = Clw(z)nS;. We can
again apply the construction to the sequence C = {(2,9):y e C(x)} tofind C°
whose sections are closed and convex. The measurability of C* depends, as in the
original construction, only upon the fact that sets of the form {z: D" is a minimal
cover for €;’(z)} are measurable, and this is clear from the definition of C’(z).
We also have a measurable sequence n;’(x) such that C‘ii(m)(x) — C*(z). Note
that for each fixed z, {n’(z)} is a subsequence of {n:'(z)}. According to [3],
Theorem 31, if the interior of 8 meets C*(z), then Ci%(@(m) nsg — Cz)n§ so
that in this case CYz) = C*(z)n . In any case it is easy to verify that
C'(z) < C*(z) n 8, . By induction we can obtain a sequence C" of measurable sets
whose sections are closed and convex subsets of 8", and " < ¢",r = 1,2, - - - .
Define C = U;L; ¢". Then C is measurable and has convex sections. For suffi-
ciently large k, C{(z) n & = C*x) as a consequence of Theorem 31 [3], and it is
clear from this that C(z) is closed for each x. Now, we notice that for each n,
d(Cr(zx) n 8, C"(z)) is a measurable funection of z. This can be seen by expressing
the function as limi.o d(Cr(z) 08, , Crypry(x) n'8,) and using the definition of
C.(z) and the measurability of the subsequence. Define n:(z) as the first n such
that d(Cu(z) 08, C'(z)) < 1, and ni(z) asthe first n > m_1(x) such that
d(Cu(z) 08, C*(2)) < 1/k. Then the ni(x) are measurable. The same proof
used to prove Theorem 31 in [3] shows that if d(Cy ) (z) n 8, C*(z)) — 0 then
d( Cow(2) n8:, C(x) n8,) — 0 provided the interior of 8, meets C(x). Since
this is the case for r sufficiently large, we have the theorem. (We have here
omitted the trivial case when C(x) is empty.)
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