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ABSTRACT

Tests of independence between variables in a wide variety of discrete and

continuous bivariate and multivariate regression equations are derived using

results from the theory of series expansions of ,Joint distributions in terms

of margínal dístríbutions and their related orthonormal polynomials. The

tcst, are condltianal momcnt. tests based on covarlances between palrs of

orthonormal polynomials. Examples lnclude tests of serial independence

against billnear and~or ARCH alternatives, tests of dependence in multivaríate

normal regression model, and dependence in count data models. Monte Carlo

simulation based on bivaríate count models Ss used to evaluate the size and

power properties of the proposed tests. A multivaríate count data model for

Australian health care utílízatíon data ís used to empirically illustrate the

tests.

Some Key Wo~ds: SERIES EXPANSIONS; ORTNOCONAL POLYNONIALS; SCORE TEST;

DYNAMIC INFORMATION MATRIX TEST; ARCN AND BILINEAR NODELS; COUNT DATA.
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1. INTRODUGTION

In thís paper we develop and apply a general framework for testing the

assumption of zero correlation and, more generally, independence between pairs

of random varlables. Thls problem arises routinely ín time series work and

frequently in multl-equation cross section models. Tests of zero correlation

in multivarlate Gaussian regression models have been discussed in the

econometríc literature by Breusch and Pagan (1980) and Shíba and Tsurumi

(1988) amongst others. But in non-Gaussian regression models zero correlatíon

and independence are equivalent only for special classes of distributions and,

ín general, independence rather than zero correlation may be the ínteresting

restriction to test. This is now recognlzed in nonlinear time series models;

see Brock et. al. (1991), Hsieh (1989), and Robinson (1991). But for cross

sectional work there Ss a relative dearth of tests. A general framework which

considers both tíme serles and cross sectíon data is desirable.

This paper develops score type tests of independence based on a series

expansion of the unknown ~oint pdf of the observations. This is simpler than

the alternative approach of writing down the joint densíty explicitly and

derlving score tests of independence, because ín some non-Gaussian situatlons

a flexible speclfication of the joint density Ss often not readily avallable.

This also makes the construction of Wald and likelihood ratio tests difficult

and partly explains the relative infrequency with which such tests are

developed or used. By contrast the approach of thls paper requires the

specífication of the univariate margínals which are then used to form an

approximation to the Joínt distributíon. Gíven correct specification of the

marginals, the valídíty of the resulting independence tests does not depend on

the adequacy of this approxímation, though the power of the test wlll.

A general framework for testing dependence must address the following



z
problem: except in special cases, tests of independence involve, ín

principle, an infinite number of restríctíons. So an approach is requíred

which wíll either test a smaller subset of these restrictions, or test the

restrictions through one or more parameters ín the joint distríbution. How to

deríve and Justify such restrlctlons Ss an lmportant issue which ls addressed

by the general method of testing for índependence between random variables

considered here. It Ss based on a characterization of bivarlate and

multivaríate distributions, introduced by Lancaster (1958) and subsequently

elaborated and extended in Lancaster (1963, 1969), and Eagleson (1964).

Infinlte series expansions for the bivariate or multivariate joínt

distributions are constructed using the univariate marginal distributions and

their associated orthonormal polynomials. The tests are conditional moment

tests based on low order terms in the series expansíon.

A brief comparíson of the approach of this paper with other approaches in

the literature may provide an improved perspective. In econometrics tests of

dependence are most highly developed Sn the context of tlme series. Serial

correlation tests are the most common, but the literature also consíders

nonllnear dependence of other types; for example, bilinear and ARCH

dependence (Granger and Andersen (1978), Engle (1982), Neiss (1986)), and

ARCH-M dependence (Engle et. al. (1987)). Much of this work Ss restricted by

the assumption of conditionally Gaussian or symmetrically distributed errors.

More recently, a nonparametrlc approach to testing for nonllnear time series

dependence using the correlation integral has been investigated and applied by

Brock with a number of co-authors; see Brock, Hsieh and LeBaron (1991) and

Brock and Potter (1991). Robinson (1991) has also proposed a nonparametric

test of independence of yt and yt-1 for a stationary process {yt} based on the

Kullback-Leibler entropy measure of the difference between the joínt

distributíon and the product of the two marginals. By contrast, tests of
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dependence Sn cross sectional work have not received much attention. These

pose additlonal problems because features such as non-normalíty, truncation

and censoring are common in the data. The framework of thís paper can address

issues of dependence ín many time series and cross sectlonal models and in

both cases can accomodate non-normal parametric dlstributions. For example ít

can be applled to the followíng: tests of índependence ín the línear

multivariate Gaussian regression model; tests of zero correlatíon between

errors of seemingly unrelated non-Gausslan regresslon models; tests of serial

dependence Sn time series models, including billnear and ARCH processes; tests

of independence Sn bivariate survival models; and tests of independence

between the conditlonal mean of one random variable and the condítlonal

variance (or higher moments) of another. The approach has some slmílarltíes

wíth Hall's (1990) paper on score tests of normalíty against seminonparametrlc

alternatives ín which he uses a Gallant-Tauchen type nonorthogonal series

expansion for the conditlonal density of y(t), given y(t-1): we use an

orthogonal seríes expanslon for the ~oint pdf.

The remainder of thís paper is organízed as follows. Section 2 deals

with the underlying theory, and section 3 with its applícation to testing

independence. Sections 4 and 5 provide examples. Section 6 reports the

results of a simulation to evaluate the operating characteristícs of the

proposed tests and section 7 provides empirical illustrations. Section 8

concludes.

2. ORTHOGONAL SERIES EXPANSIONS FOR BIVARIATE DENSITIES

A key concept in this paper Ss the constructlon of a serles expansíon of

a density usíng a sequence of orthonormal polynomlals. This has been

extensively discussed in statistícs. Cameron and Trívedí (1990) proposed its

use ín specification tests for univariate regresslon models. In the bivaríate
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case, considered here, the density g(yl,y2) will be approximated by a series

expansion, where the terms ín the series expansíon are orthonormal polynomials

of the unívariate marginal densities fl(yl) and f2(y2). The purpose of thís

section is to provide a brief but self-contaíned mathematical and statlstical

background for the reader's conveníence. Proofs of theorems are not provided,

but references to the líterature are given. We begin with the univariate

case.

Let f(y) denote the densíty of the Sndependently distributed scalar

continuous random variable yt. (After appropríate changes all

arguments can be extended to the discrete case). Assume the existence of

fínite moments of all order, pn, defined by pn - E[yn] -~m yn.f(y) dy ,
-m

n-0,1,2.... In general f(y) may be a marginal or a condítional density, but

for the purposes of this paper f(y) will be a conditional density, usually

denoted by f(y,X,B I X) where 6 is an unknown parameter and X is a vector of

obscrved explanator-y varlables. We use f(y) for generallty and more compact

notation.

Definitton (Orthogonality): A system of orthogonal polynomials, henceforth

abbreviated to OPS, Pn(y) (or Pn(y,X,9 ~ X)), degree (Pn(y)] - n, is called

orthogonal wíth respect to f(y) (or f(y,X,6 I X)) on the interval a s y s b

if

(2.1)
m k 1f m-n

Pn(y).Pm(y)-f(y) dy - n
~-m - 0 if mxn

That is, Pn(y) ís a polynomial in y of degree n, a positive integer,

satisfying the orthogonality condítion

(2.2) E(Pn(y)Pm(y)) - ó~kn, kn x 0,
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where San is the Kronecker delta, óan ~ 0 if m s n, óan - 1 if m- n. In the
special case of an orthonornal polynomtal sequence, kn ~ 1. An orthonormal

polynomíal Ss deríved from an orthogonal polynomial by dividing by lts

standard devlatíon.

Let A be the matrix whose i~-element is pi{~-2, SL1, ~zl. The necessary

and suffícient condition for an arbítrary sequence ({~n} to gíve rise to a

sequence of orthogonal polynomials, unlque up to an arbitrary constant, ís

that A Ss posítive definite; see Cramer (1946, chapter 12.6). An orthonormal

polynomíal sequence Pn(y) Ss complete if for every function Q(y) with finite

variance, var[Q(y)1 - E an, where an - E[Q(y)Pn(y)].
n-1

Theorem 1 (Unlvartate Case): Let (P~(y),...} be the corresponding set of
complete orthonormal polynomíals for the density f(y). Let g(y) be another

densíty which is ~2-bounded in the sense that

m
(2.3) ~2 t 1- r- {g(y)~f(y)}2f(y)dy ~ m

J m

Then the following series expansíon for g(y) is formally valid:

(2. 4)
r m j

g(y) - f(y).I1 a r anPn(y) J.
L nL-1

where an - rPn(y)g(y)dy, ~2 - E a~. That is, the coeffícients {an} ín
.1 n-1

the formal expansion are línear combinations of the moments of g(y). ~

For interpretatíon of ~2 see Lancaster (1969, p.87). In (2.3), ~2 is the

variance of the probability ratio. See Ord (1972) for a proof.

An analogous result holds more generally, íncluding discrete
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distributions. In the context of an expansíon of type (2.4), we shall refer

to f(y) as the baseline denslty and to the sequence (Pn(y)) as the associated

orthonormal polynomial sequence (OPS).

Theoren 2 (Blvertate Case): Let g(yl,yZ) be a bivariate p.d.f. of contínuous

random varíables yl and y2 wíth respective marglnal distrlbutions fl(yl) and

fZ(y2) whose corresponding complete orthonormal polynomial sequences are,

respectively, Qn(yl) and Rn(y2), n~0,1,..... If g(y1,y2) is ~2-bounded in the

sense that

tro tm
(2.5) ~2 ~ 1 s J-- J--(g(Y1.Y2)Ifl(yl)~fZ(y2)12'fl(Y1)'f2(Y2)'dYl'dY2 ~ m

then the following expansíon is formally valid:

(2.6)

where

(2.7)

(2.8)

m (m' j
8(y1.YZ) - fl(YI)~f2(Y2)~[ 1} E L pnmQn(Y1)Rm(Y2) J ,

n-1 ~-1

p~ - E(Qn(yl)Rm(YZ)1 - J I Qn(yl).Rm(y2)~g(yl~yz).dYl.dyz~

~Z - L E pnm 'n-1 e-1
See Lancaster (1969, p.97, Theorem 4.1) for a proof.

For notational compactness we have suppressed X, but dependence of

orthonormal polynomials on X variables Ss permissible, and is explicítly

introduced Sn section 3.
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3. TES15 OF INDEPENDENCE BASED ON ORTHOGONAL POLYNOMIALS

The results i n (2.4) and ( 2.6) are the important ones for this paper.

According to Theorem 2 a bivaríate dístribution is completely characterized

almost everywhere by its marginal dlstributions and the matrix of correlations

of all pairs of complete sets of orthonormal functíons on the marginal
distríbutions. Thus, in general, a test of independence in the bivarlate case

requlres us to test H0: p~ - 0(all n,m). Thís onerous task may be

simplífied in one of two ways. The null may be tested agalnst an alternatlve

in whích dependence is restricted to be a function of a small number of

parameters, usually ~ust one. Or xe may approximate the bivariate

distribution by a series expansion with a smaller number of terms and then

derive a score ( LM) test of the null hypothesis H0: p~ - 0 ( some n,m). For

índependence we require p~ s 0 for all n and m. By testing only a subset of

the restrictions, the hypothesis of approximate índependence i s tested.

3.1 Score teats based on orthogonal polynomial expanaiona for the joint p.d.f.
Consider whether a finite number of terms, say p, in the series expansion

(2.6) provídes an adequate approximation to g(yl,y2), the unknown true Joint

p.d.f. If p-2, thís Ss equivalent to the null hypothesis

(3.1) HO' pll - p22 - p12 L p21 S 0'

For general p we have the approximation

P P
(3.2) log g(y1.Y2) - log fl(yl) t log f2(y2) t log(1 t E E p~Qn(yl)Rm(Y2)1

n-1 0-1

(3.3) Vp log g(y1~Y2)I - Qn(YI)~Rm(Y2)~ n.m-1~2....p.
nm

p~ 0
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where Vp ~ 8~8p. To test HO we follow the score test approach. The score

test will be based on EO[Vp log g(yl,y2)] ~ 0, which implíes that
nm

(3.4) EO(Qn(yl)~Rm(Y2)) - 0, n,m-1,2....P.

where EO denotes expectation under the null hypothesis of independence of yl

and y2.

Thus, glven the orthonormal functions Qn(yl), Rm(y2) corresponding to the

marginals, a score test of the null hypothesis may be based on the expectation

of the products of pairs of orthonormal functions. Since (3.4) must also hold

when multiplied by a scalar (not a function of yl or y2), we more generally

consider tests based on the expectation of the products of pairs of orthogonal

(not necessarily orthonormal) functíons. These tests may also be lnterpreted

as conditional moment (CN) tests in the sense of Newey (1985).

In some cases (see Section 3.4 for examples) the expansion (2.6) will

simplífy to the following:

(2.6a) g(Y1.Y2) ~ fl(yl)~f2(y2)~I 1 4~ pnQn(yi)~Rn(y2)J .
LLL n-1

where 1 t pl Z p2 L.....L 0. Then the test of independence will be based on

reduced number of moment conditions EO(Qn(yl)~Rn(y2)) ` 0, ntl.

Furthermore,the rejection of H0: pk - 0 implíes also the rejection of HO' pn -
0, n ~ k, because of the inequality relationship between the elements of the

sequence {pn}.

It is understandably more common to test for zero correlation than

for independence ín applied work, although the former does not imply the
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latter in non-Gaussían multivariate models. This corresponds to a test of P11

- 0. If the series expansion is truncated at p-1, then this is simply a test

that the term for p-1 is negllgible. If the series expansion is truncated at

p-2, then for independence we test that P11 - P12 - P21 - P22 - 0. This test

may be carried out by sequentially testing each separate hypothesis. Clearly

P11 - 0 is ín general a necessary, but not sufficient, conditíon for

Sndependence. Testíng a very large number of terms wlll not be practicable,

but tests up to second order dependence (p-2) may be useful in many applíed

situations. The analysis given above shows that the tests should be based on

correlations between orthogonal (or orthonormal) polynomíals corresponding to

given margínal densities. This subsumes the common case of the multivariate

normal regression model in whích tests are based on regression resíduals,

whích are simply the first order orthogonal polynomials. The approprlate

polynomials to use Sn the case of tests of higher order dependence are less

obvious; they are orthogonal polynomlals given in the next section.

3.2 Implementation of the testa of independence

The test given above is ímplemented as follows:

(1) the marginals must be gíven;

(2) orthogonal polynomials corresponding to the marginals must be derived;

(3) the test statistic must be constructed from the appropriate sample

quantitíes.

Step (1): Obvious. Section 3.5 dlscusses the impact of misspecification.

Step (2): For given marginals, orthogonal polynomíal sequences may be

constructed using knowledge of the moments of the margínals together with the

definition of orthogonality gíven in (2.1) and (2.2). A general procedure and

the expressions for orthogonal polynomials derived in this way are given in

Cameron and Trivedl (1990). The polynomials up to order 2 are easily stated
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in terms of central moments, pi, of the baseline density, f(y):

(3.5)

1 ,
Pn(y) - j Y - W1.

l (y - ~í)2 - (~3i~2)(y - ~1) - ~í,

n-0

n-1
n-2

Note that Sn regression models pí - E[y I X,9), and (y -{~1) will be

usually interpreted as a regression residual; then the orthogonal polynomials

are polynomials in these regression residuals. The orthonormal (unit

variance) polynomials corresponding to P1(y) and P2(y), respectively, are

P1(y)~Jp2 and P2(y)~{p4 -(p3)2~p2 -(F~2)Z)l~Z' These orthogonal polynomials

are not necessarily the obvious choice of polynomial in the regression

residual. In particular, in going beyond tests based on the covaríance of

residuals (correlation) it is natural to consider tests based on the

covariance of squared residuals, i.e. using (y -~ai)2- p2. By lnstead

choosing the second order polynomial glven in (3.5), we obtain a test that Ss

statistically independent of the test based on the covaríance of residuals,

because EO[P1(y)P2(y)1 - 0 by constructíon. Then the indlvidual x2(1) tests

given below will be jointly x2 with degrees of freedom given by the number of

tests.

If the varíable y is truncated or censored, then the polynomials Pn(y)

must be defined in terms of "generalized residuals" in the sense of Cox and

Snell (1968), so that the polynomials have zero expectation. This adjustment

is the same as used by Pagan and Vella (1989) and Cameron and Trivedi (1990);

the former do not use orthogonal polynomials, the latter do.

M alternative equivalent procedure uses known generatíng functions for

orthogonal polynomials for a given baseline density. These generating

functions are known for the classical cases and for the Meixner class of

distributions which includes the normal, gamma, Poísson, negative binomial and
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the binomial densities. The OPS corresponding to these cases are,

respectively, Hermíte, generalized Laguerre, Poisson-Charlier, Meixner and

Krawtchouk polynomíals. A summary table of their generating functions based

on Meixner ( 1934), Eagleson ( 1964) and Griffíths (1985) is reproduced in

Appendix A. To derive an orthogonal polynomial of order n, simply calculate

vZr(y:z)1z-o.

Step (3): The key moment restriction (3.4), written Sn full, is :

(3.6) ~D[Qn(Y1, X1. el I Xi)~Rm(y2. X2. 62 I X2)1 - 0,

where X1 and XZ are (not necessarily dis~oínt) subsets of regressor variables

X, and B1 and 92 are (not necessaríly dís~oint) subsets of the parameter

vector 9. Defíne

(3.7) snm(Y. X. e) - Qn(yi. X1, 91)~Rm(yZ. XZ, BZ) .

By independence of Rm and Qn, and conditional on X,

(3.8) varD(snm(.)) - (EQ(Rml)2~ varD(Qn) t (EQ[Qnl)2- varp(Rm)

i varD(Qn).var0(Rm) ,

- var0(Qn).var~(Rm) ,

when IEO(Rm)) -(~0(Qn)) - 0, a property of orthogonal polynomials.

We begin by assuming that the parameters of the marginal distribution are

known. By application of a central limit theorem, for orthogonal polynomials

Qn,t and Rm t which have zero mean by construction, we obtain:

Proposttion 1: For orthogonal polynomials, a test of the null hypothesis of



12

H0: p~ - 0 may be based on:

T T T

(3.9) t~ a( E Qn LRm t)~( E(Qn.tRm,t)2)-1,( E Qn.tRm t).
c-i c-i ~-i

Under H0, t~ converges to the XZ(1) distribution. m

We note that i~ can be computed as T times the uncentered RZ (equals the

explained sum of squares) from the auxíliary regression of 1 on Qn,tRm,t'

When we use orthonormal polynomíals, distinguísed by an asterisk,

E(( E Q'Z ) ~(E R'2 )1 - T-lE ( E (Q' R' )Z), by vírtue of the
0 ~-1 n, t t.l m, t 0 i-1 n, t m, t

homoscedastícity (and independence) of Qn t and Rm t. We obtain:

Proposttton 2: For orthonormal polynomíals, a test of the null hypothesis of

H0: p~ - 0 may be based on

T T T T

(3.10) r2 -( E Q' R' ) ~(( E Qw2)( E R'2))-1~( E Q.
mm ~, t m, t nt mt n,c-i c-i c-t c-i

Under H0, T times r~ converges to the x2(1) distribution. m

Use of proposition 1 requires a zero mean for Qn t and Rm t under H0,

i.e. correct specífication of the first n moments of y1t and m moments of

yZt. Use of propositíon 2 additionally requires a constant variance for Qn,t
and R~ t under H0, which would be guaranteed by correct specification of the

first 2n moments of y1t and 2m moments of yZt. In Section 6 these tests are

compared Sn a Monte Carlo envíronment.

To operationalize these test statistics we need to consider the effect of
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substituting the estimated parameters B1 and 92 ín place of the true

population values 91 and A2. The following definítions will be used:

(3.11) snm t(9) - s~.t(Y. X. 9 ~ X) .

T
(3.12) s~ T(9) ~ T 1 E s~ t(9) .

c-1

Lie wish to test Sndependence by testing the closeness of s~ T(9) to zero, an

example of a conditíonal moment test of Newey (1985) and Tauchen (1985). When

9 is root-T consístent and

(3.13) Ep[Desnm(Y, X, 9) I X1) - 0,

T1~2s~ T(9) - T1~2snm,T(e) t op(1), a result established by a first-order

Taylor series expansion of T1~2s~ T(9). Thus we can immediately apply

proposítion 1, with s~ t(e) in place of s~ t(6). Letting Qnt - Qn(ylt'
Xlt, 91) and Rmt - Rm(y2t' X2t, 92), we can implement proposition 1 by

computíng T tímes the uncentered R2 from regression of 1 on Qnt and Rmt. For

orthonormal polynomíals, we can alternatively use proposition 2 and compute T

tímes the correlation coefficient between Q~t and Rmt '
when 61 and 62 Sn (3.7) are dlstlnct, condition (3.13) will be

satisfied under the null hypothesis that yl and y2 are índependent. To see

th1s, ohscrve that EA(Ve snm(y. X, A) I Xl - EA[Ve Qn(yl. X~. H~) I X)
1 1

.E~[Rm(y2, XZ, 92) I X] - 0, sínce the orthogonal polynomial Rm(y2, X2, 92)

has expectation zero by construction. Similarly EA[Ve s~(y, X, 6) I X) - 0.
2

Thus the preceding theory can be dírectly applíed.

For most of the tests considered in this paper, (3.13) holds and this
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simple form is adequate. The one exception is for tests of serlal dependence

ín tlme series models. Then (Ylt' Y2t) z(et, et-1), where et Ss the

underlying error in the tíme serles model and the conditíoning variables are

the current exogenous and lagged exogenous and endogenous variables. In this

case 91 - 62 a B. Conditíonal moment tests in dynamic models are consídered

by White (1987), who shows that if 9 is the Pff..E then a x2(1) test statistic

is computed by T tímes the uncentered R2 from the regression of 1 on

s~ t(B) and the t-th score for the conditional density (given lagged

endogenous varíables). Implementation for the tíme seríes example is

considered further in sectíon 5.

3.3 Multivariate extensions

Slnce there are close parallels wlth the bivariate case, here xe shall

only sketch the argumr.nt.. Suppose therc arr r random vartables
(Y1'Y2 ""'yr)

with ~oint p.d.f. g(yl,y2,...,yr) and r marginals fl(yl)' f2(y2)' "" fr(Yr)

whose respective OPS are denoted by Qn(y1), where n - O,l,..m; 1- 1,2,..r.

According to Lancaster (1969, Theorem 5.9, p.101), under the condition of

m2-boundedness the Joínt p.d.f. admits a series expansion of the same type as

(2.6), viz.,

(3.14) 8(Y1.Y2....,yr) - fl(Y1)'f2(Y2)......~fr(yr)

x[1 t~~ i n pmn~Qm(y!).Qn(yi) }~~~ i n ó peno~Q~(Y1).Qn(y)).Qo(yk) }..~

1t] 1tJ(k

where prJ denotes the correlatíon coefficlent between orthonormal polynomials.n
Q~(y1) and Q~(yi). Independence between the n random varíables Smplies

necessary conditions such as ~ E~ ~ p~ z 0 and ~ E~ é n ó p.no L 0'
f~J t~J~k
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Since a multivariate distributíon is characterized by its marginal

distributions and all possíble palrs of complete sets of orthonormal functions

on the marginal distributions, the computational burden of testing more than

~ust a select few of these restrlctions Ss líkely to be formldable. Hence in

most applications where r ís large in the relevant sense, it would seem

sensíble to exploit prior knowledge and the structure of the problem in

setting up a test based on a subset of the restrictions.

For example, for tests of independence based on the fírst-order

orthogonal polynomials, i.e. covariances between yi and y~, there are

potentially r(r-1)~2 pairs to test, each a x2(1) test. The ~olnt test will be

a X2(r(r-1)~2) test. A simpler problem Ss that of testing for zero

correlation between two subsets of random variables, denoted by YS and Y2 with

the covariance matrlx E-(Ei'1, S,j-1,2, where rank(E11) - r1 and rank(E22) -
r2. As an extension of the scalar case, following Hooper (1959) define the

squared canonical correlation coefficíent

(3.15) p~ - (vec E21)'(~11 ~ E22) (vec E21)

- tr (F11 ~12 ~22 ~21)'

which is zero under the null hypothesis of independence of Y1 and Y2. Let

r~ denote the sample squared canonical correlatíon coefficíent. Then,

analogously to Propositíon 2 we have

Proposttton 3: Under the null hypothesis of índependence, T.r~ ~ x2(r1r2). ~

This result has appeared in the literature in a number of places, including

Jupp and Mardia (1980; Theorem 1) and Shiba and Tsurumi (1988; Proposition 3.)
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3.4 Correlation and independence

Since tests of índependence are onerous to apply, it seems natural to ask

when a test of zero correlation is adequate as a test of índependence. we are

unaware of general and practically useful results along these lines, so the

fo11ow1ng díscussion ís restricted to a few interesting special cases.

Consider the generalized exponential family (Jupp and Mardia (1980))

(3.16) S(Y1.Y2; e1 .82,P) - exp{91'v(yl) ; v(Y1)'Pw(YZ) t 62'w(YZ) - c(B1,eZ,P)
t di(y1) t dZ(yZ))

where v(.), w(.) and d1(.) and d2(.) are some functions, and c(91,92,0) -

cl(61).cZ(9Z). Under índependence p-0 in which case the right hand síde is a

product of two exponential famílles. In such cases the null of Sndependence

can be tested through the single restrictlon p s 0, and hence the tests of

zero correlation and independence are equivalent; see section 6 for an

illustration.

Speclfic bívariate parametric famílies were considered by Eagleson (1964;

who examíned the Meixner class of dlstributions (see Appendix A) in which the

correlated random variables were generated by considering sums of independent

random variables with common components in the sums. He showed that in this

class correlation is an adequate measure of dependence. In the bivariate

Meixner class, wlth variables yl and y2 defined as yl - u i v, yZ - v t w, and

u, v and w are independently distributed p2 - var(v)I(var(uiv).var(vtw)).

when zero correlatlon implles lndependence we expect a classlcal

statistical test, Nald, likelihood ratio or score, of correlation to be the

same as a test of independence. However, the starting point ín this paper is

the univarlate marglnal dlstríbutions; no restrictions are placed on the ~olnt
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distribution. Consequently we test the null against a wide range of ~oint

distributíons.

3.5 Test procedures when the marginals are misspecified

The preceding discussíon leadíng to the derivation of the test statlstics

(3.9) and (3.10) was based on the assumptíon of correct specifícation of the

marglnals. We now consíder the impact of misspeclfied marginals.

Under índependence the true joint pdf g(yl,yZ) can be written as follows:

8(y1.Y2) - fl(yl)~f2(y2)

(3.17)

m m
- fi(yl). f2(y2).rl t j~ anpn(yl) l.rl a~ SmQm(yz)1

L n[-.1 J L m-1 J

- fi(yl). f2(y2) I1 t f anpn(yl) t~ SmQm(y2)
L n[-.1 m -1

. ~ ~ an~mP(yl)Qm(y2) Jn-1m-1

where we have used (2.4) to write each true margínal as a series expansion

around a baseline pdf, denoted by an asterlsk. If the basellne marginals are

correctly specifled, then E[Pn(yl)] and f[Qm(y2)] are both zero for all m and

n, and an-0, ~m0, for all n and m; then (2.6) and (3.17) will coincide. The

null hypothesis of independence implies f[Pn(yl)~Qm(y2)] -~[pn(yl)~Qm(y2)]

- 0, which ís tested by (3.9) and (3.10) derived from the series expansion in

(2.6). If both the margínals are mispecífied, then ~[Pn(yl)] and E[Qm(y2)]
will not be zero for all m and n, and an m 0, sm x 0, and ~[Pn(yl)~Qm(y2)] x
0 and ~[Pn(Y1)~Qm(y2)] ~ 0. The tests may be significant because the baseline

marginals are misspecified, not necessarily because the variables are
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dependent. In this case (3.9) and (3.10) wíll test whether the product of the

mísspecified marginals equals the ~oint pdf. (Th1s ís in the spirit of Hall's

(1990) interpretation of his tests for the normal linear time series models.

See also Robinson (1991).) Finally, note, rather remarkably, that if one

marginal is misspecified, but the other is correctly specifled the tests

retain their validity as tests of índependence. This result is not useful in

dynamic time serles models where mísspecificatíon of one marginal Smplies

mísspecifícation of the other.

If the main focus is on tests of lndependence rather than

misspecification of the baseline marginals, then specifícation tests of the

margínals, based on the relevant orthogonal polynomlals (see Cameron and

Trivedi (1990)) wíll be an appropriate preliminary to tests of independence.

In Section 6 we examine the power of the independence tests under

misspecification.

4. TESTS FOR SEEMINGLY UNAELATED AEGAESSIONS

Consider the seemingly unrelated regression (SUR) multivariate normal

model

Y
(4.1) :1 ~ N(p, n), where p -(pi), R-[~1~1, i,j - 1,2,..,r.

yr

Suppose we wish to test the null hypothesís H0: wi, - 0, ix~, against the

alternative that ~í~ x 0. In the bivaríate case the usual test for thís ís

based on the sample covariance between the residuals in the two regressions;

see Engle, Hendry and Richard (1983). In the multivariate case Breusch and

Pagan (1980) consider the score test, and Shiba and Tsurumi (1988) develop

Wald, likelihood ratio and score tests for block-diagonality of n. The score

test is essentially the same as that díscussed in sectíon 3 with p-1.
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The theory of sectíon 3 permits extension of these tests in txo

dimensions. First, the usual score tests are tests of zero correlatlon rather

than independence. This is a consequence of specifyíng the multivaríate

model to be joint normal, for which zero correlatíon and independence are

equivalent, rather than some other distribution where the univariate marginal

distributions are normal, but for which zero correlatíon does not necessarily

ímply independence. The tests of independence proposed here will not only use

residuals yi - pí but also higher order orthogonal polynomíals. For the

normal the second order orthogonal polynomial is (yí - pi) -~Si'
The second extension is to relax the assumption that the marginal

dlstributions are normal. For example, sets of equations for dlfferent count

data variables may be considered. Then the marginals may be Poisson, and the

independence test wíll be based on cross products of orthogonal polynomlals,

the first two of which are (yi -{~í) and (yi - pi)2 - yí, where {~i Ss the

conditional mean of yi, usually exp(x~s). This illustration is considered

further ln sections S and 7. Note that the independence tests do not require

estimation or specificatíon of multivarlate models, such as the multivaríate

Poísson. Another non-normal example is sets of binary choice equations. Then

we wish to know whether to símply model equations separately, with binomial

(one trlal) marginals, say the probit model, or to use a multivariate model

such as the multivariate probít (Ashford and Sowden (1970)). Application of

tests based on sectíon 3 is again straight-forward as the condition (3.13) ís

satisfied.

5. TESTS OF INDEPENDENCE IN TIME SERIES MODELS

Consider time seríes observations on a scalar process {yt, t-1,2,..,T},

where yt has conditional mean {~t - E(yt~Ft-1)' and Ft-1 denotes the

information set comprising Yt-1' Yt-2"'- and current and lagged exogenous
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variables.

To test first order dependence we consider bivariate random varlables

(ylt'y2t) z(yt- pt' yt-1- pt-1) s(et,et-1). Applying the reaults

of section 3.2, the test based on first order orthogonal polynomials (i.e.

p-1) wíll be a test of whether the covariance of ylt and y2t equals zero, i.e.

whether the errors ct and et-1 are correlated. The test is slmply the usual

test based on the first order serlal correlation coefficient rl: T.r12 is

X2(1) under H~.

Tests of independence often use L~1 successlvely lagged values of the

variable yt. Then we have an (Lti)-varíate random varíable

{ylt'y2t" " y(L41)t) -{yt'yt-1" " yt-L)' The independence tests of section

3.3 (the multívariate case) based on the first-order orthogonal polynomials

will be tests of L(Ltl)~2 correlations, but with the assumption of second

order stationarity we need only consider the L correlations between ylt and

y(it1)t' íL1,...,L, or equivalently the correlation between et and et-i'
1~1,...,L. Let ri -(i etet-1)~(E et2) denote the ith sample correlation

c c
coefficlent. Then from section 3, T.r12 is X2(1). By the statistical

Sndependence of each test, the overall test based on the quantity

(5.1)
L

?2 - T' E r1.
i-i

is asymptotically X2(L). L is recommended to be chosen as some pre-determined

fraction of the sample slze. L~ung and Box ( 1979) have suggested an improved

varíant of thls asymptotic test, which uses tá - T(Tt2).E(T-i)-lri .
~

The above standard tests use only the first order orthogonal polynomials.

As a result they will not necessarily detect nonlinear forms of time

dependence. For example, these tests do not test for an ARCH model, since in



zl

the ARCH model the errors are uncorrelated. A number of nonlinear models and

tests for nonlinear dependence exlst. For example, see Hsieh (1989), who

applies a range of tests to daily exchange rate data. Here we propose testing

for nonlinear dependence using hlgher order orthogonal polynomials. We do

this for the símplest case where orthogonal polynomials up to second order are

used and where only first order serial dependence is considered.

Specifically, tests of zero serial dependence are based on the

restríction EO~Pm(yl)Pn(y2)) ' 0, where, choosing ps2, the orthogonal

polynomials Pm(y1) and Pn(y2), m,n - 1,2 are given ln equation (3.5). This

yields the following four conditional second-moment restrictions:

(5.2) Ep[etet-1) ' 0 m- 1, n- 1

(5.3) ED[et(ei-1 -(p3~p2)et-1 - p2)) - o m- 1. n s 2

(5.4) EC(et-1(et -(p3~p2)et - p2)I - 0 m- 2. n- 1

(5.5) Epleiet-1 -(1~3~F~2)(etet-1 r etEt-1) - F~2(et } Et-1) t

(F~3~F~2)2(Etet-1) } p3(et } et-1) } p2) - 0. m - 2, n- 2.

These moment restrictions essentially imply an absence of generalized

serial dependence. Restriction (5.2) yields the test of zero first order

autocovariance already discussed at the beglnning of this section.

Restrlction (5.3) states that the covaríance between the residual and lagged

squared resídual is zero. This restriction will be violated in a Gaussian

model if, for example, the model displays an ARCH-M (ARCH-in-the-mean) effect

(Engle, Lillien and Robins (1987), Hsieh (1989), Hollerslev, Chou and Kroner
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(1992)). Thus, a test of (5.2) may be viewed as a test of the conditional mean
speclficatlon of the maintained model, while a test of (5.3) may be víewed as

a test of the condltional varlance speclfícatíon. Restrlction (5.4) states

that the covariance betveen current squared residual and lagged residual is

non-zero. Thls restríction will be violated íf the data display bilinear

dependence or non-symmetric ARCH dependence. Finally, restriction (5.5)

states that a generalized ARCH effect is absent.

The restrictions are stated in a general form and may be specialized to

the Gausslan case by setting p3 to zero. They are suggestíve of the type of

nonlínear dependence one mlght test for ín non-Gaussian nonlinear models of

the type which have been díscussed in the empírical flnance llterature; see

Bollerslev et. al. (1990, sectíons 2.3-2.4 and 3.3-3.4).

Specíalizing to Gaussianity, the components of the dynamíc ínformation

matrix (DIM) test of Nhite (1987) yield restrictlons similar to (5.2)-(5.5)

with p3 a 0, see Nhite (1987). The case considered above corresponds to

choosíng lag of order 1 whereas the full DIM test Ss based on the matrix

formed by the outer product of the vector of conditional scores and lagged

conditional scores. Both 4lhite and Perez-Amaral (1989) discuss in detall the

implementation of the full test and Sts components using regressions. Neiss

(1986) and Perez-Amaral (1989) also discuss procedures for making these tests

robust agaínst departures from maíntained dístributional assumptions.

Tests based on (5.2) are wídely used, while tests based on (5.3) and

(5.4) are not. An important special case of (5.5) is the flrst order ARCH

model, denoted ARCH1 (Engle (1982)). Assume that the distribution of yt is

symmetríc, in whích case p3 - 0. Then the conditíonal moment restriction

(5.5) collapses to

(S.Sa) EO(e~ct-1 - p2(et } Et-1) t p2) - EO((et - p2)(et-1 - N2)) - 0.
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The test of the restrictlon (S.Sa) corresponds exactly to the test of

independence against the alternative of serial dependence of first order ARCH

type. Under Gaussianity, this test !s conventlonally Smplemented by running a

regression of ei on 1 and et-1 and calculating TR2 from this regression. But

the verslon (5.5) is more general since it does not assume symmetry of the

null distrlbutíon; see Engle (1982, sectlons 4-5) and Nelson (1991) on the

role of symmetry in testing for ARCH. Incorrectly assuming symmetry when

testing for ARCH will affect both the size and the power of the ARCH test.

The present versíon also ensures orthogonality between the ARCH test and other

tests of serlal índependence. It is easíly ímplemented using the theory

developed ín section 3.2, in con~unction wíth tests of restrlctíon (5.3) and

(5.4) whích test for a lower order of serial dependence than does (5.5).

Extenslon to higher order processes is straight-forward, though cumbersome.

Observe that at least in "diagonal" models there ís a close connectíon

between an absence of symmetry and bilinearíty, in that in general the latter

implies the former (Granger and Anderson (1978, p.53)). Conventional ARCH

tests assume symmetry and do not usually test for asymmetry, but the above

discussíon suggests that tests of skewness and bíllnearity should precede

tests of ARCH, and that the variant of ARCH test of this paper should be used

SC there ls evldence of either.

6. A NONTE CAHLO INVESTIGATION

This section reports the results of a Monte Carlo ínvestigation of the

properties of the regular and the orthonormalízed variants of the independence

tests in (3.9) and (3.10). To complement available extensive time series work

and the emplrlcal Sllustratlon of Section 7, the chosen context is that of

discrete distributions in which the data are generated by bivariate Poisson



24
and mixed Polsson regresslon models and tests are based on Poisson marginals.
The maxlmum order of the polynomíals is restricted to 2, so there are four

tests in each category. The first two orthogonal polynomials are P1(y) - y-p

and PZ(y) ~(y-y)Z-y and their orthonormallzed counterparts are P1(y)~Jk and

P2(y)I(r2{~), respectively. Substitution of these expressions Sn (3.9) and

(3.30) yíelds the elght tests whích will be consldered.

6.1 Design of the Monte Carlo experimenta
Elght models and two sample slzes, vlz., 50 and 200, were used for slze

and power comparisons. Each simulation experiment was based on 500 paired

replications. The regression component included a constant term and one

explanatory variable, x, taken as a random draw from uniform [0,1I

dlstributíon and held fixed ín all replícations. Estimation is by maximum

likelihood.

A comparison of the nomínal and empirical size of the tests is carried

out wíth Models 1 and 2 in which the varíables y1 and y2 are generated as

independent Poisson variates with parameters {~1 and pZ; in Model 1, 1~1-pZ-p

where {~ - exp(s0 } Slx); in Model 2, f~Z~pl. In Model 3 the variables yl and

y2 are again lndependent, but the marginals are not Poisson. The variables

are dependent Sn the remaíning cases. In the case of Models 4 and 5, data are

generated via a bivariate Poisson distributíon, with Poisson marginals. The

tests are applled under correct specificatlon of the marginals. In Models 6,

7 and 8, however, yl and y2 are, respectívely, Polsson(y11C1) and

Poisson(k21{2) where

(6.1) {~11C1 - exp(SO ; ~1 t R1x)

(6.2) {~2IS2 - exp(á0 i SZ t Rlx)
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where {1 and {2 denote random terms corresponding to unobserved heterogeneity.

When these random terms have a non-zero mean, a0 wlll be unidentified, but

this will not affect inference. The presence of the {1 and {2 induces

overdispersion in the marginal distributions of yl and y2. Dependence between

yi and yZ is lnduced by using correlated {i and {2, so that in contrast to

Models 4 and 5 Sn which the marginals are correctly specified, the assumptlon

of Poisson marginals is a misspeclfication when the intercept term is random.

In all cases except Model 2, SO - si ~ 1; in Model 2, S1 ís 1 and 1.5,

respectively, in each pair of replications. Additíonal detaíls about data

generatíon Ss given below along with the summary of the results.

6.2 The Resulta

Tables 1 and 2 present the re~ection rates for the null hypothesis of

Sndependence, for N-50 and N-200, respectively, at nominal significance levels

of 1, 5, and 10 per cent for two groups of tests, viz., (T11, T12, T21, T22)
which correspond to the expresslon ln (3.9), and (Til, Ti2, T21, T22) whlch

correspond to the expressíon in (3.10) for the orthonormalized versíon. The

results for Models 1-2 help to evaluate the match between nominal and

empirical test size, and the rest throw 11ght on the poxer properties.

Models 1 and 2: Since the data are conditionally independent the

rejection frequency for all tests should equal the nominal signíficance level.

The results for N-50 and N-200 suggest that for all tests the match between

the nominal and empirlcal slgnlficance level is good at 1, 5 and 10 per cent

levels in the sense that the observed divergences between the two are within

the sampling variatlons expected from S00 repllcatlons.

Model 3: The variables yl and y2 are Sndependent but each is marginally

overdíspersed. This Ss achieved by adding to the Sntercept an exponentially
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distributed random variable with parameter l~a, the a being fixed at 2 when

N-50, and 3 when N-200. This experiment enables us to observe the possible
síze dlstortions ín tests of independence.

The results show that, for both sample sizes and for all orthonormal

tests and for low order non-orthonormal ones also, the re~ection frequency is

considerably greater than the signlficance level of the test. For the tests
based on low order polynomials the re~ectlon frequency is close to 50 per cent

even when N~SO. In a sense this indicates slze distortíon, but it also

indicates power agalnst the alternative of misspeclfied marginals (as

discussed earlier in Sectlon 3.5).

Models 4 and S: Here yl and y2 are generated by a bivaríate Poísson

model where yl - u t v, y2 - v t w, and u, v and w are independent Poisson

distríbuted with parameters al, a2 and a3, respectively. Then yl ~

Poisson(~1 t a2), Y2 - Poísson(a2 t a3), cov(Y1 Y2) - cov(u}v,vtw) - var(v) -

a2 ~ 0, and p2 - a2I(a14a2) U2ta3): see Johnson and Kotz ( 1969), Gourieroux

et. al. ( 1984). In this case zero correlatton lmplies lndeperdence. Hence

the tests based on low order polynomials should have high power. The degree

of correlatlon may be controlled by varying a2, given other parameters. For

N-50, the correlation is roughly 0.24 for Model 4, and 0.29 for Model 5; for

N-200, the corresponding correlatíons are 0.19 and 0.21.

T11 and Til have signiflcantly hlgher reJectlon rates than the tests

based on second order polynomials. Except when the sample sizes are large and

andlor the correlations are high, tests based on higher order polynomials will

have low power. The tests based on the first order orthonormal polynomials

are preferred to the higher order tests.

Model 6: The random heterogeneity component ín Models 6 through 8 was

specífied as follows: ~1 - K(n2-1) where n-N(0,1); {2 -{1; K- 0.25

(N-50) or 0.15 (N-200). The value of the scaling constant K controls



z~
overdisperslon of, and dependence between, yi and y2. Because of the ~oint

presence of overdíspersion and dependence we expect the rejection frequencies

to be high, and they are. The orthonormal version of the test has higher

re~ectíon frequencies and these are almost as large for tests based on second

order polynomials as the first order ones. For the non-orthonormal tests the

re~ectlon frequecles for higher order tests are always lower but they rise

sharply as N goes from 50 to 200.

The differences between the two versions of the test may be understood as
follows. Overdlspersion Smplles that E[P2(y)1 will not be zero, as under the
null. The tests based on orthonormal polynomials depend upon the higher
moments of the assumed marginal dlstríbutions and consequently should be more
affected by such a misspecification. The true variances of the orthonormal
polynomials are understated under the null, and the tests based on them derive
thelr power agalnst this misspeciflcation from this source. Viewed as tests
against the joint null of independence and correct specification of the
marginals, the orthonormal versions of the tests perform better.

Model 7: Here (6.1) and (6.2) are specialized as follows: {1 - K-u
where u-uniform(0,1); {2 -~I; K z 1.00 (N-50) or 0.70 (N-200). In this case
the random terms add to both the condítional mean and the variance of the

model. The larger is K, the greater the correlation.

The re~ection frequencies are agaln consistently higher for the

orthonormal version. Further, of the tests based on second order polynomials,
only TZ2 has reasonable power compared with T11 and Til. Once again this
suggests that higher order tests may have limited utility if the sample is

small.

Model 8: Here we construct a case Sn which the tests based on second
order polynomials might have higher power than those based on the fírst order

ones. This is done by specializing (6.1) and ( 6.2) such that the
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heterogeneíty terms have close to zero correlatíon by constructíon but are not

independent. Specifically, let: {1 - K(ul t u2 - 1); {2 --K(ul - u2) where

ul~uniform(0,1) and u2-unlform(0,1); K~ 3.00 (N~50) or K s 1.75 (N~200).

Tedious calculatlons show that the correlatlon coeffícient is between -.0173

and -0.0179 when Kz3, and betxeen -.0119 and -.0135 when K-1.75. Thís

constructíon is apparently successful in that it yields a case ín which T22 is

a consíderably more powerful test than T11. But this is also a case in which

the orthonormal varíant turns out to have close to zero power irrespective of

whether ít is based on the first or second order polynomials!

To summarize: Important differences between (3.9) and (3.10) aríse when

both marginals are misspecified; otherwise the differences are smaller and the

latter is more powerful. Broadly speaking, the test based on (3.10) performs

better than (3.9), but the margin of superíority declines as N increases. For

the cases examined here the tests based on second order polynomials generally

had lower power than the first order polynomials, but there are exceptions.

The tests, especíally (3.10), have power against the alternative of

mísspeclfied marginal. In applied work it will be helpful to compute both

versions slnce large dlvergences between the two may be indicative of

misspecificatíon.

7. EMPIAICAL APPLICATIONS

Two empirícal applícations, one cross sectional and the other tlme series

will be used to illustrate the use of independence tests.

7.1 Application: Tests of independence in a multivariate Poisson model.

In Cameron et. al. (1988) a mícroeconometric model was estimated in whích

the focus was the relationship between several measures of health care

utilizatíon and the ínsurance status of the household, controlling for a

variety of socioeconomic and health status variables. The data were a sample



29
of 5190 observations for single-person households from the Australlan Health

Survey 1977-78. The dependent varíables were counts of events íncluding the

number of hospital admíssions (HOSPADM) and the number of days spent in

hospitals (HOSPDAYS) ln a preceding 12 month period; and the number of

prescribed and nonprescribed medicines taken (PRESC and NONPRESC,

respectively) in the past 2 days. The explanatory varíables íncluded gender,

age, age-squared, income, three categories of ínsurance status (FREEPOOR,

FREEOTHER, LEVYPLUS) wíth LEVYPLUS denoting the highest level of ineurance,

and a set of five health status variables (ACTDAYS, ILLNESS, HSCORE, CHCONDI,

CHCOND2).

As is standard for count data regresslon the conditional mean of the

dependent variable ís log-linear in the explanatory variables. The details of

the data and the specíficatlon are given in Cameron et. al. (1988). The 1988

paper reported and compared Poisson and negatlve binomlal regressions for

seven variables, including the four mentioned above, but treated each

utilization measure as conditíonally independent of other measures. However,

we can expect some utilization measures to be ~olntly dependent. For

instance, hospítal admission (HOSPADM) and the number of prescribed medicines

(PRESC) are likely to be correlated wíth each other and with other measures of

health care utilizatíon. For thís reason, it was decided to reexamine the

data and to test for dependence.

Three possible univariate count data models were considered: the Poisson

and two alternatíve specificatíons of the negative binomial, respectively

named NEGBIN 1 and NEGBIN 2 ln Cameron and Trlvedi (1986). For the Poisson,

var(y IX) - E[y IX1; for NEGBIN 1, var(y IX) z a~E[y IX1, where a is the

overdispersion parameter; and for NEGBIN 2, var(y IX) -( 1 t ó~E(y IX))~E[y

IX1, where ó is the overdisperslon parameter. Tests of índependence up to

order two may be based on the following orthogonal polynomials:
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Polsson NEGBIN 1 NEGBIN 2

P1(y IX) Y-k Y-k Y-k

PZ(y IX) (y - p)2- y (Y - k)2- (2a-1)(Y-R) (Y - P)Z-(lt2óla)(y - p)
- ap - (ltd{~){~

where p denotes E(y IX1 s exp(X's).

In implementíng the tests we can apply the símpler asymptotlc theory wlth

(3.13) satisfled. Thus for each of the four count data regresslons, S, ó and

a may be replaced by consistent estlmates and subsequently treated as given.
7'he Polsson quasl-MLE y Ss consistent for S Sn all three models. Letting

pt - exp(Xt'S), a conslstent two step estimator of a is a-(B pt2)-1.

t

(ti pt(Yt - pt)Z)~ and a consistent two step estimator of ó ls d-(~ ~t4)-1.

(E ptZ((yt - pt)2 - Yt)) (Gourleroux et. al. (1984)).
t

Although all calculations were carried out, only those based on the

NEGBIN 1 specification are reported below. These are preferred to the Poisson

as the data are overdispersed. The Poísson quasl-MLE of S for each of the

four regresslons, and the estimate of the overdispersion parameter a, are

given in Table 3 below. ( The reported t-values for S are those from a

standard Poisson ML package. To obtain correct standard errors, assuming

overdíspereion of the NEGBIN 1 form, dlvide the reported t-ratios by ~.).

To calculate the test of independence for each of the six posslble

blvariate palrs of varlables we use the statistíc t~m in (3.9). In Table 4

below we restrict the calculations to all combinations of the first and second

order NEGBIN 1 orthogonal polynomials since these appear to be sufficient to

reject the null of independence. For approximate independence it is required

that all four test statistics in any row of Table 4 be small. A sufficient

conditíon for dependence is that the test statistic in column (1) be large.
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There seems clear evldence that (HOSPADM,HOSPDAYS) and (PRESC,NONPRESC) are

two dependent pairs of count varlables, and also strong evidence that
(HOSPADM,PRESC) is a dependent pair.

A feature of the tests based on orthogonal polynomials 1s that by

focusing on higher order dependencies between variables they may highllght
possíble patterns of dependence between dispersíon or volatility of varíables
even if they are uncorrelated. For thls data, tests using the second order

polynomials suggest that additionally (HOSPDAYS, PRESC) and ( HOSPADM,

NONPRESC) may be dependent pairs, a dependence not detected by tests using

first order polynomíals alone.

For comparison we also computed the tests based on orthonormal

polynomials, using r~ Sn (3.10), corresponding to column 1 of Table 4. ln

some cases these turned out to be somewhat different. For example, the six

values corresponding to column (1) were 1660.8, 18.18, 0.25, 18.87, 0.003, and

126.7. These differences, taken in con~unctíon with the results from the

Monte Carlo, suggest that the specifícation of the marginals should be

scrutinized further, especlally for HOSPDAYS varíable.

The findings of dependence are very plausible for the following reason.

The overdíspersion evident ín each equation may be due to unobserved

heterogeneity. Consequently, the negatlve binomial regression was preferred

to the Poisson. Since the explanatory variables ln all equatlons are the

same, it seems very plausible that the neglected (unobserved) heterogeneity Sn

dífferent equations Ss correlated, as in the blvariate Poisson model. This

will impart stochastlc dependence between variables.

Overall, there is strong evidence that we are dealing wlth dependent

counts for all four variables and that ~oint estisatíon of these equations is

desirable. Unfortunately, multivariate models for dependent count variables

do not permit flexible patterns of correlation between the variables, though
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semiparametric estimation of a multivariate model may be feasible.

7.2 Application: Teata of aerial dependence in the IBM atock price series.
Fo11ow1ng weiss ( 1986), we shall analyze the tíme series of IBM daily

common stock closing price for 150 trading days beglnníng May 17, 1961, which

ís part of a longer seríes of 369 observations given in Box and Jenkins (1976,

p. 526). The efficient market hypothesis implies that the tíme series of

percentage stock price changes, yt -(1-B)log Pt, where B denotes the backward

shlft operator, should be serlally lndependent. In practice, the ACF of the

serles may appear to be that of whlte nolse and the errors uncorrelated, yet

they may not be serlally Sndependent. Therefore lt Ss useful to go beyond

tests of zero correlation.

Row 1 ín Table 5 gives the ACF of yt. Thls suggests an MA1 model which

Ss evldence against unqualified effic)ent market hypothesís. Estimation of a

MA1 model yields the following:

(7.1) (Yt - 0.0015) ~ (1 t 0.2598B)et ,
(1.56) (3.23)

where t-statístics are given in parantheses. The ACF of et from this MA1

model, given in row 2 of Table S, suggests the process is serially

uncorrelated. We tested for symmetry, and since the estimated thírd moment

was extremely small, we tested for ARCH-M, bilineaTity and ARCH1 effects after

Smposing symmetry and using the tests of this paper and the tests given by

Weiss (1986). Table 6 gives the results.

The results obtalned, under either a white noise or MA1 specification of

the null model, re,Ject the null agalnst the alternative of ARCH-M, or against

ARCH1 alternative. This shows that ignoring serial correlation and using OLS

rather than MA1 residuals to test for ARCH-M and ARCH had no impact. This
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nicely íllustrates the orthogonality between the tests. Ignoring ARCH,
assuming symmetry and testing the restríctions ( 5.3)-(5.4), leads to re~ectíon
of (5.3), but not ( 5.4), Srrespective of whether the error is assumed whlte
nolse or MA1. These results are the same whether the versíon of the test uaed
is Weiss's or thls paper's. Since thls suggests that the condltlonal mean has
been mísspecified, the interpretation of the outcome of an ARCH1 test is
amblguous. Ignoring the ARCH-M effect nevertheless, and testíng agalnst AHCH1
also leads to the re~ection of the null. We may conclude that ARCH-M andlor
ARCH1 effects are preaent in the data. The fact that We1ss's billnearity
test glves results simllar to ARCH-M also suggests that St ís difflcult to
dlstinguish betveen the two effects using that test.

8. SUlMARY AND CONCLUDING RD4ARKS
The orthogonal polynomial approach to testing for stochastíc dependence

is attractive for several reasons. For models popular in applied

econometrlcs, parametric specificatlon of a multivarlate system may be

difficult or not knoxn, in xhich case Wald, likelihood ratio and score tests

cannot be used. And for other models a multivarlate system may exist but be

very restrlctive in the form of dependence admitted. The tests proposed here

are often símple to implement, and have an orthogonalíty property that Ss

likely to be useful in applled work. In Monte Carlo simulation xlth dlscrete

dependent variables the two main tests of this paper showed significant

dífferences in power against empírically interesting alternatives, suggestíng

that both mlght be useful in applied work. In all cases considered at least

one of the two types of tests had high power. In applicatlon the approach

suggested in this paper tests the independence hypothesis only approxímately

by testíng only a small subset of restrlctions under the null hypothesis of

Sndependence. But despite thls limitatlon the present procedure goes beyond

the more usual test of zero correlation.
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TABLE 1: PERCFM'AGE REJECTIONS OF T1iE NULL HYPOTF~SIS OF INDEPENDENCE
N-50

Model Significance Test statistlcs
level X T11 T12 T21 T11 T11 T12 21 22

1

2

3

4

5

6

7

8

1 1.2 0.2 0.2 0.4 1.0 0. 8 0.4 5.9

5 4.8 4.0 2.6 2.2 4.6 4.8 4.2 4.2

10 10. 8 10. 2 6. 6 7. 0 10. 8 10. 2 9. 4 9. 2

1 0.4 0.4 0.6 0.2 1.8 1.2 0.8 1.0

5 5.6 4. 3 4.2 2.6 5.8 6.6 5.0 3.4

10 12. 0 9. 8 10. 6 6. 0 12. 0 10. 6 11. 6 8. 0

1 0.4 0.0 0.8 0.4 39.2 49.0 48.2 50.2

5 3.6 0.6 2.6 1.0 49.9 50.4 51.4 51.6

10 15.6 7.8 8.8 2.8 54.0 52.0 56.2 52.6

1 10. 0 0. 4 0. 4 0. 2 18. 6 1. 0 2. 4 4. 8

5 33.2 3.8 2.4 3.4 41.0 6.4 8.4 11.2

10 45.4 9.6 8.6 8.8 54.2 13.4 14.2 21.6

1 18.8 0.4 0.2 0.6 34.4 1.4 1.6 8.8

5 51.8 3.0 3.6 4.6 60.8 6.4 8.6 14.4

10 67.0 9.2 7.0 9.0 72.6 13.4 14.2 21.6

] 5.2 0.0 0.0 0.2 80.6 70.8 69.8 76.4
5 24.4 0.8 0.4 0.8 90.2 78.4 77.6 82.2
10 44.8 4.8 4.2 3.8 92.8 84.2 81.8 84.0

1 47.4 0.0 0.0 0.0 65.0 2.0 2.4 14.0
5 81.8 1.8 1.4 4.4 84.8 7.8 8.6 27.6
10 91.4 4.0 4.4 15.0 92.0 14.0 14.2 33.6

1 0.2 2.0 0.6 17.4 0.0 0.0 0.0 0.0

5 6.2 10.2 11.2 63.0 0.2 0.0 0.0 0.0

10 19.4 28.0 32.0 80.8 2.0 0.0 0.0 0.4
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TABLE 2: PERCENTAGE REJECfIONS OF THE NULL IiYP01}~SIS OF INDEPENDF]~IICE

N - 200

Nodel Slgnificance Test statistics
level X T11 T12 T21 Til T11 T12 21 22

1

2

3

4

5

6

7

8

1 0.6 1.4 0.4 1.6 1.2 2.2 0.8 1.0
5 4.8 6.8 5.6 6.8 4.6 5.8 4.8 4.8
10 9.2 13.4 8.6 11.4 8.0 11.6 10.2 9.6

1 0.8 1.2 0.8 1.0 1.0 1.0 1.2 0.6

5 5.4 4.6 5.4 5.6 4.4 4.4 6.8 3.2

10 9. 8 9. 8 11. 4 10. 4 8. 2 9. 0 12. 4 8. 2

1 35.6 0.6 1.0 0.8 44.0 24.4 13.0 23.6
5 48.2 10.8 4.6 5.4 49.2 40.4 23.6 29.8

10 52.4 32.4 15.6 11.4 51.2 48.0 29.2 33.0

1 52.8 0.4 1.0 0.4 65.8 1.0 2.4 5.4
5 76.6 4.2 4.2 4.0 85.6 4.8 7.2 11.6
10 87.2 8.6 9.0 9.8 91.2 9.2 12.4 17.6

1 61 8 0.4 0.4 0.8 70.6 1.0 1.2 8.8

5 83.6 3.0 2.4 4.0 88.0 6.0 6.6 16.0

10 89.2 8.4 7.2 10.6 99.4 12.8 13.4 20.6

1 26.8 0.6 0.8 0.0 84.4 74.4 75.6 74.6

5 59.8 8.2 9.4 2.4 91.8 81.4 83.8 80.6
10 77.4 25.8 24.6 10.4 95.4 93.8 87.6 83.6

1 74.2 0.4 0.6 0.4 73.8 0.2 1.0 5.8

5 89.2 4.2 2.8 4.8 88.6 3.8 5.6 ]0.0

10 94.6 8.8 7.8 11.4 93.6 8.2 10.8 16.4

1 2.2 8.6 9.2 32.2 0.2 0.0 0.0 0.0

5 13.0 29.8 32.4 65.6 2.6 1.6 1.6 0.2

10 19.4 46.0 47.2 80.0 9.2 5.8 8.6 1.6
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TABLE 3: NEGBIN 1 REGRESSIONS FOR HEALTH CARE VARIABLES

5190 observations
HOSPADM HOSPDAYS

Explanatory Coeff. t-ratio Coeff. t-ratio
variable

ONE -1.09 [-2.43] 0.28 [ 0.441
SEX -5. OSe-02 ( -0. 60 ] -0. 33 [ -2. 30 ]
AGE -7.20 [-4.07] -8.46 [-3.18]

AGESQ 7. 76 [ 3. 89 ] 9. 77 [ 3. 38 ]
INCOME -0.30 [-2.30] -0.47 [-2.20]

FREEPOOR 0.22 [ 0.60] 0.59 [ 1.07]
FREEOTH 1. 49e-02 [ 0. 07 ] 0. 41 [ 1. 36 ]
LEVYPLUS 5.52e-02 [ 0.14] 0.51 [ 0.97]
ACTDAYS 7.99e-02 [ 7.28] 0.10 [ 5.81]
ILLNESS 0.10 [ 2.98] 0.11 [ 2.01]
HSCORE 5.18e-02 [ 2.74] 1.24e-02 [ 0.31]

CHCONDI 0.33 [ 3.35) 0.79 [ 5.211
CHCOND2 0.81 [ 6.77] 1.40 ( 6.92]

ac 1.33 [21.26] 31.69 [16.567

PRESC NONPRESC

E~cplanatory Coeff. t-ratio Coeff. t-ratio
variable

ONE -3.09 [-9.94] -2.66 [-7.50]
SIX 0. 66 I 12. 59 ] 0. 40 [ 7. 28 ]
AGE 1.98 [ 2.63] 6.23 [ 5.71]

AGESQ -0.74 [-0.90] -7.56 [-5.83]
INCOME 6.60e-02 [ 0.92] 5.25e-02 [ 0.62]

FREEPOOR 0.80 [ 2.74] 2.38e-02 [ 8.32]
FREEOTH 0.40 [ 2.63] -6.03e-02 [-0.36]
LEVYPLUS 0.53 [ 1.84] 2.78e-02 [ 9.81]
ACTDAYS 1.91e-02 [ 2.88] 2.42e-02 [ 2.05]
ILLNESS 0.19 [13.921 0.18 ( 9.341
HSCORE 6.75e-03 [ 0.68] 3.O8e-02 I 2.431

CHCONDI 0.78 I14.85] 0.33 [ 5.641
CHCOND2 1.06 [16.021 0.30 [ 3.50]

a 1.44 [23.44] 1.42 [39.15]

Notes: The four dependent variables are number of hospítal admissions
(HOSPADM), the number of hospital days (HOSPDAYS), number of prescribed
medícines taken (PRESC) and number of nonprescribed medicines taken
(NONPRESC). The explanatory variables are gender (sex), age, age-squared
(AGESQ), íncome, insurance type (FREEPOOR, FREEOTHER, LEVYPLUS) and health
status variables: activity days lost due to illness (ACTDAYS), whether ill
(ILLNESS), score on a general health questionnaire (HSCORE), presence of
limiting or nonlimlting chronic conditions (CHCONDI, CHCOND2). See Cameron
et. al. for a detailed description of the data and the econometríc model.
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TABLE 4: PAIRVISE TES15 OF INDEPF]iDi]1LE OF fQ~:ALTH CARE YARIABLES

Pair

HOSPADM,HOSPDAYS 189.6 72.43 275.2 94.70

HOSPADM,PRESC 20.28 22.88 4.82 0.18

HOSPADM,NONPRESC 0.20 16.26 0.82 0.05

HOSPDAYS,PRESC 0.18 10.06 1.09 9.23
HOSPDAYS,NONPRESC 0.01 1.91 0.55 0.16
PRESC,NONPRESC 9.20 9.85 4.35 4.07

Notes : Thls table gives the test statlstic s~; e,n ~ 1 Sn column (1), m,n s
2 ln column (2), m~ 1, n~ 2, in colw~n (3), and e 3 2, n ~ 1, in column (4).



38

TABLE 5: AVfOCORRELATIONS - IBM DATA

Lag

Estimator 1 2 3 4 5 6

OLS .207 -. 121 -.090 .124 .076 -.037

MA1 -.013 -.093 -.100 .135 .050 -.045

TABLE 6: TESTS OF INDEPENDENCE FOR I8M DATA

Null model Alternative modell Variant Test statistic2

(0,1,1,0) (0,1,1,1) Weiss 12.99

(0,1,1,0) (0,1,1,1) This paper 12.07, 0.10

(0,1,1,0) (0,1,1,0) t ARCH1 Weiss 12.08
Thls paper

(0,1,0,0) (0,1,0,1) Weiss 14.53

(0,1,0,0) (0,1,0,1) This paper 11.21, 1.11

(0,1,0,0) (0,1,0,0) t ARCH1 Weiss 10.20
This paper

Notes: (1): Using standard nomenclature we refer to an ARMA (p,d,q) model

with the hypothesized fírst order diagonal billnear process a(p,d,q,l) model.

(2): Where two numbers are given, the first is a test of ARCH-M dependence

and the second a test of non-symmetric ARCN.



39
Appendiz A

(i) Orthogonal polynomials for distributlons in the Meixner class have a
generatíng function of the form

(A.1)
m

I'(y;z) - E Pn(y)zn~n! ~ t(z)exp(yu(z))
n-0

where t(z) and u(z) are functions wlth power series expansion Sn z(Meixner
(1934)). Table A.1 presents the polynomial generating functions for the

Meíxner class and identifies the polynomial family by name.

Table A.1: Orthogonal polynomial functione for relected membero of LEF-QVF

Dtstribution

(2ne2)-ii2eXp(-2O,z~(y-p)2)

-oo ~ y ~ a (Normal )

a-1
Y exp(-y), y~0, a~0I' a

(Gamma)

aye-A~Y( , Ys0.1....

(Poisson)

(lt9)-a-y eY (Yta-11
lY J

(Negattve binomtal)

y 1Py(1-p)n-y
(Btnomial)

Cenerating Functton: r(y;z)

expt(y-F~)z - Z v2z2}

(Nerntte)

(ltz)-aexp[yzI(ltz)]

(Ceneralized Laguerre)

(ltz)ye-xz

(Polsson-Charller)

(laz6)-Y-a(itz(1t8))y

lNetxner)

(lt(1-P)z)y(1-pz)n-y

(Krawtchouk)
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