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ABSTRACT

Tests of independence between variables in a wide variety of discrete and
continuous bivarlate and multivariate regression equations are derived using
results from the theory of series expansions of joint distributions in terms
of marginal distributions and their related orthonormal polynomials. The
tests are conditional moment tests based on covariances between palirs of
orthonormal polynomlals. Examples lnclude tests of serial lndependence
against bilinear and/or ARCH alternatlives, tests of dependence in multivariate
normal regresslion model, and dependence in count data models. Monte Carlo
simulation based on bivariate count models is used to evaluate the size and
power properties of the proposed tests. A multivariate count data model for
Australian health care utilization data 1s used to empirically illustrate the

tests.

Some Key Words: SERIES EXPANSIONS; ORTHOGONAL POLYNOMIALS; SCORE TEST;

DYNAMIC INFORMATION MATRIX TEST; ARCH AND BILINEAR MODELS; COUNT DATA.



1. INTRODUCTION

In this paper we develop and apply a general framework for testing the
assumption of zero correlation and, more generally, independence between pairs
of random variables. This problem arises routinely in time serles work and
frequently in multi-equation cross section models. Tests of zero correlation
in multivariate Gaussian regression models have been discussed in the
econometric literature by Breusch and Pagan (1980) and Shiba and Tsurumi
(1988) amongst others. But in non-Gaussian regression models zero correlation
and independence are equivalent only for special classes of distributions and,
in general, independence rather than zero correlation may be the interesting
restriction to test. This 1s now recognized in nonlinear time serles models;
see Brock et. al. (1991), Hsleh (1989), and Robinson (1991). But for cross
sectional work there is a relative dearth of tests. A general framework which
considers both time series and cross section data is desirable.

This paper develops score type tests of independence based on a series
expansion of the unknown Joint pdf of the observations. This is simpler than
the alternative approach of writing down the joint density explicitly and
deriving score tests of independence, because in some non-Gausslan situatlions
a flexible specification of the joint density 1s often not readily avallable.
This also makes the construction of Wald and likelihood ratio tests difficult
and partly explains the relative infrequency with which such tests are
developed or used. By contrast the approach of this paper requires the
specification of the univariate marginals which are then used to form an
approximation to the joint distribution. Given correct specification of the
marginals, the validity of the resulting independence tests does not depend on
the adequacy of this approximation, though the power of the test will.

A general framework for testing dependence must address the following
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problem: except in special cases, tests of independence involve, in

principle, an infinite number of restrictions. So an approach is required
which will either test a smaller subset of these restrictions, or test the
restrictions through one or more parameters in the jolnt distribution. How to
derive and Justify such restrictlons 1s an important issue which ls addressed
by the general method of testing for independence between random variables
considered here. 1[It is based on a characterization of bivariate and
multivariate distributions, Iintroduced by Lancaster (1958) and subsequently
elaborated and extended in Lancaster (1963, 1969), and Eagleson (1964).
Infinlite series expansions for the bivariate or multivariate joint
distributions are constructed using the univariate marginal distributions and
their assocliated orthonormal polynomials. The tests are conditional moment
tests based on low order terms in the serles expansion.

A brief comparison of the approach of this paper with other approaches in
the literature may provide an improved perspective. In econometrics tests of
dependence are most highly developed in the context of time serles. Serial
correlation tests are the most common, but the literature also considers
nonlinear dependence of other types; for example, bllinear and ARCH
dependence (Granger and Andersen (1978), Engle (1982), Weiss (1986)), and
ARCH-M dependence (Engle et. al. (1987)). Much of this work is restricted by
the assumption of conditionally Gausslan or symmetrically distributed errors.
More recently, a nonparametric approach to testing for nonlinear time series
dependence using the correlatlon integral has been investigated and applied by
Brock with a number of co-authors; see Brock, Hsieh and LeBaron (1991) and
Brock and Potter (1991). Robinson (1991) has also proposed a nonparametric
test of independence of Yy and Yi-1 for a stationary process {yt} based on the
Kullback-Lelbler entropy measure of the difference between the joint

distribution and the product of the two marginals. By contrast, tests of
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dependence In cross sectional work have not received much attention. These

pose additional problems because features such as non-normality, truncation
and censoring are common in the data. The framework of this paper can address
issues of dependence in many time serles and cross sectlional models and in
both cases can accomodate non-normal parametric distributions. For example it
can be appllied to the fellowing: tests of independence in the linear
multivarlate Gausslan regression model; tests of zero correlation between
errors of seemingly unrelated non-Gausslan regression models; tests of serial
dependence in time series models, including bilinear and ARCH processes; tests
of independence in bivarlate survival models; and tests of independence
between the conditional mean of one random variable and the condltional
variance (or higher moments) of another. The approach has some similarities
with Hall's (1990) paper on score tests of normality against seminonparametric
alternatives in which he uses a Gallant-Tauchen type nonorthogonal series
expansion for the conditlional density of y(t), glven y(t-1); we use an
orthogonal serles expansion for the joint pdf.

The remalnder of this paper is organized as follows. Section 2 deals
with the underlyling theory, and section 3 with its application to testing
independence. Sections 4 and 5 provide examples. Section & reports the
results of a simulation to evaluate the operating characteristics of the
proposed tests and section 7 provides empirical illustrations. Section 8

concludes.

2. ORTHOGONAL SERIES EXPANSIONS FOR BIVARIATE DENSITIES
A key concept in this paper 1s the constructlon of a serles expansion of
a density using a sequence of orthonormal polynomials. This has been
extensively discussed in statistics. Cameron and Trivedl (1990) proposed its

use in specification tests for univariate regression models. In the bivariate
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case, consldered here, the density g(yl,yz} will be approximated by a series
expansion, where the terms in the serles expanslon are orthonormal polynomials
of the univariate marginal densitles fityl) and leyzl‘ The purpose of this
section is to provide a brief but self-contained mathematical and statistical
background for the reader’'s convenlence. Proofs of theorems are not provided,
but references to the literature are given. We begin with the univariate
case.

Let f(y) denote the density of the independently distributed scalar
continuous random variable ¥y (After appropriate changes all
arguments can be extended to the discrete case). Assume the existence of

finite moments of all order, Mo defined by g = E[ynl = I” yn-f{y) dy ,

-0

n=0,1,2.... In general f(y) may be a marginal or a conditional density, but
for the purposes of this paper f(y) will be a conditional density, usually

denoted by f(y,X,® | X) where 8 is an unknown parameter and X is a vector of
observed explanatory varlables., We use f(y) for generallity and more compact

notation.

Definition (Orthogonality): A system of orthogonal polynomials, henceforth
abbreviated to OPS, Pn[y) (or Pn(y.x.e | X)), degree [Pn(?)] =n, is called
orthogonal with respect to f(y) (or f(y,X,8 | X)) on the interval a sy sb
if

{ kn if m=n

€2.1) Im Pn(yl-Pn(y]-f(yJ dy =

0 if m=n

That is, Pn[yl is a polynomial in y of degree n, a positive integer,

satisfying the orthogonality condition

(2.2) E(P (y)P (y)] =38 k. k =0,



where 6‘n is the Kronecker delta, snn =04if m # n, a_ﬂ =1if m=n. In the
speclal case of an orthonormal polynomial sequence, kn = 1. An orthonormal
polynomial is derived from an orthogonal polynomial by dividing by its
standard deviation.

Let A be the matrix whose | j-element is “1+J—2‘ iz1, j=z1. The necessary
and sufficlent condition for an arbltrary sequence {unl to glve rise to a
sequence of orthogonal polynomials, unique up to an arbitrary constant, is
that A s positive definite; see Cramer (1946, chapter 12.6). An orthonormal
polynomial sequence Pn[yl is complete if for every function Q(y) with finite

-]
variance, var[Q(y)] = X ai. where B = E{Q[y}Pn(yl].

n=1

Theorem 1 (Univariate Case): Let {Fo(y}....} be the corresponding set of
complete orthonormal polynomials for the density f(y). Let g(y) be another

density which is ¢2—bounded in the sense that

(2.3) 1= r EIZEW vy < o .

-0

Then the following series expansion for gly) is formally valid:

(2.4) gly) = f(y)-[‘l " ..)-:1 a P (y) ] .

-]
where N, - an[ylg(y)dy. éz = I ai. That is, the coefficlents {an} in

n=1

the formal expansion are linear combinatlons of the moments of g(y). =
For interpretation of ’2 see Lancaster (1969, p.87). 1In (2.3), ¢2 is the
variance of the probablility ratio. See Ord (1972) for a proof.

An analogous result holds more generally, including discrete
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distributions. In the context of an expansion of type (2.4), we shall refer

to f(y) as the baseline density and to the sequence (Pn(y)) as the assoclated

orthonormal polynomlial sequence (OPS).

Theorem 2 (Bivariate Case): Let g[yl.yz) be a bivariate p.d.f. of continuous
random varlables Yy and Yy with respective marginal distributlions fI(yl} and
leyz} whose corresponding complete orthonormal polynomial sequences are,
respectively, Qn[yll and Rn(yzl. n=0,1,..... If g(yl.yzl is oz—bounded in the
sense that

2 +m +o 2
(2.5) ¢" + 1= J_m I_m[s(yl.yz)/fi[yil-fz(yzil -fltyli-fz(yzl-dyl'dvz < m,

then the following expansion is formally valld:

(2.6) s(yl.yz) = fx(yll-fz{sz-[ 1 +nzl -ilpn.Qn[y11Ra[yzl]

where

@ P = ELQ (R ()1 = [ [ @ (y,) R (y,)8(y,.v,) dy; dy,,
(2.8) ¢ =nii -21 o2 . .

See Lancaster (1969, p.97, Theorem 4.1) for a proof.
For notational compactness we have suppressed X, but dependence of
orthonormal polynomials on X varliables ls permissible, and ls explicitly

introduced in section 3.
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3. TESTS OF INDEPENDENCE BASED ON ORTHOGONAL POLYNOMIALS

The results in (2.4) and (2.6) are the important ones for this paper.
According to Theorem 2 a bivariate distribution is completely characterized
almost everywhere by its marginal distributions and the matrix of correlations
of all pairs of complete sets of orthonormal functions on the marginal
distributions. Thus, in general, a test of Independence In the blvariate case
requires us to test HO: pnm =0 (all n,m). This onerous task may be
simplified In one of two ways. The null may be tested against an alternative
in which dependence is restricted to be a function of a small number of
parameters, usually just one. Or we may approximate the bivariate
distribution by a series expansion with a smaller number of terms and then
derive a score (LM) test of the null hypothesis Ho: B ™ 0 (some n,m). For
independence we require P ™ 0 for all n and m. By testing only a subset of

the restrictions, the hypothesis of approximate independence is tested.

3.1 Score tests based on orthogonal polynomial expansions for the joint p.d.f.

Consider whether a finite number of terms, say p, in the series expansion
(2.6) provides an adequate approximation to gly!.yz], the unknown true joint
p.d.f. If p=2, this ls equivalent to the null hypothesis

(3.1) H = 0.

o' Pyy T Pez T Piz ™ Py

For general p we have the approximation

P P
(3.2) log g(yl,sz = log fl(le + log fz(yzl + logll1 +X & pn_Qn(leRm(yzll

n=1 m=1

(3.3) vpnn log g(yl.yz) = Qn(yl)-Rm(sz, n,m=1,2,...p,
P 0



where QP = 8/8p. To test HD we follow the score test approach. The score

test will be based on Eolvp log g(yi,yz]] = 0, which implies that
nm

(3.4) EUIQn(Y1)°R‘{yZ}] =0, n,m=1,2...,p,

where ED denotes expectation under the null hypothesis of independence of Yy
and Yy

Thus, given the orthonormal functions Qn(yl). R.(yz) corresponding to the
marginals, a score test of the null hypothesis may be based on the expectation
of the products of palirs of orthonormal functions. Since (3.4) must also hold
when multiplied by a scalar (not a function of y, or ya). we more generally
consider tests based on the expectation of the products of palrs of orthogonal
(not necessarily orthonormal) functions. These tests may also be interpreted
as conditional moment (CM) tests in the sense of Newey (1985).

In some cases (see Section 3.4 for examples) the expansion (2.6) will

simplify to the following:

(2.6a) Bly,.y,) = fl(yl}ofztyzl-[ 1 +“);1 ann(y:}-Rn(yz.'!] i
where 1 = p1 = pz - 2 0. Then the test of independence will be based on

reduced number of moment conditions EO[anyll-Rn(YZ)] = 0, nzl.
Furthermore, the rejection of HO: Py = 0 implies also the rejection of HO: B =
0, n > k, because of the inequallty relationship between the elements of the
sequence {p_}.

It is understandably more common to test for zero correlation than

for independence in applied work, although the former does not imply the
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latter in non-Gausslan multivariate models. This corresponds to a test of Piq
= 0. 1If the serles expansion 1s truncated at p=1, then this is simply a test
that the term for p=1 1s negligible. If the serles expansion is truncated at

p=2, then for independence we test that 911 = 0. This test

“i0qa =051 Pog
may be carried out by sequentlally testing each separate hypothesis. Clearly
Py = 0 1s in general a necessary, but not sufficient, condition for
independence. Testling a very large number of terms wlll not be practicable,
but tests up to second order dependence (p=2) may be useful in many applled
situations. The analysis glven above shows that the tests should be based on
correlations between orthogonal (or orthonormal) polynomials corresponding to
given marginal densities. This subsumes the common case of the multivariate
normal regression model in which tests are based on regression residuals,
which are simply the first order orthogonal polynomlals. The appropriate

polynomlals to use in the case of tests of higher order dependence are less

obvious; they are orthogonal polynomials given in the next sectlon.

3.2 Implementation of the tests of independence
The test given above is implemented as follows:
(1) the marginals must be given;
(2) orthogonal polynomials corresponding to the marginals must be derived;
(3) the test statistic must be constructed from the appropriate sample
gquantities.
Step (1): Obvious. Section 3.5 discusses the lmpact of misspecification.
Step (2): For given marginals, orthogonal polynomial sequences may be
constructed using knowledge of the moments of the marginals together with the
definition of orthogonality given in (2.1) and (2.2). A general procedure and
the expressions for orthogonal polynomials derived in this way are given in

Cameron and Trivedil (1990). The polynomials up to order 2 are easily stated
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in terms of central moments, p;. of the baseline density, f(y):

) n=0
(3.5) Pyl = { y = ul.z n=1
(y - p1] - (pax‘uz][y 7 "1} a0 n=2

Note that in regression models Hy o= Ely | X,8], and (y - yl) will be
usually interpreted as a regression residual; then the orthogonal polynomials
are polynomials in these regression residuals. The orthonormal (unit
variance) polynomials corresponding to Pi{y) and Pz(y), respectively, are
Pl(Y}thé and Pz(y)/{ua - (pé)zfpé - [ué)z}lfz. These orthogonal polynomials
are not necessarily the obvious choice of polynomial in the regression
residual. In particular, in going beyond tests based on the covarlance of
residuals (correlation) it is natural to consider tests based on the
covariance of squared residuals, 1.e. using (y - pl]z- ué. By instead
choosing the second order polynomial given in (3.5), we obtain a test that is
statistically independent of the test based on the covarlance of residuals,
because Ea[Pl{y)Pz[y}l = 0 by construction. Then the individual 12(1] tests
given below will be Jointly xz with degrees of freedom given by the number of
tests.

If the varlable y is truncated or censored, then the polynomials Pn{y]
must be defined in terms of "generallzed residuals" in the sense of Cox and
Snell (1968), so that the polynomlals have zero expectation. This adjustment
is the same as used by Pagan and Vella (1989) and Cameron and Trivedi (1990);
the former do not use orthogonal polynomials, the latter do.

An alternative equivalent procedure uses known generating functions for
orthogonal polynomials for a given baseline density. These generating
functions are known for the classical cases and for the Meixner class of

distributions which includes the normal, gamma, Polsson, negative binomial and
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the binomial densities. The OPS corresponding to these cases are,
respectively, Hermite, generallzed Laguerre, Poisson-Charlier, Melxner and
Krawtchouk polynomials. A summary table of thelr generating functions based
on Meixner (1934), Eagleson (1964) and Griffiths (1985) is reproduced in
Appendix A. To derive an orthogonal polynomial of order n, simply calculate
v;r(y;lezao.

Step (3): The key moment restriction (3.4), written in full, is :
(3.6) EOIQn{yl. Xy 8y | x1)-R_[y2. X5, 8, | xz)l =0,

where Xl and X, are (not necessarily disjoint) subsets of regressor variables

2
X, and B: and 92 are (not necessarily disjoint) subsets of the parameter

vector 8. Defline
(3.7) s“m{y. X, 8) = Qntyl' Xl, Bil'Rm(yz. Xa. 92}
By independence of Rm and Qn. and conditional on X,

(3.8) varg(s, (.)) = (Eg[R 17+ vary(a.) + (EglQ, 1)+ vary(R)
+ varO{Qn}-varo(R.}

= varO(QnJ-varu(Rnl .

when [EO[Rm)] = [EOIQn)] = 0, a property of orthogonal polynomials.
We begin by assuming that the parameters of the marginal distribution are
known. By application of a central limit theorem, for orthogonal polynomials

Qn ¢ and Ru which have zero mean by construction, we obtaln:

e =

Proposition 1: For orthogonal polynomials, a test of the null hypothesis of
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H.: P ™ 0 may be based on:

0
2 T T oy, X
(3.9) LS [g§1 qn,t“n,t )e(Z (Qn,tnn,t] ) T(Z Qn,tRm,t ¥
= t=1 t=1
2 2
Under HO’ T o Converges to the x (1) distribution. =

We note that tim can be computed as T times the uncentered R2 (equals the

explained sum of squares) from the auxiliary regression of 1 on Qn tRm ¢

When we use orthonormal polynomials, distinguised by an asterisk,

T
Eu”‘_f;q‘i't) '('flﬂ' ! )1 =T E [tf‘ (Q;l. tR:l.tjzl' by virtue of the

homoscedasticity (and independence) of Q; P and R; - We obtain:

Proposition 2: For orthonormal polynomlals, a test of the null hypothesis of

Hu: pnn = 0 may be based on

2 X 2 hi
(3.100 = (E QL R utzo- ”ff" Ohe -(‘fl 8 JHE D

Under "0' T times ril converges to the xz(l} distribution. =

Use of proposition 1 requires a zero mean for Qn t and Rm t under HO’
i.e. correct specification of the first n moments of Yot and m moments of
th‘ Use of proposition 2 additionally requires a constant variance for Q*
and R; t under HO‘ which would be guaranteed by correct specification of the

n, t

first 2n moments of Yit and 2m moments of Yoy In Section 6 these tests are
compared in a Monte Carlo environment.

To operationalize these test statistics we need to consider the effect of
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substituting the estimated parameters O, and @, in place of the true

1 2
population values 91 and 92. The following definitions will be used:
(3.11) snm't(e) - snn‘t[y. X, 8 | X),
= . T %
(3.12) snm'T{a] =T p snn,tlel'

t=1

We wish to test independence by testing the closeness of Sim T[GJ to zero, an
example of a conditional moment test of Newey (1985) and Tauchen (1985). When

8 1s root-T consistent and

(3.13) Ealvasnm[y. X, 8) | Kll =0

1/2

Me, (a) = TR
nm, T

s (8) + o (1), a result established by a first-order
nm, T P
2

Taylor series expanslion of Tlf .o T(B). Thus we can immediately apply

proposition 1, with s (8) in place of Bnm.t{a]' Letting Qnt = un(ylt'

nm, t
xlt. 81] and Rnt = H.(th, XZt. 92]. we can lmplement proposition 1 by
computing T times the uncentered R2 from regression of 1 on Qnt and Hmt' For
orthonormal polynomials, we can alternatively use proposition 2 and compute T
.l Hl
times the correlatlon coefficlent between Qnt and R.t 4
When 91 and 02 in (3.7) are distinct, condition (3.13) will be
satisfled under the null hypothesis that Yy and y, are independent. To see

this, observe that EDlvBlsnn[Y' X, 8) | X1 = Eﬂrvﬂlqnlyl' X1. Bl] | X1

-EolRm(yz. Kz. 92} | X] = 0, since the orthogonal polynomial Hm(yz. Xz. 92)

has expectation zero by construction. Similarly EOIV9 snn[y. X, 8) | X] = 0.
2

Thus the preceding theory can be directly applied.

For most of the tests considered in this paper, (3.13) holds and this
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simple form is adequate. The one exceptlion is for tests of serlal dependence
ct_l). where L is the
underlying error in the time serles model and the conditioning varlables are

in time series models. Then {ylt' ) = (:t.

Y2t
the current exogenous and lagged exogenous and endogenous variables. In this
case 81 = Bz = 8. Conditional moment tests In dynamic models are considered
by White (1987), who shows that If @ 1s the MLE then a xztl} test statistic

is computed by T times the uncentered R2

from the regression of 1 on
Sim t(B) and the t-th score for the conditional density (given lagged
endogenous variables). Implementation for the time series example is

consldered further in sectlon S.

3.3 Multivariate extensions

Since there are close parallels with the blvariate case, here we shall
only sketch the argument. Suppose there are r random varlables [yl.yz'..,.yrl
with jJoint p.d.f. g{yl.yz.....yr] and r marginals f,(y,), leyz). ,...fr(yrl
whose respective OPS are denoted by Q;(yl). where n = 0,1,..=; 1 =1,2,..1.
According to Lancaster (1969, Theorem 5.9, p.101), under the condition of
oz—boundedness the joint p.d.f. admlits a series expansion of the same type as

(2.8), viz.,

(3.14) 5{yl.y2.....yr) = filyl)’fz(yz)- ..... -fr[yrl

SR LA CARE S35 33 Tas NALLAE CRENS
1<) 1<)<k

where p:: denotes the correlatlon coefficlent between orthonormal polynomials
Q:(yl} and Q:(yj}. Independence between the n random variables implies

= 0.

n mn o mno
1<) 1<)<k

necessary condltions such as ? f E I pIJ = 0 and ? ? E E E b3 stx
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Since a multivariate distribution is characterized by its marginal

distributions and all possible palrs of complete sets of orthonormal functions
on the marginal distributions, the computational burden of testing more than
Just a select few of these restrictions is likely to be formidable. Hence in
most applications where r is large in the relevant sense, it would seem
senslble to explolt prlor knowledge and the structure of the problem in
setting up a test based on a subset of the restrictlions.

For example, for tests of independence based on the first-order
orthogonal polynomlials, 1.e. covarlances between ¥y and yJ, there are
potentially r(r-1)/2 pairs to test, each a lell test. The Jjolnt test will be
a ler(r-llle test. A simpler problem is that of testing for zero
correlation between two subsets of random variables, denoted by Y, and Y, with

1 2

the covariance matrix £ = [Z, ], 1, J=1,2, where ranklrll) = r_ and rank(zzzl =

1]
As an extenslon of the scalar case, following Hooper (1959) define the

1
FZ‘

squared canonical correlation coefficient

2 — | =1

(3.15) pc-{wcznl(ﬁlozn)tuczml
-t (8 g, 1 1)
11 —12 =22 =21

which is zero under the null hypothesis of independence of Y1 and Yz. Let
ri denote the sample squared canonical correlation coefficient. Then,

analogously to Proposition 2 we have

Proposition 3: Under the null hypothesis of independence, T-ri ~ xz{rIrZJ. "

This result has appeared In the literature in a number of places, including

Jupp and Mardia (1980; Theorem 1) and Shiba and Tsurumi (1988; Proposition 3.)
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3.4 Correlation and independence

Since tests of independence are onerous to apply, it seems natural to ask
vwhen a test of zero correlation 1s adequate as a test of independence. We are
unaware of general and practically useful results along these lines, so the
following discussion is restricted to a few interesting speclial cases.

Consider the generalized exponential family (Jupp and Mardia (1980))

(3.16) g(yl.yz; Bl.az.p) = exp{sl'v(yi) + vtyii’pu(yz] + ez‘u(yz) - C(sl‘az'P)

+ d1(y1} + dztyzl}

where v(.), w(.) and dlt.} and dZ(.) are some functions, and c(el.ez.o) =
cltsl}-cz(sz). Under independence p=0 in which case the right hand side is a
product of two exponential familles. In such cases the null of independence
can be tested through the single restrictlion p = 0, and hence the tests of
zero correlation and iIndependence are equivalent; see section 6 for an
illustration.

Specific bivarlate parametric familles were considered by Eagleson (1964
who examined the Meixner class of distributions (see Appendix A) in which the
correlated random variables were generated by considering sums of independent
random varlables with common components in the sums. He showed that in this
class correlation is an adequate measure of dependence. In the bivarlate
Meixner class, with variables Yy and Yy defined as Yy 2u kY Y, =V 4w, and
u, v and w are independently distributed pz = var(v)/[var(u+v)-var(v+w)].

When zero correlation implies independence we expect a classlical
statistical test, Wald, likelihood ratio or score, of correlation to be the
same as a test of Independence. However, the starting polnt in this paper lis

the univarliate marginal distributions; no restrictions are placed on the joint
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distribution. Consequently we test the null against a wide range of joint

distributlions.

3.5 Test procedures when the marginals are misspecified

The preceding discussion leading to the derivation of the test statistics
(3.9) and (3.10) was based on the assumption of correct specification of the
marginals. We now conslder the impact of misspecifled marginals.

Under independence the true joint pdf g(yl.yzl can be written as follows:

glyyy) = £,y )f,(y,)

= f;(yll- fi(yz]-[l +“ZI anPn(yll ][1 . ): BQO(yz)]

m=1

o o

£30y,)" £3(y,) [1 . ..>=:1 a P (y,) + _)_:‘ 8.0, (v,)

(3.17)

@ @
. [ z aanP(leQn[yz}]

n=lm=1
where we have used (2.4) to write each frue marginal as a serles expansion
around a baseline pdf, denoted by an asterisk. If the baseline marginals are
correctly specifled, then E[Pn(yl)] and E[Q'(yzll are both zero for all m and
n, and « =0, B =0, for all n and m; then (2.6) and (3.17) will coincide. The

. = . «*

null hypothesis of independence implies E[Pn(yl] Qm(yzll E[Pn[yll Qn{yz)]
= 0, which is tested by (3.9) and (3.10) derived from the series expansion in
(2.6). 1If both the marginals are mispecified, then E[Pn(yll} and E[Qm(yz)]
will not be zero for all m and n, and o * 0, Bm # 0, and E[?n[yll-nm(ya}] -
0 and E[P;(yll-q;{yz)] # 0. The tests may be significant because the baseline

marginals are misspecified, not necessarily because the varlables are
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dependent. In this case (3.9) and (3.10) will test whether the product of the

misspecified marginals equals the joint pdf. (This is in the spirit of Hall's
(1990) interpretation of his tests for the normal linear time series models.
See also Robinson (1991).) Finally, note, rather remarkably, that if one
marginal is misspecified, but the other 1is correctly specified the tests
retain their valldity as tests of independence. This result is not useful in
dynamic time serles models where misspecification of one marginal impllies
misspecification of the other.

If the maln focus is on tests of independence rather than
misspecification of the baseline marginals, then specification tests of the
marginals, based on the relevant orthogonal polynomlials (see Cameron and
Trivedl (1990)) will be an appropriate preliminary to tests of independence.
In Section 6 we examine the power of the independence tests under

misspecification.

4. TESTS FOR SEEMINGLY UNRELATED REGRESSIONS
Consider the seemingly unrelated regression (SUR) multivariate normal

model

Iy L= 1,2, 5

Yy
(4.1) [:1] ~ N(p, Q2), where p = [ul). Q= [ulj
¥

r

Suppose we wish to test the null hypothesis HO: w,, =0, 1#), against the

1]
alternative that wij # 0. In the bivariate case the usual test for this is
based on the sample covarlance between the reslduals in the two regressions;
see Engle, Hendry and Richard (1983). In the multivariate case Breusch and
Pagan (1980) conslider the score test, and Shiba and Tsurumi (1988) develop
Wald, likellhood ratio and score tests for block-dlagonality of Q. The score

test is essentially the same as that discussed In section 3 with p=1.
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The theory of section 3 permits extension of these tests in two
dimensions. Flirst, the usual score tests are tests of zero correlation rather
than lndependence. This ls a consequence of specifying the multivariate
model to be jolnt normal, for which zero correlation and independence are
equivalent, rather than some other distribution where the univariate marginal
distributions are normal, but for which zero correlation does not necessarily
imply independence. The tests of independence proposed here will not only use
residuals Yy "My but also higher order orthogonal polynomials. For the

normal the second order orthogonal polynomial is (yi - K1)

R ¥

The second extension is to relax the assumption that the marginal
distributions are normal. For example, sets of equatlons for different count
data variables may be considered. Then the marginals may be Poisson, and the
independence test will be based on cross products of orthogonal polynomials,
the first two of which are [yi = ”1) and (yi = nllz =¥y where Hy is the
conditional mean of yi. usually exp(xiﬂ}. This illustration is considered
further in sections 5 and 7. Note that the independence tests do not require
estimation or specification of multivariate models, such as the multivariate
Poisson. Another non-normal example ls sets of binary choice equations. Then
we wish to know whether to simply model equations separately, with binomial
(one trial) marginals, say the probit model, or to use a multivariate model
such as the multivariate probit (Ashford and Sowden (1970)). Application of

tests based on section 3 is again straight-forward as the condition (3.13) is

satisfled.

5. TESTS OF INDEPENDENCE IN TIME SERIES MODELS
Consider time series observatlions on a scalar process {yt. t=1,2,..,T},
where Ye has conditional mean p, = E[yt|Ft_1], and Ft-l denotes the

informatlion set comprising Yeogr Ypoproo: and current and lagged exogenous
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variables.

To test first order dependence we consider bivariate random variables
(ylt.th) - (yt- LI “t-:l = (ct.ct_il. Applying the results
of section 3.2, the test based on first order orthogonal polynomials (l.e.
p=1) will be a test of whether the covariance of Yit and Yor equals zero, l.e.
whether the errors €, and €,_, are correlated. The test is simply the usual
2

1 T'rl is

test based on the first order serial correlation coefficient r
x2(1) under HU.

Tests of independence often use L>1 successively lagged values of the
variable y,. Then we have an (L+1)-variate random variable
‘ylt'th""y(L+1)t’ = {Yt'yt-l""yt—L}' The independence tests of section
3.3 (the multivariate case) based on the first-order orthogonal polynomials
will be tests of L(L+1)/2 correlations, but with the assumption of second

order stationarity we need only consider the L correlatlons between Yyt and

i=1,...,L, or equivalently the correlation between € and €

Y1+t t t-1’
%)

iI=1,...;L Let r, = (£ €€

1 denote the ith sample correlation

t_i]/(x €,
t t

coefficient. Then from section 3, T-ri2 is xz(l). By the statistical

independence of each test, the overall test based on the quantity

(5.1) T =Te ET

i1=1 1

is asymptotically xz(L]. L 1s recommended to be chosen as some pre-determined
fraction of the sample size. LJjung and Box (1979) have suggested an improved

variant of this asymptotic test, which uses ti - T(T+2)°£(T-i)_1rf :
1

The above standard tests use only the first order orthogonal polynomials.
As a result they will not necessarily detect nonlinear forms of time

dependence. For example, these tests do not test for an ARCH model, since in
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the ARCH model the errors are uncorrelated. A number of nonlinear models and
tests for nonlinear dependence exist. For example, see Hsieh (1989), who
applies a range of tests to dally exchange rate data. Here we propose testing
for nonlinear dependence using higher order orthogonal polynomlals. We do
this for the simplest case where orthogonal polynomials up to second order are
used and where only first order serial dependence 1s considered.

Specifically, tests of zero serlal dependence are based on the
restriction EOIP‘(ylan(yz)] = 0, where, choosing p=2, the orthogonal
polynomlials Pn(yli and Pn(yz). m,n = 1,2 are given in equation (3.5). This

ylelds the following four conditional second-moment restrictions:

(5.2) Eﬂlctct—i] =0 m=1, n=1
2
(5.3) Eolcttct_1 - Iuafuzlctnl - pzl] =0 m=1, n=2
(5.4) E.le (cz - (p/p,)e, - p,)l =0 mn=2 n=1
: 0'Ct-1'%¢ < e Tl $
22 2 2 2 2
(5.5) Eyleiel 1 — (k7)) (e el + e, 1) AL ST
(p.7p )z(c € ) +p.le, + € )+ uzl =0 m=2, n=2
oL s tt-1 3 % t-1 2 = A >

These moment restrictions essentlally imply an absence of generallzed
serial dependence. Restrictlion (5.2) ylelds the test of zero first order
autocovarliance already dlscussed at the beginning of thls section.
Restrictlion (5.3) states that the covarlance between the residual and lagged
squared residual 1s zero. This restriction will be violated in a Gaussian
model if, for example, the model displays an ARCH-M (ARCH-in-the-mean) effect

(Engle, Lillien and Robins (1987), Hsieh (1989), Bollerslev, Chou and Kroner
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(1992)). Thus, a test of (5.2) may be viewed as a test of the conditional mean

specification of the maintained model, while a test of (5.3) may be viewed as
a test of the conditlonal variance specification. Restriction (5.4) states
that the covarliance between current squared residual and lagged residual is
non-zero. This restriction will be violated if the data display bilinear
dependence or non-symmetric ARCH dependence. Finally, restriction (5.5)
states that a generalized ARCH effect 1s absent.

The restrictions are stated in a general form and may be speclallized to
the Gaussian case by setting u3 to zero. They are suggestive of the type of
nonlinear dependence one might test for in non-Gaussian nonlinear models of
the type which have been discussed in the empirical finance literature; see
Bollerslev et. al. (1990, sections 2.3-2.4 and 3.3-3.4).

Speclalizing to Gaussianity, the components of the dynamic information
matrix (DIM) test of White (1987) yleld restrictlions simllar to (5.2)~(5.5)
with Hy = 0, see White (1987). The case considered above corresponds to
choosing lag of order 1 whereas the full DIM test 1s based on the matrix
formed by the outer product of the vector of condltlonal scores and lagged
conditional scores. Both White and Perez-Amaral (1989) discuss in detall the
implementation of the full test and its components using regressions. Weiss
(1986) and Perez-Amaral (1989) also discuss procedures for making these tests
robust agalnst departures from maintained distributional assumptlons.

Tests based on (5.2) are widely used, while tests based on (5.3) and
(5.4) are not. An important special case of (5.5) is the first order ARCH
model, denoted ARCH1 (Engle (1982)). Assume that the distribution of v, 1s
symmetric, in which case By = 0. Then the conditional moment restriction
(5.5) collapses to

2.2
€

2 .2 25 2 _ g . s
(5.5a) Eolzt oy * uz(ct + ct_l) + pzl Eollct uzlict_l nzl] 0.
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The test of the restriction (5.5a) corresponds exactly to the test of
independence against the alternative of serlal dependence of first order ARCH
type. Under Gausslanlity, this test is conventionally implemented by running a
regression of ;f on 1 and éi»l and calculating TR2 from this regression. But
the version (5.5) 1s more general since it does not assume symmetry of the
null distribution; see Engle (1982, sections 4-5) and Nelson (1991) on the
role of symmetry in testing for ARCH. Incorrectly assuming symmetry when
testing for ARCH will affect both the size and the power of the ARCH test.
The present verslon alsc ensures orthogonality between the ARCH test and other
tests of serlal independence. It is easlly implemented using the theory
developed in section 3.2, in conjunction with tests of restriction (5.3) and
(5.4) which test for a lower order of serial dependence than does (5.5).
Extenslon to higher order processes ls strailght-forward, though cumbersome.
Observe that at least in “"diagonal" models there is a close connection
between an absence of symmetry and bilinearity, in that in general the latter
implies the former (Granger and Anderson (1978, p.53)). Conventional ARCH
tests assume symmetry and do not usually test for asymmetry, but the above
discussion suggests that tests of skewness and billnearlty should precede
tests of ARCH, and that the variant of ARCH test of this paper should be used

if there 1s evidence of elther.

6. A MONTE CARLO INVESTIGATION
This sectlon reports the results of a Monte Carlo investigation of the
properties of the regular and the orthonormalized varlants of the independence
tests in (3.9) and (3.10). To complement available extensive time serles work
and the empirical illustration of Section 7, the chosen context is that of

discrete distributions in which the data are generated by bivariate Poisson
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and mixed Polsson regression models and tests are based on Polsson marginals.
The maximum order of the polynomials ls restricted to 2, so there are four
tests in each category. The first two orthogonal polynomials are Pliy) = y-u
and Pz{y) = ty—u)a-y and their orthonormalized counterparts are Pl{Y]/{p and
PZ(y]/(VQu}. respectively. Substitution of these expressions in (3.9) and

(3.10) ylelds the elght tests which will be conslidered.

6.1 Design of the Monte Carlo experiments

Elght models and two sample slzes, viz., 50 and 200, were used for slze
and power comparisons. Each simulation experiment was based on 500 paired
replications. The regression component included a constant term and one
explanatory variable, x, taken as a random draw from uniform [0,1]
distribution and held fixed in all replications. Estimation is by maximum
likelihood.

A comparlson of the nominal and empirical size of the tests is carried
out with Models 1 and 2 in which the variables Yy and y, are generated as
independent Polsson varlates with parameters pl and "2; in Model 1, u1=p2=p
where p = exp(ﬂﬂ + le): in Model 2, uzbul. In Model 3 the varlables ¥4 and
y, are agaln independent, but the marginals are not Polsson. The variables
are dependent in the remaining cases. In the case of Models 4 and 5, data are
generated via a bivariate Polsson distribution, with Polsson marginals. The
tests are applled under correct specificatlion of the marginals. In Models 6,
7 and 8, however, Yy and y, are, respectively, Poisson(ullcll and

Poinson(pzlczj where
(6.1) pllc1 = exp(Bo + Cl + le)

(6.2) uzlcz = exp(B0 +g, * 51x)
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where cl and Cz denote random terms corresponding to unobserved heterogeneity.

When these random terms have a non-zero mean, “0

this will not affect iInference. The presence of the cl and Cz induces

will be unidentified, but

overdispersion in the marginal distributions of Yy and Yy Dependence between
Yy and Y, is induced by using correlated (1 and CZ' so that in contrast to
Models 4 and 5 In which the marginals are correctly specified, the assumptlon
of Polsson marginals ls a misspecification when the intercept term is random.
In all cases except Model 2, Bo = 81 = 1; in Model 2, 81 is 1 and 1.5,
respectively, in each pair of replications. Additional details about data

generation is given below along with the summary of the results,

6.2 The Results
Tables 1 and 2 present the rejection rates for the null hypothesis of

independence, for N=50 and N=200, respectively, at nominal significance levels

of 1, 5, and 10 per cent for two groups of tests, viz., (Tii' le. TZl' TZZJ
which correspond to the expression in (3.9), and [T?l, TTZ' 121. ng} which

correspond to the expression in (3.10) for the orthonormalized version. The
results for Models 1-2 help to evaluate the match between nominal and
empirical test size, and the rest throw light on the power properties.

Models 1 and 2: Since the data are conditionally independent the
rejection frequency for all tests should equal the nominal significance level.
The results for N=50 and N=200 suggest that for all tests the match between
the nominal and empirical significance level is good at 1, 5 and 10 per cent
levels in the sense that the observed divergences between the two are within
the sampling variations expected from 500 replicatlons.

Model 3: The varlables Yy and y, are independent but each is marginally

overdispersed. This 1s achieved by adding to the intercept an exponentially
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distributed random variable with parameter 1/A, the A being fixed at 2 when

N=50, and 3 when N=200. This experiment enables us to observe the possible
size distortions in tests of independence.

The results show that, for both sample sizes and for all orthonormal
tests and for low order non-orthonormal ones also, the rejection frequency is
considerably greater than the significance level of the test. For the tests
based on low order polynomials the rejectlon frequency ls close to 50 per cent
even when N=50. In a sense this indicates size distortion, but it also
indicates power agalnst the alternative of misspeciflied marginals (as
discussed earlier in Section 3.5).

Models 4 and 5: Here Yy and y, are generated by a bivarlate Polsson
model where yl =u+v, yz =v + W, and u, v and w are independent Poisson
distributed with parameters li' 12 and 33. respectively. Then Yy~
Polsson(?l1 + Azl. ¥ © Polsson(k2 + A

3
> 0, and pz = RE/(11+12][A2*33); see Johnson and Kotz (1969), Gourieroux

), cov[yl.ya) = cov(u+v,v+w) = var(v) =
X
et. al. (1984). In this case zero correlation implies independence. Hence
the tests based on low order polynomlals should have high power. The degree
of correlation may be controlled by varying 32. given other parameters. For
N=50, the correlation is roughly 0.24 for Model 4, and 0.29 for Model 5; for
N=200, the corresponding correlations are 0.19 and 0.21.

Tll and T?l have significantly higher rejectlon rates than the tests
based on second order polynomials. Except when the sample slzes are large and
and/or the correlations are high, tests based on higher order polynomials will
have low power. The tests based on the first order orthonormal polynomials
are preferred to the higher order tests.

Model 6: The random heterogeneity component in Models & through 8 was
specified as follows: Cl = K{ﬂz*l] where n~N(0,1); CZ = Cl; k =0.25

(N=50) or 0.15 (N=200). The value of the scaling constant x controls
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overdispersion of, and dependence between, Y and yz. Because of the Joint

presence of overdisperslon and dependence we expect the rejection frequencies
to be high, and they are. The orthonormal version of the test has higher
rejection frequencies and these are almost as large for tests based on second
order polynomials as the first order ones. For the non-orthonormal tests the
rejection frequecies for higher order tests are always lower but they rise
sharply as N goes from 50 to 200.

The differences between the two versions of the test may be understood as
follows. Overdispersion impllies that E[Pz(y)l will not be zero, as under the
null. The tests based on orthonormal polynomlals depend upon the higher
moments of the assumed marginal distributions and consequently should be more
affected by such a misspecification. The true variances of the orthonormal
polynomials are understated under the null, and the tests based on them derive
thelr power agalinst this misspecification from this source. Viewed as tests
against the joint null of independence and correct specification of the
marginals, the orthonormal verslions of the tests perform better.

Model 7: Here (6.1) and (6.2) are speclalized as follows: CI = k-u
where u~uniform(0,1); Cz = Ci; k = 1,00 (N=50) or 0.70 (N=200). In this case
the random terms add to both the conditional mean and the variance of the
model. The larger is x, the greater the correlation.

The rejection frequencies are agaln consistently higher for the
orthonormal version. Further, of the tests based on second order polynomlials,
only TD_ has reasonable power compared with T, and p

22 11 11’
suggests that higher order tests may have limited utility if the sample is

Once again this

small.
Model 8: Here we construct a case In which the tests based on second
order polynomlials might have higher power than those based on the first order

ones. This is done by specializing (6.1) and (6.2) such that the
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heterogeneity terms have close to zero correlation by construction but are not

independent. Specifically, let: (1 = x(u1 + -1); cz = —r:[u1 - uz) where

%

u,~uniform(0,1) and u,~uniform(0,1); xk = 3.00 (N=50) or k = 1.75 (N=200).

1 2
Tedious calculations show that the correlation coefficient is between -.0173
and -0.0179 when k=3, and between -.0119 and -.0135 when k=1.75. This
construction is apparently successful in that 1t ylelds a case in which T22 is

a conslderably more powerful test than T But this is also a case in which

11°
the orthonormal variant turns out to have close to zero power irrespective of
whether it is based on the first or second order polynomlials!

To summarize: Important differences between (3.9) and (3.10) arise when
both marginals are misspecified; otherwise the differences are smaller and the
latter 1s more powerful. Broadly speaking, the test based on (3.10) performs
better than (3.9), but the margin of superiority declines as N increases. For
the cases examined here the tests based on second order polynomials generally
had lower power than the first order polynomials, but there are exceptions.
The tests, especially (3.10), have power against the alternative of
misspecified marginal. In applied work it will be helpful to compute both
versions since large divergences between the two may be indicative of

misspecification.

7. [EMPIRICAL APPLICATIONS
Two empirical applicatlons, one cross sectional and the other time series

will be used to illustrate the use of independence tests.

7.1 Application: Tests of independence in a multivariate Poisson model.

In Cameron et. al. (1988) a microeconometric model was estimated in which
the focus was the relationship between several measures of health care
utilization and the lnsurance status of the household, controlling for a

variety of socioeconomic and health status variables. The data were a sample
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of 5190 observations for single-person households from the Australian Health

Survey 1977-78. The dependent varliables were counts of events including the
number of hospital admissions (HOSPADM) and the number of days spent In
hospitals (HOSPDAYS) in a preceding 12 month period; and the number of
prescribed and nonprescribed medicines taken (PRESC and NONPRESC,
respectively) in the past 2 days. The explanatory variables included gender,
age, age-squared, income, three categories of insurance status (FREEPOOR,
FREEOTHER, LEVYPLUS) with LEVYPLUS denoting the highest level of insurance,
and a set of five health status variables (ACTDAYS, ILLNESS, HSCORE, CHCOND1,
CHCOND2).

As 1s standard for count data regression the conditional mean of the
dependent variable is log-linear In the explanatory variables. The detalls of
the data and the specification are given in Cameron et. al. (1988). The 1988
paper reported and compared Polsson and negative binomlal regressions for
seven varlables, including the four mentloned above, but treated each
utilization measure as conditionally independent of other measures. However,
we can expect some utilizatlon measures to be jointly dependent. For
instance, hospital admission (HOSPADM) and the number of prescribed medicines
(PRESC) are likely to be correlated with each other and with other measures of
health care utilization. For this reason, it was decided to reexamine the
data and to test for dependence.

Three possible univariate count data models were considered: the Polsson
and two alternative specifications of the negative binomial, respectively
named NEGBIN 1 and NEGBIN 2 in Cameron and Trivedi (1986). For the Polsson,
var(y |X) = E[y |X]; for NEGBIN 1, var(y |X) = a*Ely |X], where « is the
overdispersion parameter; and for NEGBIN 2, var(y IX) = ( 1 + &-Ely IX))-Ely
|X), where & is the overdispersion parameter. Tests of independence up to

order two may be based on the followlng orthogonal polynomials:
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Polsson NEGBIN 1 NEGBIN 2
P ly 1X) Yy - K Y=g ¥ =
P,y IX) (y - plz- Y (y - u)z- (2a-1) (y-p) (y - u)z—(hzau)(y - @)
- op = (148p)p

where p denotes Ely |X] = exp(X’B).

In implementing the tests we can apply the simpler asymptotlc theory with
(3.13) satisfled. Thus for each of the four count data regressions, B, & and
« may be replaced by consistent estimates and subsequently treated as given.

The Polsson quasl-MLE B 1s consistent for £ 1n all three models. Lettling

= exp(xt'ﬁ). a consistent two step estimator of « is & = (I ; 2)_1'

t
(2 ut(yt = ptlz). and a consistent two step estimator of & is & = (E ptai-l-
t

t

t

(£ n, 20y, - m)? = y,)) (Gourleroux et. al. (1984)).
t

Although all calculations were carrlied out, only those based on the
NEGBIN 1 specification are reported below. These are preferred to the Poisson
as the data are overdispersed. The Polsson quasi-MLE of B for each of the
four regressions, and the estimate of the overdispersion parameter «, are
given in Table 3 below. (The reported t-values for é are those from a
standard Polsson ML package. To obtain correct standard errors, assuming
overdispersion of the NEGEIN 1 form, divide the reported t-ratlos by Jrg.J.

To calculate the test of independence for each of the six possible
bivarliate palrs of varlables we use the statistic tiﬂ in (3.9). In Table 4
below we restrict the calculations to all combinations of the first and second
order NEGBIN 1 orthogonal polynomials since these appear to be sufficlent to
reject the null of independence. For approximate independence it is required

that all four test statistics in any row of Table 4 be small. A sufficient

condition for dependence is that the test statistic in column (1) be large.
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There seems clear evidence that (HOSPADM, HOSPDAYS) and (PRESC, NONPRESC) are

two dependent palrs of count variables, and also strong evidence that
(HOSPADM, PRESC) is a dependent pair.

A feature of the tests based on orthogonal polynomials is that by
focusing on higher order dependencies between varlables they may highlight
possible patterns of dependence between dispersion or volatlility of varliables
even 1f they are uncorrelated. For this data, tests using the second order
polynomials suggest that additionally (HOSPDAYS, PRESC) and (HOSPADM,
NONPRESC) may be dependent palirs, a dependence not detected by tests using
first order polynomials alone.

For comparison we also computed the tests based on orthonormal
polynomials, using rim in (3.10), corresponding to column 1 of Table 4. In
some cases these turned out to be somewhat different. For example, the six
values corresponding to column (1) were 1660.8, 18.18, 0.25, 18.87, 0.003, and
126.7. These differences, taken in conjunction with the results from the
Monte Carlo, suggest that the specification of the marginals should be
scrutinized further, especially for HOSPDAYS variable.

The findings of dependence are very plausible for the following reason.
The overdispersion evident in each equation may be due to unobserved
heterogeneity. Consequently, the negatlve binomial regression was preferred
to the Poisson. Since the explanatory variables in all equatlions are the
same, it seems very plausible that the neglected (unobserved) heterogeneity in
different equations is correlated, as in the bivarlate Polsson model. This
will impart stochastic dependence between variables.

Overall, there 1s strong evidence that we are dealing with dependent
counts for all four variables and that jJoint estimation of these equations is
desirable. Unfortunately, multivariate models for dependent count varliables

do not permit flexible patterns of correlation between the variables, though
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semlparametric estimation of a multivariate model may be feaslble.

7.2 Application: Tests of serial dependence in the IBM stock price series.

Following Weiss (1986), we shall analyze the time series of IBM daily
common stock closing price for 150 trading days beginning May 17, 1961, which
is part of a longer serles of 369 observations given in Box and Jenkins (1976,
p. 526). The efficient market hypothesls implies that the time series of
percentage stock price changes, Y = (1-B)log Pt' where B denotes the backward
shift operator, should be serially independent. In practice, the ACF of the
series may appear to be that of white nolse and the errors uncorrelated, yet
they may not be serlally Independent. Therefore it 1s useful to go beyond
tests of zero correlation.

Row 1 in Table 5 gives the ACF of Y This suggests an MA1 model which
is evidence against unqualified effliclent market hypothesis. Estimation of a

MAl model ylelds the followlng:

(7.1) (yt - 0.0015) = (1 + 0.25933}ct )
(1.56) (3.23)

where t-statistics are given in parantheses. The ACF of ;t from this MA1
model, given in row 2 of Table 5, suggests the process is serlally
uncorrelated. We tested for symmetry, and since the estimated third moment
was extremely small, we tested for ARCH-M, bilinearity and ARCH1 effects after
imposing symmetry and using the tests of this paper and the tests given by
Welss (1986). Table 6 gives the results.

The results obtalned, under elther a white nolse or MAl specification of
the null model, reject the null against the alternative of ARCH-M, or against
ARCH1 alternative. This shows that ignoring serial correlation and using OLS

rather than MA1 residuals to test for ARCH-M and ARCH had no impact. This
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nicely illustrates the orthogonality between the tests. Ignoring ARCH,

assuming symmetry and testing the restrictions (5.3)-(5.4), leads to rejection
of (5.3), but not (5.4), irrespective of whether the error 1s assumed white
nolse or MAl. These results are the same whether the version of the test used
1s Welss's or this paper’'s. Since this suggests that the conditlonal mean has
been misspecified, the interpretation of the outcome of an ARCH1 test is
ambiguous. Ignoring the ARCH-M effect nevertheless, and testing against ARCH1
also leads to the rejection of the null. We may conclude that ARCH-M and/or
ARCH1 effects are present in the data. The fact that Welss’s bllinearity
test glves results similar to ARCH-M also suggests that it 1s difficult to
distinguish between the two effects using that test.
8. SUMMARY AND CONCLUDING REMARKS

The orthogonal polynomial approach to testing for stochastic dependence
Is attractive for several reasons. For models popular in applied
econometrics, parametric specification of a multivariate system may be
difficult or not known, in which case Wald, likelihood ratio and score tests
cannot be used. And for other models a multivariate system may exist but be
very restrictive in the form of dependence admitted. The tests proposed here
are often simple to implement, and have an orthogonality property that is
likely to be useful in applied work. In Monte Carlo simulation with discrete
dependent variables the two maln tests of thls paper showed significant
differences In power against emplirically interesting alternatives, suggesting
that both might be useful in applied work. In all cases considered at least
one of the two types of tests had high power. In application the approach
suggested in this paper tests the independence hypothesis only approximately
by testing only a small subset of restrictions under the null hypothesis of
independence. But despite this limitation the present procedure goes beyond

the more usual test of zero correlatlon.
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TABLE 1 : PERCENTAGE REJECTIONS OF THE NULL HYPOTHESIS OF INDEPENDENCE

N = 50
Model Significance Test statistics
1 1.2 0.2 0.2 0.4 1
5 4.8 4 4
10 10.8 10.2 6.6 7.0 10.8 10.2 9.4 9.2
2 4 0.6 2 1 2 0
5 4.2 .6 5 6 5
10 12.0 9.8 10.6 6.0 12.0 10.6 11.6
3 1 0.0 0.8 0.4 39.2 49.0 48 50.2
5 3.6 0.6 2.6 ] 49.9 50.4 51.4 51.6
10 15.6 7.8 8.8 2.8 54.0 52,0 56.2 52.6
4 10 18. 4
5 a3 8 41. 6 8 11
10 45.4 9.6 8.6 8.8 54.2 13.4 14.2 21.6
5 18 34. 8
5 51 60.8 6 8 14
10 67.0 9.2 7.0 9.0 72.6 13.4 14.2 21.6
6 1 5.2 0] o] BO, 70 &9 76
- 24.4 90 78. 77.6 82
10 44.8 4.8 4.2 3.8 92.8 B84.2 81.8 B84.0
7 1 47 0. 0 65 14
5 81 1 84. 27
10 91.4 4.0 4.4 15.0 92.0 14.0 14.2 33.6
8 0.2 2 0.6 17 0
5 10 11. 63 0

10 19.4 28.0 32.0 80.8 2.0 0.0 0.0 0.4
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TABLE 2: PERCENTAGE REJECTIONS OF THE NULL HYPOTHESIS OF INDEPENDENCE

N = 200
Model Significance Test statistics
el 3 Ty ' T w T Tu TaTm
1 1 0.6 1.4 0.4 1. 2 2.2 o0.8 0
5 8 6 6 S. 4.8 8
10 9.2 13.4 8.6 11.4 8.0 11.6 10.2 9.6
2 1 8 A 1 1.2 0
5 5.6 4 4. 6.8 3
10 9.8 11 10.4 8 9 12.4 8.2
3 1 35.6 0 44 24.4 13 23.6
5 48.2 10 4 49.2 40.4 23 29
10 52.4 32.4 15.6 11.4 51.2 48,0 29.2 33.0
4 52 0 0 0 65.8 1.0 2.4 5
5 76 85. 4 7 11
10 87.2 8.6 9.0 9.8 91.2 9.2 12.4 17.6
5 61 4 70. 0 1.2 B8
5 83 88.0 6 6 16
10 89.2 8.4 7.2 10.6 99.4 12.8 13.4 20.6
6 1 26.8 6 0.8 84.4 T4 75 74.6
5 59 91 81.4 83.8 80
10 77.4 25.8 24.6 10.4 95.4 93.8 B87.6 B3.6
7 1 74.2 0. 0 73 5
5 89.2 4 88.6 5 10
10 94.6 8.8 7.8 11.4 93.6 8.2 10.8 16.4
8 2.2 8.6 9.2 3822 0.2 0.0 0.0 0.0
S 13.0 29.8 32.4 65.6 0.2

10 19.4 46.0 47.2 80.0 9.2 5.8 86 1.6
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TABLE 3: NEGBIN 1 REGRESSIONS FOR HEALTH CARE VARIABLES

5190 observatlons

HOSPADM HOSPDAYS
Explanatory Coeff. t-ratio Coeff. t-ratio
variable
ONE -1.09 [-2.43] 0.28 [ 0.44]
SEX -5.05e-02 [-0.60] -0.33 [-2.30]
AGE -7.20 [-4.07] -8.46 (-3.18]
AGESQ 7.76 [ 3.89] 9.77 [ 3.38)
INCOME -0.30 [-2.30] -0.47 [-2.20]
FREEPOOR 0.22 [ 0.60] 0.59 [ 1.07]
FREEOTH 1.49e-02 [ 0.07] 0.41 [ 1.36]
LEVYPLUS 5.52e-02 [ 0.14] 0.51 [ 0.971
ACTDAYS 7.99e-02 [ 7.28] 0.10 [ 5.81]
ILLNESS 0.10 [ 2.98] 0.11 [ 2.01]
HSCORE 5.18e-02 [ 2.74] 1.24e-02 [ 0.31]
CHCOND1 0.33 [ 3.35] 0.79 [ 5.211
CHCOND2 0.81 [ 6.771 1. 40 [ 6.92]
« 1.33 [21.26] 31.69 [16.56]
PRESC NONPRESC
Explanatory Coeff. t-ratio Coeff. t-ratio
variable
ONE -3.09 [-9.94] -2.66 [-7.50]
SEX 0.66 [12.59] 0.40 [ 7.28]
AGE 1.98 [ 2.63] 6.23 [ S.71]
AGESQ -0.74 [-0.90] -7.56 [-5.83]
INCOME 6.60e-02 [ 0.92] 5.25e-02 [ 0.62]
FREEPOOR 0.80 [ 2.74) 2.38e-02 [ 8.32]
FREEOTH 0. 40 [ 2.631] -6.03e-02 [-0.36]
LEVYPLUS 0.53 [ 1.84] 2.78e-02 [ 9.81]
ACTDAYS 1.91e-02 [ 2.88]) 2.42e-02 [ 2.05]
ILLNESS 0.19 [13.92] 0.18 [ 9.34]
HSCORE 6.75e-03 [ 0.68] 3.08e-02 [ 2.43]
CHCOND1 0.78 [14.85] 0.33 [ 5.64]
CHCOND2 1.06 [16.02] 0.30 [ 3.50]
@ 1.44 [23.44) 1.42 [39.15]

Notes: The four dependent variables are number of hospital admissions
(HOSPADM), the number of hospital days (HOSPDAYS), number of prescribed
medicines taken (PRESC) and number of nonprescribed medicines taken
(NONPRESC). The explanatory varlables are gender (sex), age, age-squared
(AGESQ), income, insurance type (FREEPOOR, FREEOTHER, LEVYPLUS) and health
status variables: activity days lost due to illness (ACTDAYS), whether ill
(ILLNESS), score on a general health questionnaire (HSCORE), presence of
1imiting or nonlimiting chronic conditions (CHCOND1, CHCONDZ). See Cameron
et. al. for a detalled description of the data and the econometric model.
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TABLE 4: PAIRWISE TESTS OF INDEPENDENCE OF HEALTH CARE VARIABLES

Pair a) 2) ) &)
HOSPADM, HOSPDAYS 189.6 72.43 275.2 94.70
HOSPADM, PRESC 20.28 22.88 4.82 0.18
HOSPADM, NONPRESC 0.20 16.26 0.82 0.05
HOSPDAYS, PRESC 0.18 10.06 1.09 9.23
HOSPDAYS, NONPRESC 0.01 1.91 0.55 0.16
PRESC, NONPRESC 9,20 9.85 4.35 4.07

Notes : This table gives the test statistic tEn: mn =1 in column (1), m,n =
2 incolumn (2), m=1, n=2, in column (3), and m = 2, n = 1, in column (4).



38

TABLE 5 : AUTOCORRELATIONS - IBM DATA

Lag
Estimator L 2 3 4 5 6
oLS .207 -.121 -.090 .124 .076 -.037
MA1 -.013 -.093 -.100 .135 .050 -.045

TABLE 6: TESTS OF INDEPENDENCE FOR IBM DATA

Null model  Alternative model' Variant Test statistic’
(0,1,1,0) (0,1,1,1) Welss 12.99
(0,1,1,0) (0,1,1,1) This paper 12.07, 0.10
(0,1,1,0) (0,1,1,0) + ARCH1 Welss 12.08

This paper
(0,1,0,0) (0,1,0,1) Welss 14.53
(0,1,0,0) (0,1,0,1) This paper 11.21; 1.11
(0,1,0,0) (0,1,0,0) + ARCH1 Welss 10.20

This paper

Notes: (1): Using standard nomenclature we refer to an ARMA (p,d,q) model
with the hypothesized first order diagonal bilinear process a (p,d,q,1) model.
(2): Where two numbers are given, the first is a test of ARCH-M dependence

and the second a test of non-symmetric ARCH.
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Appendix A

(1) Orthogonal polynomials for distributions in the Meixner class have a

generating function of the form

L]
(A.1) FMy;z) = E Pn(ylzn/nl = t(z)exp(yu(z))

n=0

where t(z) and u(z) are functions with power serlies expansion in z (Meixner
(1934)). Table A.1 presents the polynomial generating functions for the
Meixner class and identifies the polynomial family by name.

Table A.1: Orthogonal polynomial functions for selected members of LEF-QVF

Distribution Generating Function: T(y;z)
lzwzlluzexp[—zéz-(y—p)z) exp{(y-p)z - %czzz}
- <y <w (Normal) (Hermite)
a—-1 -
? - expl=y), >0, w0 (1+z) “explyz/(1+2z)]
(Gamma) (Generalized Laguerre)
We syl . ym0.1,... (14z)Ye 2
(Poisson) (Poisson-Charlier)
(1+0) %Y @Y [Y;“"ll (1+20) Y *(1+42z(1+8))"Y
(Negative binomial) (Meixner)
[ : ]p’u-p)“"’ (1+(1-p)z)¥(1-pz)"Y

(Binomial) (Krawtchouk)
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