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Abstract

Many time series in diverse fields have been found to exhibit long
memory. This paper analyzes the behaviour of some of the most used tests
of long memory: the R/S analysis, the modified R/S, the GPH (Geweke
and Porter-Hudak) test and the DFA (Detrended Fluctuation Analysis).
Some of these tests exhibit size distortions in small samples. It is well
known that the bootstrap procedure may correct this fact. In this paper,
size and power for those tests, for finite samples and different distributions,
such as normal, uniform and lognormal are investigated. In the case of
short memory processes such as AR, MA and ARCH and long memory
such ARFIMA, p-values are calculated using the post-blackening moving
block bootstrap. The Monte Carlo study suggests that the bootstrap
critical values perform better. The results are applied to financial return
time series.

1 Introduction

Time series with long memory appear in many contexts, for example in finan-
cial economics, networks traffic, hydrology, cardiac dynamics, meteorology, etc.
Long memory or long-range dependence is characterized by hyperbollically de-
caying autocovariance function, by spectral density that tends to infinity as the
frequencies tend to zero and by the self-similarity of aggregated summands.

The intensity of this phenomena can be measured either by a parameter
d, used as differencing parameter or by the parameter H, that is a scaling
parameter. Both parameters are related, in the case of finite variance processes
by H = d + 1

2 , and in the case of infinite variance processes by H = d + 1
α

(Taquu et al., 1998).
Several test of long-range dependence are available in the literature and

some of them are described in detail in Beran (1994). In particular the R/S
analysis, the modified R/S, the GPH (Geweke and Porter-Hudak) and the DFA
(Detrended Fluctuation Analysis) tests are investigated in this paper. As it was
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found in Cheung (1993), the modified R/S and the GPH suffer for size distor-
tion. Andersson and Gredenhoff (1997) implement a bootstrap method, in order
to size adjust fractional integration tests. Bootstrap is a technique that allows
the simulation of the probability distribution of any statistic. The key idea is
to resample form the original data to create replicate data sets, from which the
empirical probability distribution of interest can be found. In the case of de-
pendent data, the resampling should preserve the temporal statistical structure
of the original series. Two are the most popular bootstrapping dependent data
approaches, the Model Based Resampling and the Moving Block Bootstrap. We
will use a strategy intermediate between them, called Post-blackening Moving
Block Bootstrap that is explained in Davison and Hinkley (1997).

2 Tests of long memory

The oldest and best-known method for detecting long memory is the R/S anal-
ysis. This method, proposed by Mandelbrot and Wallis (1968) and based on
previous hydrological analysis of Hurst (1951), allows the calculation of the self-
similarity parameter H. This parameter measures the intensity of long-range
dependence in a time series. For a time series {xt}, t = 1, ..., T we define the
range Rn

Rn =

{
max

1≤i≤n

i∑
t=1

(xt − x)− min
1≤i≤n

i∑
t=1

(xt − x)

}
(1)

where x is the sample mean of the time series. If the range is rescaled with
the sample standard deviation S, the R/S statistics asymptotically follows the
relation

(R/S)t ∝ CtH (2)

The value of H is generally obtained from the linear regression over a sample
of growing temporal horizons (s = t1, t2, ..., T )

ln(R/S)s = ln(C) + H ln(s) (3)

An estimated value of H = 1/2 means that the process has no memory, but
H 6= 1/2 would mean that the process has long memory.

More recently Lo (1991) discusses the lack of robustness of the R/S statistic
in the presence of short memory or heteroskedasticity. Lo suggests the modified
rescaled range statistics, henceforth MRR, which replaces the denominator S,
the standard deviation, by a consistent estimator of the square root of the
variance of the partial sum of x.

QT =

{
max

1≤i≤T

i∑
t=1

(xt − x)− min
1≤i≤T

i∑
t=1

(xt − x)

}
/sT (q) (4)

where
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sT (q) =





1
T

T∑

i=1

(xi − x)2 +
2
T

q∑

j=1

τj(q)




T∑

i=j+1

(xi − x)(xi−j − x)








1/2

(5)

and also τj(q) = 1− j
q+1 with q < n

Lo derives the limiting distribution of T−1/2QT under the null of no memory,
and shows that the modified rescaled range statistics is robust to short-range
dependence. Critical values of the distribution are tabulated in Lo (1991) table
II.

In a recent paper Teverlosky, Taqqu and Willinger (1999) show that MRR
test tends to reject the null hypothesis of no long-range dependence when the
series is in fact long dependent and that the choice of the truncation lag q is
crucial.

The other method is a semi-parametric procedure to obtain an estimate of
the fractional differencing parameter d. This technique, proposed by Geweke
and Porter-Hudak (1983), henceforth GPH, is based on the slope of the spectral
density function around the angular frequency w = 0. The spectral regression
is defined by

ln {I (wλ)} = a + b ln
{

4 sin2
(wλ

2

)}
+ nλ λ = I, ..., v (6)

where I (wλ) is the periodogram of the time series at the frequencies wλ =
2πλ
T with λ = 1, ..., (T−1)/2, T is the number of observations and v is the number

of Fourier frequencies included in the spectral regression. The least square
estimate of the slope coefficient provides an estimation of d. The theoretical
error variance is π2/6 and allows the construction of the t-statistics for the
fractional differencing parameter d. A mayor issue on the application of this
method is the choice of v.

The last method we have test that measures the long-range dependence is
the Detrended Fluctuation Analysis (DFA) proposed by Peng et al. (1994) and
improved in Viswanathan et al. (1997). The advantage of DFA over Hurst
analysis is that avoids spurious detection of apparent long-range correlation
that is an artefact of non-stationarities. The method can be summarized as
follows. First, the integrate time series y(t′) is obtained, y(t′) =

∑t′

T=1 x(t).
Next the integrate series is divided into non-overlapping intervals, containing
each interval m data. In each interval a least squared line is fitted to the data.
The y coordinate of the straight line segments is denoted by ym(t′). Next the
root of the mean square fluctuation of the integrated and detrended time series
is calculated

F (m) =

√√√√ 1
T

T∑

t′=1

[y (t′)− ym(t′)]2 (7)
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This calculation is repeated over all intervals. A linear relationship on a
double log graph of F (m) and the interval size m indicates the presence of a
power law scaling. If there is no correlation or only short correlation F (m) ∝
m1/2, but if there is long-range power-law correlations then F (m) ∝ mα with
α 6= 1/2.

3 Bootstrap testing

The bootstrap technique can be used for estimation of the small-sample dis-
tribution of a statistics. Introduced by Efron (1979), the bootstrap procedure
enables correction of size distortions. For details of bootstrap tests see Davidson
and MacKinnon (1996).

The original test, designed for iid observations, fails for dependent obser-
vations. The moving block bootstrap and model based resampling methods
perform better for short range dependence. Short and long memory processes
will be examined using the post-blackened moving block bootstrap method dis-
cussed in Davison and Hinkley (1997) and studied by Srinivas and Srinivasan
(2000), which is an intermediate approach between both and appears to capture
the dependence structure of the data, even using a small number of bootstrap
replications. The idea that underlies the block resampling is that if block are
long enough, the original dependence will be preserved in the resampled series.

The procedure works as follows for a given time series {xt}, t = 1, . . . , T :

Step 1. Compute the tests statistics (Lo, GPH, Hurst and DFA) and obtain τ̂ .

Step 2. ”Pre-white” the time series fitting an AR(p) model with a suitable large
number of lags of the time series and obtain the estimated residuals et

and the centered residuals et− ē. The order of the autorregresive model
will be estimated using the Schwartz’s criterion.

Step 3. Resample blocks of the centered residuals from the estimated model
using the moving block bootstrap to generate B bootstrap samples of
them.

Step 4. ”Post-black” the resampled centered residuals using the estimated pa-
rameters of the AR model to generate B bootstrap samples of x denoted
xb.

Step 5. For each bootstrapped sample compute the statistics τ b.

Step 6. Compute the statistics p-value. For a two-side test is defined by

p∗(τ̂) =
1
B

B∑

b=1

I(|τ b| ≥ |τ̂ |)

where I(·) equals one if the inequality is satisfied and zero otherwise.
The null is rejected when the selected significance level exceeds p∗(τ̂).
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4 Monte Carlo study

For the Monte Carlo study 1000 replicated series of each model will be used.
Each series will be tested for long-memory using the tests described in section
2, for the no long-memory null hypothesis. In all the cases T +100 observations
are generated and only the T last are used to reduce the effect of initial values.
The block size has been set in 5.

4.1 Normal, uniform and lognormal distributions

Results of the tests when the data follows uniform, normal and lognormal distri-
butions are reported in Table 1. The simulation result shows that all the tests
perform correctly and do not show significant deviations from the nominal size.

Table 1: Rejection percentage of the nominal 5% fractional inte-
gration test when the data follows uniform, normal and lognormal
distributions of length T.

MRR GPH R/S DFA 1

Uniform
T=100 4.1 4.3 4.8 3.8
T=200 5.0 5.0 4.7 4.5
Normal
T=100 5.7 4.6 5.3 5.6
T=200 4.5 4.4 4.1 4.4

Lognormal
T=100 4.3 5.2 4.2 4.5
T=200 6.0 4.3 4.4 4.5

4.2 AR and MA specification

The following processes will be simulated

xt = φxt−1 + at

and
xt = at + θat−1

where at ∼ IID N(0, 1). The AR and MA parameters are set equal to ±1, ±4
and ±9. Table 2 reports the sensitivity of the empirical size to AR and MA
components for time series of length T=100. The simulation results suggests
that MRR and GPH for both AR and MA models perform well, but rejection
frequencies are significantly larger than the nominal significance level when θ =

1MRR: modified rescaled range test GPH: Geweke-Porter-Hudak test; R/S: Hurst test
DFA: detrended fluctuation analysis. Under the null hypothesis of no fractional integration,
the 95% confidence interval is 5%± 1.4%
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−0.9. These results are slightly better than the ones obtained in Andersson
and Gedenhoff (1997) using the original no parametric bootstrap. The R/S and
DFA tests show similar behavior, they are always very conservative in the sense
that they tend to reject the null less frequently than the nominal.

MRR and GPH post-blackened bootstrap give exact tests because the esti-
mated sizes of the tests coincide with the nominal, whereas R/S and DFA are
very conservative in the case of moving average and autoregressive models and
small samples.

Table 2: Rejection percentage of the nominal 5% fractional inte-
gration test when the data follows AR and MA processes of length
T=100.

MRR GPH R/S DFA
φ AR process

-0.9 4.7 4.2 0.6 0.6
-0.4 5.0 3.8 0.4 0.6
-0.1 5.1 4.8 0.3 0.4
0.1 5.3 4.5 0.9 2.7
0.4 5.3 3.7 0.6 1.4
0.9 5.9 4.8 2.4 1.5
θ MA process

-0.9 7.5 17.9 0.1 0.0
-0.4 6.3 3.8 0.1 0.1
-0.1 5.2 4.8 0.3 0.2
0.1 5.0 4.6 0.9 0.4
0.4 5.6 5.1 0.5 0.3
0.9 5.9 5.1 0.3 0.2

4.3 ARCH specification

Now, the effect of heteroskedasticity of ARCH type is considered. The simulated
model is

xt = ut ut/t−1 ∼ N(0, ht)

ht = α0 + α1u
2
t−1

Results in Table 3 show that MRR and GPH are quite robust, but, again
R/S and DFA tests are conservative with a very small rejection rate, so the
post-blackening bootstrap test allows the exact estimation of the long-range
dependence for small samples in the presence of heteroskedasticity.
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Table 3: Rejection percentage of the nominal 5% fractional inte-
gration test when the data follows an ARCH (1) model of length
T=100.

MRR GPH R/S DFA
α ARCH process
0.3 6.1 4.2 0.5 0.7
0.5 5.9 4.0 0.6 0.2
0.8 7.3 5.0 0.5 0.5

4.4 ARFIMA specification

Fractionally integrated white noise or ARFIMA (0,d,0) is also tested. Data are
generated following Hosking (1981):

(1−B)dxt = at

where at ∼ IID N(0, 1) and the fractional differencing parameter is d is set
equal to ±0.45, ±0.25 and ±0.05. Results in table 4 show that MRR and GPH
have good power except for d = −0.05 that leads to small rejection frequencies.
The R/S and DFA tests have good power for persistent processes, or positive
d parameter, but the performance of these tests is really poor for antipersitent
series with a very low rejection rates.

Table 4: Rejection percentage of the nominal 5% fractional inte-
gration test when the data follows an ARFIMA (0,d,0) processes
of length T=100.

MRR GPH R/S DFA
d AR process

-0.45 7.4 9.0 2.6 3.8
-0.25 7.7 7.9 3.4 4.7
-0.05 6.0 4.0 5.3 7.2
0.05 6.8 4.0 7.5 8.3
0.25 14.3 8.5 21.8 12.4
0.45 22.6 14.4 23.0 19.7

5 Application to financial data

Finally all four test are used to test long memory in time series of returns, abso-
lute returns and squared returns of two mayor daily stock indices, the Standard&
Poors 500 and the Dow Jones Average. Two samples of each index are analyzed,
one year of daily data, from 01/02/2003 to 31/12/2003 yielding 252 observations
and a longer series of five years of data, form 01/02/1999 to 31/12/2003, with
a total of 1256 observations. The returns are calculated using the logarithmic
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differenced data
rt = (ln(xt)− ln(xt−1)) ∗ 100

A common finding in much of the empirical literature is that returns them-
selves contain little serial correlation, however, the absolute returns and their
power transformation present long memory, as discussed in Granger and Ding
(1993).

Results of the bootstrap p-values are given in Table 5 and 6.

Table 5: Point estimation and p-value results for test of long mem-
ory for the SP500.

MRR GPH R/S DFA
SP500 T=251
rt 1.1968 -0.0615 0.5984 0.3989
p-value 0.4030 0.6870 0.3940 0.7880
|rt| 0.3967 0.5746 0.6750 0.4723
p-value 0.0000 0.0010 0.2130 0.6579
r2
t 0.6814 0.5943 0.6432 0.5481

p-value 0.0010 0.0000 0.3360 0.3032
SP500 T=1255
rt 1.5529 0.0850 0.5131 0.4426
p-value 0.1010 0.2980 0.9000 0.8560
|rt| 0.4778 0.4699 0.7908 0.7499
p-value 0.0040 0.0000 0.0000 0.0000
r2
t 0.8106 0.3973 0.7744 0.7523

p-value 0.0340 0.0000 0.0000 0.0000

Table 6: Point estimation and p-value results for test of long mem-
ory for the Dow Jones.

MRR GPH R/S DFA
Dow Jones T=251
rt 1.2619 0.0016 0.6068 0.4318
p-value 0.2540 0.9350 0.4330 0.7090
|rt| 0.4219 0.4093 0.7057 0.5150
p-value 0.0000 0.0080 0.1940 0.6910
r2
t 0.7257 0.4574 0.6761 0.5407

p-value 0.0040 0.0060 0.3090 0.2910
Dow Jones T=1255
rt 1.3249 0.1205 0.5668 0.4858
p-value 0.2940 0.1380 0.5120 0.5510
|rt| 0.6348 0.4683 0.8027 0.7726
p-value 0.0000 0.0000 0.0000 0.0000
r2
t 1.0789 0.3062 0.7710 0.7544
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p-value 0.0050 0.0040 0.0020 0.0050

For the shorter time series of both indexes, the MRR and GPH found long
memory in absolute returns and squared returns series, but the R/S and DFA
do not allow the rejection of the null hypothesis of no long memory.

In the case of the series that covers five years, all of the tests find no memory
in returns and long memory in absolute and squared returns.

6 Conclusions

Post-blackening moving blocks bootstrap provides an effective method to im-
prove the test for long memory, especially for MRR and GPH tests and short
time series.

R/S and DFA tests can also benefice from the bootstrap approach. They
should not be used to test long memory in short time series, but when applied
to longer series, p-values that allow hypothesis testing can be obtained.
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