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_Abstract. Random density models are analyzed to 
determine the low degree harmonics of the gravity field 
of a planet, and therefrom two properties: an axiatity Pl, 
the percent of the degree variance in the zonal term 
referred to an axis through the maximum for degree t; 
and an angularity Eln, the angle between the maxima for 
two degrees l, ru The random density distributions give 
solutions reasonably consistent with the axialities and 
angularities for the low degrees, l < 5, of Earth, Venus, 
and Moon, but not for Mars, which has improbably large 
axialities and small angularities. Hence the random 
density model is an unreliable predictor for the non- 
hydrostatic second-degree gravity of Mars, and thus for 
the moment-of-inertia, which is more plausibly close to 
0.365MR • . 

Introduction 
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Bills (1989) argued that the moment-of-inertia of 
Mars should be close to 0.345 MR 2, where M is the 

anet mass and R is the radius. This was appreciably 
r than the 0.365 MR 2 favored by Reasenberg (1977) 

and Kaula (!979), and has considerable significance for 
stress levels and composition in Mars (Kaula et al., 1989). 

The basis for the argument of Bills (1989) was that 
the equality of the equatorial non-hydrostatic moments- 
of-inertia, 6 C = 6 B, implicit in the higher value 0.365 
MR2, is extremely improbable for random density 
distributions in a planet. The lower value of 0.345 MR a 
corresponds to the most probable condition of, C - • B = 
•B- •A. Earth, Venus, and Moon all are dose to this 
condition, as indicated by figure 1, which is a histogram of 
the quantity 

f= (•C- 6B) / (6C-6A) (1) 

Figure 1 was generated from 30,000 configurations of 
30 masses random in mamfitude and location on a sphere. 
It is essentially identical with figure 2 of Goldremh & 
Toomre (1969)and figure 2 of Bills (1989). R-Mars on 
figure 1 corresponds to the 6C = ,B assumed by 
Reasenber 1977 and Kaula (1979), while. B-Mars ( ) 
c0rrespon• to the, B = (, C + • A ) / 2 of Bills (1989). 

In calculating figure 1 and all subsequent figures it is 
assumed that the 3-axis coincides with the minimum of 

the second-degree component of the non-hydrostatic 
gravity field, because any plausible terrestrial planet has 
sufficient dissipation to cause a drift to rotation about the 
axis of maximum moment-of-inertia on a time scale small 

f 

Fig. 1. Probability density distribution of the difference 
ratio f= ( C- B)/( C- A). All of figures 1-7 are 
from 30,000 random configurations, each containing 30 
masses random in magnitude and location on a sphere. 

compared to that of the generation of density 
irregularities (Goldreich and Toomre, 1969). It is then 
convenient to place the 1-axis through the maximum of 
the second-degree component. 

If a property predicted by a physical model (such as a 
random density distribution on a sphere) is not 
observable, then it is deskable to seek other properties 
that are observable to test the model. Neither the 

p?ecession nor the non-hydrostatic Ca o of Mars, 
alternatives to infer its I/MR2, are presently observable. 
But there are other properties of Mars's gravity field 
which are both predicted by a random density distribution 
and observed. If the predictions do not give a reasonable 
probability for the observed values, then the model is 
likely to be inapplicable for the non-observed properties. 

Analysis 
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Properties of Mars's gravity field that are both 
predictable and observable are, for any spherical 
harmonic degree l > 2: 

1. The percent Pt of the variance for degree I that is 
in the zonal term for a coordinate system that has its 
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polar axis through the maximum. We call this property 
the axiality. 

And for any pair of spherical harmonic degrees l, n: 
2. The angle Ein between the maximum for degree I 

alone and the maximum for degree n alone. We call this 
property the angular/ty. 

If Mars's gravity field is dominated by a single feature 
that is near to axial symmetry, such as Tharsis, then for l, 
n small we should expect the angles E/n to be improbably 
small according to the random density model, and the 
percents P1 to be improbably large. 

To obtain the axiality P/, we use the fact that the 
. maximum must be represented solely by the zonal term of 
spherical harmonics referred to an axis through the 
maximum: 

P/=M/•/[(2/+ 1)af 1, (2) 

where M l is the maximum value for degree l, located at 
o/, x b 2 I + 1 is the square of the normalized zonal 
harmonic at the pole, and ,/• is the degree variance, the 
sum of the squares of the normalized coefficients. The 
maximum M l is the sum of coefficients times harmonics 
at its location oi, XF 

M[ = z ( Clm cos mx t + Slm sin m,xl• Plm ( cos o l , (3) 

where P!m is ihe associated Legendre polynomial. If the 
axes are rotated so that the 3-axis is through the 
maximum, then the only non-zero term at o l, X l is the 
zonal, m = 0. The degree variance .l 2 is the sum of the 
squares of the coefficients, 

a la = z m ( Clm • + Sire • ), (4) 
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Fig. 3. Probability density distribution of the third degree 
axmlity Ps, with observed values for all planets. 

for spherical harmonics normalized so that their mean 
square is unity. 

To obtain the angularity Eln between harmonic 
degrees l and n, apply the cosine law to the maxima 
!ocatiom Ol, X l and o n, Xn: 

cos Eln = cos e I cos e n 
+ sin el sin On cos Q,I ' Xn ) (5) 
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Fig. 2. Probability density distribution of the second- 
de•ee axiality P2, defined by eq. (2), with observed 
vames for Earth, Venus, and Moon, and hypothetical 
values for Mars: R-Mars, consistent with R•asenberg 
(1977), and B-Mars, consistent with Bills (1989). 
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Fig. 4. Probability density distribution of the fourth 
degree axiality P,, with observed values for all planets. 
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The results from 30,000 configurations of 30 random 
masses for axialities P2, Pa, and P4 are given in figures 2 
through 4, and for angu!arities E23, F•4, and F•4 in 
figures 5 through 7. 

The axiality P2 is related to the function f shown in 
figure 1. For references axes that are principal axes, only 
C•0 and • are non-zero; using the relationships thereof 
to the non-hydrostatic moments s A, s B, and • C (Bills, 
1989; Kaula et al., 1989), and eqs. (1), (2) above: 

320• M•R$ 
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E•RTH 

P= =(4-4f+ff)/(4-4f+4ff) (6) 

The bunching up of the P• histogram toward unity is 
consistent with dP•/dfgoing to zero with f. 

On the figures are also marked the values for the 
actual terrestrial planets. The gravity fields used were 
those of Christensen & Balmino (!979), Bills & Ferrari 
(1980), Bills et al. (!987), and Marsh et al. (!988). 
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Conclusions 

The figures indicate that the random density model is 
not inconsistent with observation for Earth, Moon, and 
Venus, but quite inconsistent for Mars, which has 
improbably large P3 and P•, and improbably small E•_a, 
F• 6, and • 4. These probabilities are given in Table 1. 

Because the random density model does not agree 
with observable properties of Mars, it is an unreliable 

predictor for the unobservable second-degree axiality P2 
of Mars and thence the moment-of-inertia ratio I/MR'- 
connected thereto. The second-degree components of 
the gravity field are quite similar to the higher degree 
components in their ca•e: there is no special mechanism 
peculiar thereto, analogous to the Coriolis effect on the 
magnetic dipole. Where the second-degree components 
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Fig. 6. Probability density distribution of the angularity 
between the second and fourth degrees Fa4, with 
observed values for all planets. 

differ is in their effect, which is to determine the 
orientation and, to a minor degree, the rate of rotation. 
Given the similarity of cause, the high axialities of the 
third and fourth degree harmonics about axes close to the 
maximum of the second degree suggest a similar axiality 
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Fi;. 5. ?;ob•bfl•t7 d½•Jty distHbutio• oœ the •gulafity 
between the second and third degrees E• 3, defined by eq. 
(5), with observed values for all planets. 
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Fig. 7. Probability demity distribution of the angularity 
between the third and fourth degrees Es 4, with observed 
values for all planets. 
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TABLE 1: Magnitudes and Probabilities of More 
Extreme Values of Observed Martian Properties 

Property Symbol Magnitude Probability 

Third-Degree Axiality P3 0.987 
Fourth-Degree Axiality P4 0.827 
Second-ThirdAngularity E2s 10.78 ø 
Second-Fourth Angularity E24 14.84 ø 
Third-Fourth Angularity Es 4 8.42 ø 

0.004 

0.063 

0.013 

0.047 

0.014 

in the second degree, and hence a most probable value 
for I/MR• of 0.365 or slightly less. 

Any attempt to predict the second-degree component 
of the gravity field entails, implicitly if not explicitly, a 
model to connect the degrees. The most obvious model 
is axially symmetric support for an axially symmetric load 
centered on Tharsis, such as a poloidal mantle convection 
or an elastic shell, as computed by Sleep and Phillips 
(1985). The simplest axially symmetric load-plus- 
response is a point mass on the 1-axis. An attempt to fit 
such a point mass to the observed harmonics,/,m = 2,2 
through 4,4, produced a rather poor result: this opposite 
extreme of a random mass distribution is about as poor. 
The load-plus-response must extend quite far from the 
axis. 

The apparent consistency of random density 
distributions with the properties of the other terrestrial 
bodies probably arises from their being more complex 
tectonic systems, in which no one feature is dominant. 
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