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ABSTRACT

This survey of recent developments in testing for misspecification of econometric models
reviews procedures based on a method due to Hausman. Particular attention is given
to alternative forms of the test, its relationship to classical test procedures, and its role
in pre-test estimation.

1. INTRODUCTION

Hausman (1978) proposed a test for model misspecification based on looking for a
statisitically significant difference between an estimator that is efficient under the null
hypothesis and an estimator that is consistent under the alternative hypothesis. Since
Hausman’s paper, several theoretical issues have arisen regarding the relationship
between Hausman'’s test and conventional, or classical, tests. Many authors have also
applied the method proposed by Hausman to such specific problems as testing for
exogeneity and testing distributional assumptions. This survey reviews these develop-
ments of the "Hausman specification test."

The presentation is organized into three sections. The first section is introductory,
summarizing basic findings in the literature through the example of testing the specifica-
tion of a normal censored regression (Tobit). The second section is theoretical and
methodological, reviewing the theory behind the Hausman specification test, its relation-
ship to classical tests and pre-test estimation, and examining in detail a special class




of problems closely related to the Chow test for structural change. The third section
re-evaluates three Hausman specification tests that have been proposed in the light of
the second section: the test of the multinomial logit madel by Hausman and McFadden
(1983): a test of exogeneity in simultaneous equations models; and the test of the Tobit
model by Nelson (1981).

2. A HAUSMAN SPECIFICATION TEST FOR TOBIT

The censored normal regression model postulates an underlying regression which one
does not observe

y* = x"B + £ (2.1)

where x is a vector of k explanatory variables, f is a vector of k& unknown
population constants, and e is a random error term. Instead, one observes the regressors
x and the censored dependent variable

y=10 20y (2.2)

where 1{+) is the indicator function. Only sample points of the dependent variable
that exceed the threshold of zero are actually recorded. For other points one obtains
the values of the explanatory variables only. By convention, the observed dependent

. . A . x ., .
variable is set equal to the censoring point zero when the latent » is negative.

The OLS estimator for # that uses y in place of y‘ is biased. The source of this
bias is interpreted often as a specification error: when the errors are i.i.d. N(0,6%)
random variables, the expectation of y conditional on x'B is

EGIxB) = x'B O (I'B ) —oo (flf) (2.3)

o F

where ¢ and & are the standard normal probability density and cumulative distribution
functions respectively, Therefore, the maximum likelihood (ML) estimator, called tobit,
is used in place of the QLS estimator. The log-density for y conditional on x is




Iy=1(=0)n¢ (.-f:ﬁ) ~1(:>0) [%1n(2w02) +1 (y_ax'3)2] @.4)

Summing (2.4) over observations and maximizing this sample log-likelihood function
with respect to the unknown parameters § and o? yields the maximum likelihood
estimators by and s3 . Under regularity conditions, this MLE is consistent and
approximately normal for large sample sizes. We denote the variance-covariance matrix

of this distribution by ¥V3(B,6) (Amemiya {1973)).

Two closely related estimators are the probit estimator and the truncated regression
estimator. The probit estimator is the MLE that uses the sign of y* to estimate the

ratio of the regression slopes to the standard deviation, -'g—= v . The log-density in

this case is

Li=1(=0)no (_"'TB) 16> 0)in® (%8_)

=1 =0)nd (-xy) - 1> O In&(x'y)

(2.5)

and, as above, the corresponding MLE for vy, ¢; , has an approximately normal
distribution, N(y,¥:1(y)) . On the other hand, the truncated regression estimator is
based on the strictly positive, continuous observations of y only. Both 8 and o
can be estimated by maximizing the log-liklihood obtained from the log-density

L=—Ind (3‘3_3.) - é—in(2w02) - % (J" "’B)2 (2.6)

[+ o

and, the MLE for {(8,6) , (b2,52) , is approximately a N((8,0),¥2(B,0)) random variable.

None of these estimators is robust to violations of the assumption that the errors are
normally distributed. Although there are no general theoretical results, one suspects
that whenever this distribution is actually non-normal, these ML estimators are inconsis-
tent. Goldberger (1984) and Arabmazar and Schmidt (1982) give specific illustrations
of such inconsistency. Furthermore, the three estimators are unlikely to converge in
probability to the same point in the parameter space because the estimators depend
on different functions of the sample data. For example, the probit estimator characteris-
tically sets the sample fraction of censored observations equal to the estimated expected
fraction whereas the truncated regression estimator is not a function of this fraction.




One can construct a simple diagnostic test for misspecification of distribution by
comparing one estimator with another, testing for statistically significant differences
with the Hausman specification test. Three possible comparisons between pairs of
estimators are:

dy = (by w5g) — (B 55)
dl ={p—0 (27)
b=t

b . . . . .
where ¢ = —s-‘- (i=0,2). The tobit, probit, and truncated regression estimators are
)

subscripted by 0, 1, and 2, respectively. Note that contrast between the tobit and
truncated regression estimators has & + 1 elements but the comparisons with the probit
estimator are reduced to the % elements identified by that estimator,

Under the hypothesis of normality, the censored regression estimator is efficient relative
to the other two estimators. Thus, the first two contrasts, dy and d, , are examples
of the estimator difference emphasized by Hausman (1978): efficient versus inefficient
estimators. The third difference contrasts two estimators that do not have a relative
efficiency ranking and are not consistent. Ruund {1982}, however, notes that this method
of testing requires neither a relatively efficient estimator nor a consistent estimator.
Rather a useful test derives from estimators that diverge greatly under alternative
models and whose difference has a2 smal] sampling variance,

Several useful points about Hausman's test which can be applied to the present testing
problem appear in the literature. First, the covariance matrix for the efficient versus
inefficient contrast is simple and convenient: this matrix is the difference of the two
estimators’ covariance matrices. Because these matrices are estimated routinely as part
of the estimation of the parameters themselves, all of the required components of the
Hausman specification test are available from standard computer software. The actual
statistic proposed by Hausman (1978} is

my = Ndg'[Va(bas) — Volbuso)] ~'dy (2.8)

Hausman and Taylor {1982) amended this formula by replacing the matrix inverse
with its generalized inverse, denoted by a superscript "-", to account for a possibly
singular covariance matrix. The statistic m, has a central chi-square distribution under
the null hypothesis of normality. One carries out the test by comparing the computed
statistic with the critical values of the chi-square distribution of the appropriate degrees




of freedom. We defer, for the moment, a discussion of the role the generalized inverse
plays and the determination of the degrees of freedom.

The second efficient versus inefficient estimator contrast, d; , is slightly different. This
contrast contains one less parameter difference than does dp . However, one may still
calculate an statistic analogous to m; . Perhaps the simplest way to do this, is to

reparameterize Lgin terms of y = g and ¢ . One can then obtain directly the ML

estimators and their estimated covariance matrix, and drop the terms related to o .
Then, proceeding as before:

My = Ndlr[yl (CI) - S'Y’ Vo(CO,So)S.Y]—Idl (29)
3(y',0)

8y
ecolumn of ¥, corresponding to covariances with 5 .

where §," = is a selection matrix containing zeroes and ones that deletes the

After Hausman’s origina! proposal, attempts to use such statistics as m; and my
revealed that the estimated variance-covariance matrix formed from the difference of
two estimated covariance matrices, might fail to be positive definite. Definiteness is
required to take the matrix inverse and variance-covariance matrices must be positive
semi-definite. Under the null hypothesis and as the sample size goes to infinity, the
efficient estimator has a smaller covariance matrix than the inefficient estimator. In
finite samples, however, nothing forces the estimated covariance matrices to satisfy
this matrix inequality. White (1982) proposes an alternative estimator of the covariance
of dy which is guaranteed to be positive semi-definite. Unfortunately, his estimator
increases computational costs. A more straightiorward solution is to evaluate both
estimates of the estimators’ covariances at one of the estimators. For example, m;
would be modified to be

my’ = Ndg/[Va(by ) Volby s)1 ™ d (2.10)

V, — Vy is guaranteed to be positive semi-definite when both matrices are evaluated
at the same point in the parameter space and one uses the information matrix to estimate
these matrices. For local alternatives to the null hypothesis, this covariance estimator
is consistent for the true asymptotic covariance no matter which estimator is used.
In addition, Newey (1983) and Ruud {1982) discuss consistent estimators that, in this
case, are based only on the first derivatives of the log-likelihood function and offer
computational savings. When these estimators are employed, the Hausman specification




test calculation can be reduced to the sample size multiplied by an unadjusted R?
statistic, as happens commonly in LM statistics (Engle {1981)).

Another failure of positive definiteness of the covariance matrix of the estimators’
difference occurs when the true asymptotic covariance matrix is singular. In other
words, there may be a linear relationship between the estimator contrasts which holds
under the null hypothesis for all parameter values. As a result, the number of
nonredundant contrasts, and the degrees of freedom of the asymptotically chi-squared
test statistic, is actually less than the dimension of & . This singularity prompted
Hausman and Taylor (1982) to insert the generalized inverse in place of the usual matrix
inverse in the calculation of the m statistic. Generalized inverses are not unigue, but
Holly and Monfort (1982) show that all generalized inverses give the same test statistic.
Given this, a convenient method for calculating the Hausman specification test when
there is a singular covariance matrix is to drop the linearly dependent contrasts and
contstruct the test statistic using a linearly independent subset of the estimators’
differences.

In our example, we have given two test statistics, m; and my  with an apparent
difference in degrees of freedom. In fact, dy contains one redundant contrast and
both test statistics have the same degrees of freedom: the number of explanatory
variables in the regression function, & . Therefore, m; and m;’ require generalized
inverses of ¥5 — V5 . It is natural to view the difference in variance estimators, §3 — 5 ,
as the redundant term, to drop this term from dp , and to rewrite m,’ analogously
to ms .

my!! = Ndy'S,[S, (Vy(by5) — Volbouso))$,17 'S, dg

Any other parameter difference also could be dropped without affecting the asymptotic
behavior of the test.

No one has provided a simple way to compute the correct degrees of freedom or to
decide which subset of contrasts is redundant. One must either resort to the computer
and software for calculating generalized inverses or tackle each problem analytically.
Hence, the convenience of the test procedure is diminished if the covariance of d
does not have full rank. It should be noted, however, that relying on the computer
to compute the correct degrees of freedom is correct if the likelihood function is regular
and one relies on asymptotic distributions. Singularities will only occur in finite samples
by chance.




Further, the statistical relationship among the contrasts in (2.7} remains unexplored.
In the second half of this paper, we will show that this relationship and the degrees
of freedom calculation are closely related. Two results are that all the contrasts lead
to asymptotically equivalent test statistics and that the degrees of freedom calculation
is simple in such problems as our example.

Several researchers have noted test statistics which are asymptotically equivalent to
the Hausman specification tests that we have constructed above. White {1982), Riess
(1983), and Ruud (1982) all observe that a score (Lagrange Multiplier or LM) test
statistic can be used. This test has the advantage that only one estimator is calculated.
One example, using the censored regression problem, is to test whether the first
derivatives of the probit log-likelihood function when evaluated at the censored regres-

. aL . g .
sion MLE, -——égi) , are significantly different from zero. If they are, o and ¢

Y
8L (c1)
e

must also be significiantly different because = 0 . We defer the mathematical

expression for this score test statistic, and other equivalent ones, to the next section.
Denoting derivatives with subscripts, this statistic is

my = NLy (eo) ¥y (co)” [V (ep) - S, VoleasodS,1 7 Vi) T Ly (o) (2:11)

Given the Hausman specification test methodology, researchers have an apparent
alternative to the classical testing method of specifying a parametric null hypothesis
and testing for deviations from that hypothesis. The relationship between classical and
specification tests has been investigated by Holly (1982a). In Holly’s framework, a
parametric hypothesis is stated for a subset of the unknown parameters in the likelihood
function. The classical tests of the parametric hypothesis are compared with the
Hausman specification test that contrasts estimators for parameters left unrestricted
by the null hypothesis. Although Hausman (1978) did not restrict his anyalysis in this
way, Holly provides an insightful view of the new testing method through this structure,

To add concreteness, we continue the censored regression problem by nesting the normal
distribution within a larger parametric family of distributions. We suppose that even
if it is not normal, the distribution function of & is a2 member of the parametric family

<]

Probe < 2) = G(z) = © [9(2)] (2.12)

where ©(z) is an M-th order power series,




M
8@ = 8,2" (2.13)

ol

such that 8'(z) > 0 for all real 2z, and normalized so that the median of ¢ is zero
{6o=0)and & =1 .In general, our hope is to approximate closely the transformation
of & to normality with ©. The normalizations are required to identify separately
¢ and the regression intercept,

With this nesting, we can use the classical test statistics, the likelihood ratio (LR), the
Wald {W), and the score (LM) tests, to examine deviations in the unrestricted estimates
of the #'s from the values obtained by restricting the error distribution to the normal:
8; = 0, j=2,...,m. For limited dependent variable models, Lee (1981) also has advanced
this methodology using the Pearson family of distributions for nesting. Denoting the
unrestricted log-likelihood by I5(y,0,8) , the unrestricted MLE by (ci/,55.,55') , its
approximate covariance matrix by Vi(v,0,8) , and using our notation above, the classical
Wald test of (33,...,9M)' =8=0 is

-1
W= N4'I5/V(e5.05] 1 (2.14)

3(y',0.8")
a8

where Sy = is a selection matrix for 8 .

The test statistics of Hausman examine deviations in the estimates of the slope (and
perhaps variance) parameters with and without the restrictions to normality. Denoting
the restricted MLE by (rys50,0) , his test statistic takes the form

m= NIV where d=[(c;~cp) ;- 55}

3(y',0.8
V(d) = S, V3(e3,5.3)8,, — Volepsp) , and S0 = a((Y 'ﬂa)')
Y,

(2.15)

Under these circumstances, there is yet another form for the Hausman specification
test which parallels the classical approach. This is the Wald form discussed by Hausman
and Taylor (19%1), and implicit in Holly (1982a):




-1
m= (17,0;9’r3)'[Iy,a;B’SB’V3(C3's3v!3)sﬂfy,a;8] Lot

6‘2L3 (2.16)
where Iv ca=E] ~—7
- a84(y" o)

This statistic measures deviations in I,,_a;e'@ from zero. It also is an estimate of the
asymptotic bias in the slope estimators under the restrictions on the 's to the normality
hypothesis. Thus, one can interpret the Hausman specification test as a classical test
of the null hypothesis that the restricted parameter estimates are consistent for the
population parameters, Holly (1982a) and Hausman and Taylor {1982) interpret the
Fundamental difference between the testing methods as a difference in the parametric
null hypothesis that is under consideration. The classical test has the null hypothesis
Hpy: 8 = 0 but the Hausman specification test has the null hypothesis H;: Im;g’ﬂ =90

Furthermore, the set of values of @ that satisfy H; is a subset of the set of values
that satisfy Hp , so that the Hausman specification test is testing a subset of the
restrictions tested by the classical Wald test. Therefore, as Holly showed, there are
alternatives to Hy for which the Hausman specification test has no power. On the other
hand, for local alternatives to H; , the Hausman specification test the appropriate
classical Wald test and is, therefore, the locally uniformly most powerful unbiased test.
This result is due to Hausman and Taylor (1982).

Riess (1983) provides another way to express the same result. He observes that the
likelihood ratio test is asymptotically equivalent to a contrast between all of the
parameter values at the restricted and unrestricted estimators. This result can also be
found in Silvey (1959). The classical and Hausman test procedures are seen to differ,
then, on the basis of which subset of contrasts one chooses to examine.

Finally, Holly (1982a) observes that there is a case where the classical and specification
test methods are equivalent, If the dimension of ¢ is less than or equal to the number
of remaining parameters (y,0) and I, has full rank, then Hy is true if and only
if H, holds, and the tests are identical asymptotically. The equivalence is exact in
finite samples when the estimators are linear, as in linear regression.




3. THE STATISTICAL THEORY OF SPECIFICATION TESTS

Specification tests often are based on comparing a eriterion function that measures the
goodness of fit of competing models. The likelihood ratio test, for example, compares
the values of the maximized likelihood function for the restricted and the unrestricted
models. I the values of the log-likelihood differ enough, there is evidence that the
restriction fails to hold in reality. Further examples are the chi-squared goodness of
fit tests and non-nested hypothesis tests,

In the likelihood framewaork that compares the restricted and unrestricted models, there
are several ways to calculate statistics that measure the change in goodness of fit. These
different measures not only yield the classical trinity of tests, the score (LM), the
likelihood ratio (LR}, and the Wald (W) tests, but also yield various Hausman tests.
In addition to the original test statistic proposed by Hausman (1978), there are other
asymptotically equivalent tests that take the form of score and Wald tests,

3.1 Specification Tests in the Likelhood Framework

Foltowing Holly (1982a}, consider a family of models with log-likelihood function L{a)
for N observations where « is a k-dimensional vector of unknown parameters. We
will assume that the regularity conditions given in the appendix of Holly (1982a) are
satisfied so that standard asymptotic distribution resuits hold for the maximum likeli-
hood estimator a :

max, L({a) = L(a) (3.1.1)

The parameter vector, e« , is partitioned into two subvectors {#,y) of dimension p
and ¢ , respectively, because one is interested in the hypothesis Hy: 8 = 8° and the
significance of Hyin the estimation of y . In our censored regression example, primary
interest is in the slope coefficients and the assumption of normality is largely for
convenience. Two estimators for y are immediately available. These are the restricted
and the unrestricted maximum likelihood estimators, co and (4 ¢|) , defined by

L,(0%p) =0 (3.1.2)

and

L‘y(!l’cl) =0, Lﬂ(fl,cl) =0 (313)
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where subscript parameters denote partial differentiation.

Hausman suggested a specification test based on detecting statistically significant
differences between the alternative estimators ¢p and ¢; . Hausman and Taylor {1981)
demonstrated the asymptotic equivalence of this test statistic and the Wald test statistic
for the hypathesis that the restricted estimator c¢p is consistent for y and thereby
established the asymptotic local power properties of the test. They and Holly (1982a)
also showed that when p < ¢ Hausman's test is equivalent to the classical test statistics
for Hy , the LM, LR, and W statistics. When p > g , the Hausman test checks a broader
null hypothesis than Hj , that ¢, is consistent. Reiss (1983), Ruud (1982}, and White
{1982) ali noted score test versions of Hausman’s test.

Returning to the general principle of measuring goodness of fit, a logical measure of
the difference in log-likelihood function for restricted and unrestricted estimation is
a derivative with respect to a parameter value. Three derivatives are used to obtain
estimators in equations (3.1.2) and (3.1.3), and various permutations of those estimators
as arguments yield score measures of fit:

L%, Le(8%c)) , Lylrcp)
0 (3.1.4)

L(8%¢)) . Ly(r.c0)
The first score is the statistic used to compute the usual LM test of Hy . This score
measures the potential for improvement in the log-likelihood function due to changes
in the estimate of 8 if the restriction & = 8° is dropped. As we will show, the other
two expressions in the derivative with respect to 8 often yield score tests that are
asymptotically equivalent under local alternatives. The remaining score statistics mea-
sure the potential for improvement in the log-likelihood function due to changes in
the estimated +y if the restrictions of Hy are dropped. In general, these latter scores
do not yield statistics similar to the first group because estimates of y need not change
in response to relaxing Hy . In fact, score tests based on L, are equivalent to the
Hausman specification test statistic, as we will now show.

Let (0°%y) be the true parameter values. We will consider the sequence of local
alternative hypotheses to Hy

Hy:0=0%=0"+ N"1/2 (3.1.5)

All of the test statistics that we consider are consistent: for a fixed alternative model,
every test will reject the alternative model with certainty as the sample size N

i1




approaches infinity. This sequence of local alternatives differentiates the asymptotic
behavior of the tests by examining their power where power is low, that is, sufficiently
close to the null hypothesis.

Like Holly, we can derive the asymptotic equivalences

0& NV2L Ny — L NP (e — 1) + LB (3.1.6)
08 N V21 o TN 20 — 63 + I, NP (e — 1) (3.1.7)
04 N V2L — LNy - 030 + LN ey = ) (3.1.8)
El-Ly ()] =10 = [?9 ?’] (3.1.9)

y8 vy

by first order Taylor expansions of (3.1.2)-(3.1.3) around the parameter values (8%,7) .

The equivalence sign £ denotes that the difference between the two sides of the
equivalence converges in probability to zero. I stands for the information matrix and
its subscripts denote submatrices.

Now consider the asymptotic distribution of the score L, evaluated at the restricted
value for § = 8° and the consistent estimator ¢; :

N2 (0% E NTIPL, = LN (e — ) + IgB (3.1.10)
Combining (3.1.6) and (3.1.10) shows that

N“”zLy(BG,q) a_ Ilefz

(Cl -_— Co) (3111)
d = ¢, — ¢g is the statistic upon which the Hausman specification test is based. Because
I,, is nonsingular, Hausman's statistic is asymptotically equivalent to a statistic based
on the score L,(Bo,cl) . This score, however does not require the calculation of ¢p .

An alternative, intuitive explanation of the equivalence of the score and Hausman
statistics is to consider the one-step, linearized maximum likelihood (LML) estimator

12




co=c¢ + I 1L (0%) (3.1.12)

c; converges in distribution te ¢ . Therefore the difference d*=c1 —c; is
asymptotically equivalent to & . But

*

-1 0
d =12 LY(G 1) (3.1.13)
showing, in turn, the equivalence of the Hausman test to the score test. Breusch and
Pagan (1981) use this argument for the classical LM and Wald tests.

If we combine (3.1.8) and (3.1.10), we obtain

NP1 6%) & — I4(n - 6%) (3.1.14)

This equivalance demonstrates the relationship between Wald classical tests and the
specification tests considered by Holly (1982a) and Hausman and Taylor {1981). While
the classical tests evaluate Hy: 8= 0, the Hausman specification tests evaluate
Hy:I,8=0.1f and only if rank(Jy)=p<q, Ho and H,; are identical and the
classical and Hausman tests are equivalent. Otherwise, rank{l,y) < p and H, is a broader
null hypothesis than Hp . H; is, indeed, an identity when rank(l,) = O , that is, when
estimates of 8 contain no information about estimates of y because I3 = O . Therefore,
if rank(f4) < p , the Hausman tests are not the same as the classical tests; the degrees
of freedom of the Hausman tests are rank(l,s) , which is strictly less than the degrees
of freedom of the classical tests. However, the Hausman tests are locally uniformly
asymptotically most powerful for H; .

Equation (3.1.14) can also be interpreted as equating the score test of estimator
consistency with the classical Wald test of H, , as Hausman and Taylor (1981) observe.
They argue that this is the hypothesis that the restricted estimator has no asymptotic
bias, a specification hypothesis of frequent interest. Under H; , the asymptotic distribu-
tion of ¢y is a normal with mean y and variance matrix I;,l by (3.1.6). Not only
is the mean correct, but the restricted estimator also remains efficient so that the
Hausman-Taylor interpretation can be extended to treat H; as the hypothesis of
estimator efficiency.!

f Fngle (1981, p. 58) seems to suggest that this is not so. He rightly points out that if estimator
consistency is the only concern, then one should be satisfied with the unrestricted estimator. However,
Engle zlso claims that if estimator efficiency is important then acceptance of H, should not convince
one to use the restricted estimator.

13




The equivalence of the Hausman test and a classical Wald test can also be found in
Lemma 2 of Silvey (1959) where it is shown that the classical LR test of Hy is
asymptotically equivalent to

NI = 0%y —~ cp)'] Zuq Uy = 8%(ey — )Y (3.1.15)

This quadratic form is simply Hausman’s test of specification applied to all of the
parameters. Reiss (1983) also notes this form of equivalence.

The score version of a Hausman test has two asymptotically equivalent forms. Besides
Lr(ﬁo,cl) , one could look at the score L (f;,c0) , the score for y evaluated at the
restricted estimator for y and the unrestricted estimator for 8 . Using (3.1.8),

-1/2 2
N7Y2L () & 1 NP ey ~ <) (3.1.16)

As a result, if ¢y is easier to compute than ¢; , a simpler calculation is available
in this alternative form. Following the approach of Durbin (1970), we can replace

t in L, by 1
max, L(8,c) = L{t].cp) (3.1.17)

the MLE for § treating y = ¢y , or by its LML equivalent yielding?

- * -1
NY2L () £ = ()T N2y - o) - (3.1.18)

where I is the indicated submatrix of 717! .

Similar arguments establish that the classical LM test can be constructed with two
scores other than the usual one: Lg(BO,c]) and Ly(ry,c0) if rank(Lg) = p . All three
scores are based on the function I; The Hausman specification and classical tests
differ essentially, therefore, in which function one uses, L, or Ly

According to Holly (1982a) and Hausman and Taylor (1981), the choice between the
two tests depends on the hypothesis one wishes to test. If one is interested only in
the verity of Hy , then the LM, LR, and W tests are the obvious candidates, being

2 I am indebted to Albertoc Holly for pointing out this connection. See zlso Engle (1981, p. 56-57).

14




locally uniformly most powerful for alternatives to Hy . If one is interested only in
consistency and efficiency of the restricted estimator, then a form of the Hausman
specification test is optima! for alternatives to that hypothesis.

3.2 Classical versus Specification Tests

Holly’s comparison of the Hausman test and the classical test began a controversy over
the testing methodologies themselves. On one hand, it is advanced that "Hausman’s
procedure seems to be more general than the classical procedures for it does not seem
to require that the null hypothesis be given in parametric form.”? On the other hand,
the Hausman test has been criticized because it does not test the "relevant” null
hypothesis, suggesting a weakness in the procedure.® In response, Hausman and Taylor
interpret the Hausman test as the appropriate classical test for the hypothesis that the
restricted estimators are consistent. Almost all commentators conclude that the applied
researcher must take care to specify clearly the null hypothesis to be tested in order
to choose between the two test methods,

This conclusion is valid but vague., One wonders, for example, how to determine the
"relevant” null hypothesis, especially if it does not take parametric form, We will
attempt to clarify the issues by arguing (1) that there has been an unconventional,
and hence misleading, use of statistical terminology and, (2) that there has been an
inappropriate application of the classical hypothesis testing framework. The concept
of null hypothesis has been confused with regions of a parameter space in which a
test statistic has no statistical power. In turn, the classical method has been reversed
to determine from a test statistic what its implicit null hypothesis is, rather than using
an alternative hypothesis to derive a powerful test statistic. Despite these seemingly
semantic distinctions, some writers have embraced or rejected the Hausman test based
upon grounds related to them.

The first step in unraveling the methodological discussion in this literature is to recognize
that Holly and those that followed him defined the null hypothesis of a test statistic
to be the regions of a parameter space in which the size of a test is equal to the probability
of the test statistic falling inside the critical region of the test. These are regions where
the test has no power as well as regions that satisfy the maintained hypothesis. Within
the classical framework, these regions and the null hypothesis are identical by construc-
tion. The classical method requires that one specify parametrically the alternatives to

3  See Holly (1983, fn. 2}

4  See Holly {1983, fa. 6) and Engle (1981, p. 58).
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a null hypothesis and "it is important to realize that ... choosing such a specification
is largely equivalent to, and not necessarily easier than, choosing a test statistic” (Cox
and Hinkley (1974, p. 81}). Therefore, to be precise, the tests may be used to test
the same null hypothesis but generally differ in their power under alternative hypotheses.
Furthermore, a classical test is "tied" to a specific alternative but this characteristic
is not a self-evident strength or weakness.

The actual null hypothesis may be "a prediction of theory likely to be true or nearly
so" or simply "circumstances we wish to assume hold" for analytical or conceptual
convenience. As such, a fundamental statistical problem is to decide whether the nuli
hypothesis is true or not by looking for evidence of inconsistency with the null hypothe-
sis. To do this, we do not have to specify an alternative hypothesis. "In many situations
test criteria may have to be obtained from intuitive considerations' alone (Rao (1973,
p. 445)). Such tests have been called "pure significance tests" by Cox and Hinkley
because no structure has been introduced to define statistical power. Goldfeld and
Quandt (1972) call these tests "nonconstructive” and Ramsey (1974) calls them
"general." '

Hence, we prefer to view the Hausman test primarily as a pure significance test, like
Thursby (1982) and Hall (1983). It is an attractive test, both computationally and
intuitively. But the fact that the null hypothesis need not be in parametric form does
not imply that the test is "more general;" generally, the Hausman test simply does
not specify the alternative hypothesis. Clearly, there is only one "relevant™ null hypothe-
sis: the mode! that we wish to maintain holds, as distinct from many alternative models.
For example, White (1982) provides an ingenious test statistic which requires specifica-
tion of the parametric null hypothesis only, and which he interprets as a Hausman

specification test. Based on the identity that E[L,(8°y)] = E[-L,(6°y)L,(6°%y)'] White
suggests comparing estimates of each expectation. The test for heteroskedasticity of
unknown form in White (1980) is a particular application of this general specification
test.”

The researcher, then, holds one hypothesis and can use either testing procedure. But
if a parametric alternative is specified, the choice of test procedure is the classical one,
The delineation of alternative models that actually hold enables us to calculate the power
of a test and the classical theory establishes test statistics that have properties of optimal
power. One can, of course, use a statistic derived from a parametric alternative
hypothesis to perform a pure significance test, However in that case, there is no g priori

5 Hall {1983) investipates the misspecifications that will be detected by White's information matrix
test. Chesher and Lancaster (1983) note an alternative formula for the test based on a simplification
of the estimator for the covariance matrix.
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basis for preferring a "classical" test to a Hausman test. Alternatively, it is interesting
to interpret, as Holly does, the Hausman test as a classical test for the intuition this
yields about its use, but Hausman’s specification test problem does not motivate the
classical structure.

The polar cases of specifying the alternative hypothesis and net are surely too extreme
to capture the actual position of empirical researchers, They operate at various degrees
between these extremes. If no additional formal approaches to inference are adopted,
the researcher must simply choose according to convenience and to intuition about
alternative models of concern.

One alternative structure that is particularly relevent to this discussion is the statistical
discrimination among nonnested hypotheses {(Cox (1961)}. In this problem, the specified
alternative model "need not be a hypothesis which the investigator would seriously
maintain” according Davidson and MacKinnon (1981). Thursby (1982) argues that
Hausman'’s specification test method is the common basis of a number of tests, including
nonnested hypothesis tests. Hausman and Pesaran (1982) show the asymptotic equiva-
lence of the J-test of Davidson and MacKinnon (1981) and a Hausman test for the
linear model.

Another issue which has clouded the comparison of classical and Hausman tests is an
implicit interest in estimation that goes beyond testing hypotheses. The discussion above
is limited to the problem of testing a parametric model. If one uses the Hausman test
as a criterion for choosing between two estimators, then one faces a different problem,
one to which we now turn.

3.3 Pre-Test Estimation

Hausman and Taylor (1982) argue that the Hausman specification test is the appropriate
test statistic if one is interested in the effect of a set of restrictions on estimation, as
opposed to the restrictions themselves. This suggests that the specification test be used
as a preliminary step in estimation that determines which estimator, the restricted or
the unrestricted estimator, one chooses. It is natural to ask, then, whether the specifica-
tion test pre-test estimator is better than the classical pre-test estimator.

One’s intuition might suggest that the specification pre-test estimator has a smaller
mean-squared error than the classical pre-test estimator. Holly (1982a) shows that the
Hausman specification test has no power against local alternatives that leave the
restricted estimator consistent. Indeed, these local alternatives also preserve the relative
efficiency of the restricted estimator as (3.1.6) reveals. Therefore, one expects the
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classical pre-test to reject the restricted estimator too frequently and to be less efficient.
Similarily, the specification pre-test estimator may trade bias for a smaller mean-squared
error than the classical pre-test estimator under local alternatives that leave the restrict-
ed estimator biased. For the case of the linear model, Gourieroux and Trognon (1981)
showed that neither estimator is uniformly better than the other. They use a four-
variable model to show numerically where one estimator performs better than the other.

In this section, the conjectures are shown to be incorrect for the general, regular
likelihood problem. Not only does the specification pre-test estimator fail to dominate
the classical pre-test estimator based on mean squared error, but the former may be
dominated by the latter even when the restricted estimator is consistent and relatively
efficient despite a failure of Hy:f=0.

In our notation the classical estimator is

Upcg) if LR € Xog
(t2,60) = ) (3.3.1)
(fl,Cl) if LR > Xpia

where LR is the likelihood ratio test statistic of Hpr @ = 6° (or an asymptotically

equivalent tes{ statistic) and x:;a is the « critical value of a central chi-squared
distribution with p degrees of freedom. Sen (1979) shows that the asymptotic bias
and mean squared error of NY 2(c:2 — y) are

Jim E[82(e, — 1] = — T pa0at (33.2)

Jim E[N(e, ~ 1)y = 1) = 17 + Hp+2(X§;mAz)(Iﬁl = Iw) (3.3.3)
) ) 3.

+KA’(2ﬁp+2(Xp;a!A2) - Hp+4(Xp;a’A2))
where

-1
A=I;MgB and A,=g(1*) B (3.3.4)

and TI,(x,A) is the distribution function of the non-central chi-squared with r degrees
of freedom and non-centrality parameter A . The same argument for the case of the
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specification pre-test estimator

() I my € X
(f.03) = ) (3.3.5)
(hper) i my> xg,

where
my = N (e — c)' (1" — 1;1)_1&1 - ) (3.3.6)
yield
lim EINY2 (e = )] = — T, 00308302 (3.3.7)
Jim BIN(y = Yo = 1)1 = 17 o+ T o (i 0b3) Uy = 1) 535
AN IL 5 (20 A5) —~ Th 4 (X2 0A3)) .
where
Ay = NUT - IZH A (3.3.9)

These expressions are analogous to Sen’s. Sen also points out that these pre-test
estimators are not asymptotically normal; their distribution functions converge to a
mixture of multivariate normal distribution functions. Holly observes, in connection
with power comparisons for LR and my , that A3 €4, .

These results do not yield a general basis for preferring one pre-test estimator to another.
The estimators share several properties: as « increases, so do the biases and as the
A’s increase, the biases fall. No ranking by biases or mean squared errors emerges.
However, under the hypothesis that 8 = 0 , the biases disappear and the mean squared
errors simplify to weighted averages of the covariance matrices of the competing
estimators, ¢y and ¢ @
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Jlim VIN'2(c) = 1)1 = Jim VIN'/%(cg — 1)1 10,4 (x5:4,0)

2 5 (3.3.10)
. 1/2 . 1/2 2
;\irl.ﬁp[N / (c3 — 7)) =}1_I’I:HV[N / (cg — )] T4 12(Xp;0:0) (3.3.11)
3.1
- 1/2
+ Jim VN2 (ey = T = Thp42(x5;0.0))
Using an argument in Das Gupta and Perlman {1974), one can show
Hq+3(x§;alo) < Hp+s(x;;a!0) < 1 - 1) P > q > 0 r 3 > 0 (3'3'12)

Therefore, under the null hypothesis Hp , the classical pre-test estimator dominates
the specification pre-test estimator with respect to covariances because greater weight
is given to the covariance matrix of the relatively efficient estimator, ¢y . (Recall
that the estimators are not asymptotically normal, however, so that relative efficiency
is not the only yardstick for comparison of the pre-test estimators.}

Indeed, the relative efficiency ranking of ¢; to ¢y extends to directions in the parameter
space in which H; holds but Hp does not. By continuity, there exists 2 non-zero A, ,
and corresponding non-zero B such that

~1
A=ItgB=0, FU) p=a, (3.3.13)
so that the asymptotic variance of ¢, is still smaller than that of ¢3 , contrary to our
intuvition. However, A, can become so large that the covariance inequality is reversed,
in agreement with intuition. Nevertheless, we have established that the specification
pre-test estimator may be less efficient than the classical pre-test estimator even in
directions that the specification test is the preferred test.

Differences in degrees of freedom explain this paradoxical result. The specification test
is more powerful than the classical test when the non-centrality parameters are equal
(A2 = Ay) and the specification test has fewer degrees of freedom. In this case, the
specification pre-test estimator weights the inefficient unrestricted estimator more
heavily than the classical pre-test estimator does. As the non-centrality parameters
appreach zero but remain equal, this relative preference for the inefficient estimator
remains so that in the limit, under the null hypothesis, the specification pre-test estimator
itself is less efficient than the classical pre-test estimator.

20




Degrees of freedom can have a substantial influence on efficiency, too. At the ten percent
significance level, the weight H,+2(x3;0,1,0) in equations {3.3.10) and (3.3.11) varies
from approximately 0.67 to 0.90 for r equals two to infinity. This range narrows, of
course, as the significance level is increased; at five percent the range of the weight
is (.80,.95) (r = 2,...,«). Table 1 shows that the efficiency loss of the specification
pre-test estimator is greatest when the tests differ greatly in degrees of freedom and
g is small.

TABLE 1 Iy, 5(x5300)

&

Critical Value o
0.10 0.08 0.06 0.04 0.02
2 0.6697 .7179 0.7712 0.8312 0.9018
3 0.7173 0.7606 0.80438 0.8600 0.9200
4 0.7452 0.7855 0.8289 0.8764 09312
5 0.7638 0.8020 0.8428 0.8871 0.9368
6 0.7773 0.8139 0.8527 0.8948 0.9415
7 0.7876 0.8229 0.8603 0.5006 0.9450
8 0.7958 0.8301 0.8663 0.9052 0.9478
9 0.8026 0.8360 0.8712 0.5089 0.9501
10 0.8082 0.84039 0.8753 0.9120 0.9519
11 0.8130 0.8451 0.8788 0.9146 0.9535
12 0.8171 0.8487 0.8818 0.9169 0.9549
13 0.8207 0.8518 0.8679 0.9188 0.9560
14 0.8239 0.8546 0.8867 0.9206 0.9571
15 0.8268 0.8571 0.8888 0.9221 0.9580
16 0.8297 0.8594 0.8906 0.9235 0.9588
17 0.8317 0.8614 0.8923 0.9248 0.9596
18 0.8338 0.8632 0.8938 0.9259 0.9603
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OCur relative efficiency finding for pre-test estimation of y does not appear to carry
over to the # parameter vector. There is no analogous ordering of the asymptotic
covariances of 1, and #3 . This failure is due to the difference in the conditional variance
of 1; given the random variables in the test statistics LR and m . f; hasa degenerate
distribution conditioned on itself as ¢, appears in the Wald version of the classical
test. Conditional on ¢; — ¢; in the specification test, however, {; has a non-zero
covariance matrix that leads to additional terms in the asymptotic variance of ¢ .
Under the null hypothesis, the asymptotic variance of #; is

Jlim VINY2(t = 0)] = 111 - 10,5 (0,001 (3.3.14)

as one would expect from equation (3.3.10) but

Jim VN2 (05— 0)) = 111 = T, 550,001 5315
3.3.15

N -1

+ 1%~ PR =ty T L, 5 (2 0) — (1= )]

in which the second term is a negative semi-definite matrix by (3.3.12). This term
attenuates the asymptotic covariance matrix of #3 which would otherwise be larger
than the covariance matrix of # . This extra term disappears, naturally, when 1%
is nongingular and the pre-test estimators are asymptotically identical.

The theoretical results of this section confirm many of the computational results for
the special linear model in Gourieroux and Trognon {1984). When # is approximately
satisfied, the classical pre-test estimator dominates the specification pre-test estimator,
When H, is satisfied and Hy is very wrong (A, large), the reverse ranking occurs,
However, we deemphasize the intuition that ¢y is preferable to ¢; when H; holds.
When the two tests’ degrees of freedom are markedly different, ¢, has a smaller mean

squared error.
3.4 A Factorization Theorem
In this last section on the theory of specification tests, we present a theorem about

likelihoods that have a special property: they can be factored into two likelihoods.!
Each likelihood yields an estimator for parameters of interest when maximized individu-

1 The material in this section and the next is drawn largely from Ruud (1982). Recently, Vuong (1983)
has introduced related ideas based on conditional likelihood functions.
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ally, A trivial example is splitting a sample of iid observations into two sub-samples
and estimating within each sub-sample separately. Such sample stratification has been
used to form specification tests in many econometric models, the textbook Chow test
being an obvious example. This is one example of a more general method of forming
Hausman tests from likelihood factors. Further examples are the applications of the
Hausman method that have been advanced in the literature and several are reviewed
in the last section of this paper.

Several results emerge from viewing these tests as "Chow" tests. First, in cases where
one appears to have different tests because the tests compare different estimators, tests
are actually identical, As a result, the comparison of two inefficient estimators can
lead to a test statistic that is equivalent to the comparison of an efficient estimator
with an inefficient one. Second, a likelihood ratio version of the Hausman test can be
given. Such statistics may have a computational advantage over the the form of Hausman
because they do not require the estimation of a variance matrix or the computation
of a quadratic form. Third, the number of degrees of freedom of the test statistics is
made obvious. One does not have to resort to 2 computer or an analysis of the rank
of a variance matrix,

Consider the simple panel data discussed by Maddala (1971) for which Hausman (1978)
proposed a specification test. The disturbance term in a linear regression model consists
of two components, an iid error and an individual effect that is carried through time:

Ppp= Xy B+ gt ey (m=1..Nrt=1..T1) {3.4.1)

Assume that the p, and e, are iid normal random variables with means zero and

variances af and o2 respectively. Three estimators are commonly applied to this

problem. The efficient estimator is the feasible Aitken estimator called generalized least
squares (GLS). One inefficient estimator is the within-groups or fixed-effects estimator
which treats the p, as nuisance parameters. Another inefficient estimator is the
between-groups estimator which runs the regression using group means, where groups
are cross-section units indexed by n .

Associated with the three estimators are three Hausman specification tests: (1) GLS
versus within-groups; (2) GLS versus between-groups; and (3) within-groups versus
between-groups. Hausman (1978) conjectured that the first test is more powerful than
the third because the covariance matrix for the first contrast is smaller than that for
the third contrast. However, as Hausman and Taylor {198 1b) showed, all three specifica-
tion tests are asymptotically equivalent. Their proof was based on the resuit of Maddala
(1971} that the GLS estimator is 2 matrix weighted average of the two inefficient
estimators.
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The panel data model is an example of a result which actually occurs frequently in
econometric estimators based on the likelihood principle and can be easily recognized
and understood given the following proposition.

Factorization Theorem: Suppose a random sample ¥ has a regular log-likelihood function
Lo(y,u) such that

Lo(y;u) = Li(y;v(u)) + Ly(yiw(u)) (3.4.2)
where L; and I, are also regular log-likelihood functions for v(u) and w(x) respectively.
Also suppose that the parameter vector v is identified in each log-likelihood function

so that there are three well-defined maximum likelihood estimators ¢5 , ¢ , and ¢

Lic)=max L(y) , i=123 (3.4.3)
yeT

where T' isa compact subspace of R? . Then asymptotically, {1) ¢; and ¢y are distributed
independently, (2) there is a weighting matrix 4 such that

Nllzfco -nE N“z[Acl + (J— A¥ey — 1] {3.4.4)

and (3) all tests based on pairwise estimator comparisons are equivalent among these
three estimators,

Prooft (1) By successive differentiation of (3.4.2)
IO'T(C) = Ll,y(‘-') + L).ﬂ(c) {3.4.5)
Loy () = Ly 1 (€) + Ly, (€) (3.4.6)

Taking expectations, equation (3.4.6) implies that as N approaches infinity

NN~ 10, 01 = MIN~V21 (0} + VN1, ()]
(3.4.7)
or Ip= Il + Iy

where 1, (i = 1,2,3) is the information matrix of log-likelihood i, whereas (3.4.5)
implies
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N~V (0] = N30 01+ MINTY2L, (0]
(3.4.8)
+CoN V2L, () NV, ()] + CoNTV 2L, () NV 2Ly (0]

so that the covariance of L;, and L,, is zero asymptotically. ¢; and ¢, are therefore
asymptotically independent, given their asymptotic normality.

(2) By the usual Taylor series expansions
N NP -y) L = 123) (3.4.9)
Combining (3.4.9) and (3.4.7) yields (3.4.4) where
A =I5 (3.4.10)

so that ¢y is the matrix weighted average of the two orthogonal estimators,
asymptotically,

(3) Evaluating (3.4.5) at any of the three estimators implies that the two scores
corresponding to the other estimators are equal, except for a possible difference in sign.
Therefore, the score versions of the Hausman test that use those two statistics are
identical in finite sample, In other words, for any two pairwise comparisons, one can
find identical score test statistics. Asymptotically, all of the tests are therefore equiva-
lent.

This theorem postulates a factorization of the likelihood which may be interpreted as
a separation of the information about y into two orthogonal parts. Conclusions (1}
and (2) are consistent with this interpretation: the estimators derived from the orthogo-
nal information are themselves orthogonal and the fully efficient estimator which uses
all of the information is a combination of the orthogonal inefficient estimators. These
facts about the within-groups, the between-groups, and the GLS estimators in a simple
panel data model were proved by Maddala (1971). Result (2) also has been used in
the panel case to construct an asymptotically efficient two-step estimator from the
within-groups and the between-groups estimators. Even in cases where a useful two-step
estimator does not arise, the third conclusion informs us that several alternative
specification tests are asymptotically equivalent. A Hausman specification test does
not require an efficient estimator. Because the information is split. into only two
orthogonal pieces, any pair of estimators contains all of the information about y . Note,
however, that more than two factors can arise easily. In those cases one contrast of
estimators will not be equivalent to another. Note also, that the comparison of the

25




two inefficient estimators has a computational advantage over the other two tests:
an estimate of the covariance matrix of their difference is the sum of their estimated
covariances which is always positive semi-definite. One need not re-compute the
covariance matrix estimate of one estimator at the values for the other estimator to
assure positive semi-definiteness.

Returning to the panel data model, we demonstrate the results of Maddala (1971) and
Hausman and Taylor (1982) straightforwardly. Let

Mt = Kyt Epp

T
T =T Mg (3.4.11)

Ja=1

L 3
Rnt = Nt ™ Nnas

and note that n,. is independently distributed from =9, * and both are normally
distributed. This independence is simple to verify directly. To understand why indepen-
dence occurs, consider the variance of the 7%, = [n,] (t = 1,...,T) for a single group,

V(n,) = oodp+ o4y (3.4.12)

where Ir isthe T by T identity matrix and Jr isa T by T matrix of ones.
The orthogonal operators

Pr=TY, and Qp=1I- Py (3.4.13)

project 7, into orthogonal random variables because Pr¥(n,)Qr = O . Different groups
are, of course, independent. Because of this independence, the likelihood for the sample
can be wriiten as

%(B,oi,of;nm,n =1.Nei=1,.Ty=1, (B,oi,af;‘qn_,n = 1,..,N) (3.4.14)
+ Ly (B0t = Lot = 1,..,T) o
The reader will recognize that the MLE of L; is the between-groups estimator and
the MLE of I, is the within-groups estimator. Without any of the matrix algebra
Maddala uses, we can conclude that the GLS estimator derived from maximizing Lo ,
is asymptotically a matrix weighted average of the orthogonal between and within
estimators. When aﬁ and ¢ are known, these are linear estimators and so the result
applies to finite samples. Finally, a specification test contrasting the GLS estimator
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with the within estimator or the between estimator is asymptotically equivalent to a
consistency test comparing the within and the between estimators.

The likelihood function is not the only criterion function for which a decomposition
leads to a specification test like Hausman's. Without giving the details, we note that
the minimum distance criterion that is popular in simultaneous equations and nonlinear
regression estimation can have a similar structure. Consider the minimum distance
estimator

e(cg) Moe(cg) = min e(y)' Moe(y) (3.4.15)

that exploits the orthogonality condition
Ele{(yv)I=0 (3.4.16)

Hansen {1982) discusses the general conditions under which

NY2(c — v) = N[O, (&' M) L&' MoV ()Mo 88’ M) ™1
85(7)’ ] (3.4.17}

where 8 = E [
dy

and shows that the estimator is optimal among estimators based on the orthogonality
condition if

(8' M)~ 6 MoV (e) My 8(6' M8) " = (6’ My8) ™! (3.4.18)

Commonly, Mg = V(.e)_1 . In addition, if the metric My can be broken into M),
and M, such that

Mo = M]. + M2 s J"fle =0 (3419)
(M, , M, , M, symmetric), then the minimum distance criterion function can be factored
into two criterion functions that are analogous to the log-likelihood factors discussed

above. For example, we might drop the assumptions of normal errors in the panel data
model and employ the minimum distance estimator

bo: min 2(5) Uy ® (o dr + o, Il (b) (3.4.20)
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which is simply a feasible GLS estimator based on initial, consistent estimates of 03
and o® . PV(n,)0r=0 implies that

My = a2(Iy® Op)
) 5 (3.4.21)

satisfy the requirements. This decomposition of the minimum distance criterion function
is, of course, behind the likelihood factorization above, and the various minimum
distance estimators are closely related to their ML counterparts. Hausman specification
tests can be constructed exactly as before cutside of the likelihood framework of the
normality assumption, and the estimators and test statistics retain the properties given
by the factorization theorem.

To conclude this discussion of decomposable criterion functions, we note that the
function itself is the basis of yet another test statistic that is asymptotically equivalent
to the Hausman statistic. Within the special structure of the decomposable likelihood
function, we can form a likelihood ratio statistic

LR = 2[L1 (CI) + L’Z(CZ) - IQ(CO)]

that consists of the difference between the "unrestricted" log-likelihood function and
the "restricted" log-likelihood function. This equivalence follows from the result
{3.1.15) above, Although it requires the calculation of a third estimator, this test statistic
is much simpler to calculate than the quadratic forms above, given the estimates of
v . This statistic is also non-negative, as a chi-square random variable should be,
avoiding the inconvenience of failures of the estimated covariance matrix to be positive
definite.

This likelihood ratio version of the Hausman specification test also makes the computa-
tion of degrees of freedom for the test statistics clear for such problems. As usual,
one merely counts the number of restrictions that are dropped in the unconstrained
criterion function, Several examples may illustrate the convenience afforded by this
observation. In the panel data model, one might wonder about contrasting variance
estirnates as well as the regression slopes, Adding such contrasts will lead {o a singularity
because the unrestricted likelihood function estimates only an extra set of regression
slopes. The number of variance parameters is still two, one for each factor of the
likelihood. Furthermore, the degrees of freedom will be diminished by the number of
time invariant regressors. This is because the corresponding stopes are not individually
estimable by the within-groups estimator. In the censored regression exammple, the
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degrees of freedom of the tests equals the number of regressors because the Probit
estimator does not include an estimate of the variance parameter. Here again, adding
the variance contrast in a comparison of censored and truncated regression estimates
would only introduce a singularity.

Finally, tying the specification test of Hausman to the likelihood ratio also clarifies
the role of nuisance parameters that are not included in the estimator contrast. One
can derive such tests simply by concentrating the nuisance parameters out of each of
the likelihood functions first, and then proceeding as usual (Engle (1981)). All of the
results that we have given under the restrictions that each factor of the likelihood
identify the full parameter vector and that the full vector be compared for two estimators
continue to hold when these restrictions are dropped. It is also clear by such a
construction that the tests will be asymptotically similar under general conditions:
the tests will not be influenced by the true value of the nuisance parameters.

4. APPLICATIONS OF THE HAUSMAN SPECIFICATION TEST

In this section, we review three applications of the Hausman specification test method.
All of these applications fall into the structure of the factorization theorem, suggesting
that, although it covers a special case, this theorem is of general interest.

4.1 The Multinomial Logit Model

Hausman and McFadden (1982) have suggested a diagnostic test of the multinomial
logit (MNL) model based on the Hausman method. As a discrete choice model, the
MNL specification is computationally convenient but suffers from the potential restric-
tiveness of the independence from irrelevent alternatives (HA) property. According
to this property, the ratio of the probabilities of choosing two alternatives is independent
of the other alternatives in the choice set.

As a result of the IIA property, one can drop alternatives from the choice set and
re-estimate the model consistently when the specification is correct. Hausman and
McFadden use this result to form a test comparing the efficient maximum likelihood
estimates to such inefficient estimates. It is not necessary that misspecification will
lead to asymptotic divergence of the two estimators, If they are significantly different,
however, one has evidence of a violation of the MNL specification,
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Using the theorem on likelihood factorization, one can see the classical form of the
test the Hausman-McFadden test. We also derive a score version of this test that requires
the iterative calculation of only one estimator. Further, this test illustrates the similarity
with Chow tests.

Using the notation in McFadden (1973}, consider the conditional logit problem where
one observes N random trials, without repetition, of choices from the finite alternative
set B = {1,..J} by individuals with attributes x;, and alternatives with attributes

X3jn 8= 1L N, j=1,.J . The selection probabilities satisly

ezin'g
J

Syt

j=1

Piy(B) = P(i|2,.B.B) =

where zj, = [x1, x3;,] (4.1.1)

P, (B) is the probability that an arbitrary decision-maker faced with choice set B
will choose alternative i ,z, isa k-dimensional row vector, and f§ is a commensurate
column vector of taste parameters. For convenience, we do not include alternative
specific parameters. These must be treated as nuisance parameters, in the fashion
explained previously.

The log-likelihood of the sample is

N J J
Ly(R) = >, (2 Sj,,zj,,),s —in (2 e‘fnﬁ) (4.1.2)

=1 J=1 =1

1 if the n™ individual chooses J
where S, =
0 otherwise

McFadden (1973) discusses the asymptotic properties of the maximum likelihood
estimator, &y , which is the solution to the normal equations

Loplp) = S [Sjuzin — znlbpd) = 0
™I (4.1.3)

where z,,(bg) = , Pin(B)z,
!
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The information matrix is
I=S P Bz, — 2,, (BN [z —2,,(BY’ (4.1.4)
n,J

Now suppose, for example, alternative J is dropped from the choice set, individuals
who chose J are dropped from the sample, and the MNL medel is re-estimated to
yield the comparison estimator, &; , corresponding to the choice set C = {1,..J - 1} .
The normal equation for 5; is the same as (4.1.3) with the summation of j running
from 1 to J— 1 . The score for by evaluated at &, is, using (4.1.1) and {4.1.3)

Lop(by) = 3, [Sy, = Prp(by,B)] [ — 2.4 (61)Y (4.1.5)

After calculating one estimator, b; , one computes an estimate of the covariance matrix
of this score and forms the usual quadratic form to carry out the score test.

Equation (4.1.5) is the difference between the sample mean of zj, — z,, and a prediction
of this mean based on &, which did not use alternative J information. Therefore
one can view this procedure as an out-of-sample test of the model’s predictive power.
Such out-of-sample comparisons of predictions versus realizations have been used
informally as a model check in a variety of econometric problems. Intuitively, then,
this specification test of the MNL model is a sensible test for any choice model. We
therefore expect the test to perform well against a broad class of alternative specifica-
tions.

Further insight about the nature of the test can be gained by viewing this test of
specification as an example of a generalized Chow test. One can construct a LR version
of the Hausman-McFadden test, the appropriate treatment of nuisance parameters is
clear, and the classical flavor of this test is apparent.

First, we must determine how to factor the likelihood function. Implicitly, Hausman
and McFadden have supplied a factor of the complete likelihood in constructing their
test: that is, the likelihood of a particular choice from the subset of alternatives C
given that the chosen alternative is in C . The second factor is immediately clear;
it is the likelihood of the observed choice between two alternatives: alternative Jand
choosing an alternative from C . Thus, one can form a likelihood ratio statistic that
is asymptotically equivalent to the Hausman-McFadden statistic (although this cannot
be done with standard MNL computer software}.?
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Hausman and McFadden allow the presence of attributes in z that do not vary within
the restricted choice set (¢ . The coefficients of such variables are not identified in
the likelihood for € and must therefore be treated as nuisance parameters. In this
case, then, the available degrees of freedom for the Hausman-McFadden test is the
number of estimable parameters in the restricted choice set likelihood and one can
concentrate these nuisance parameters out of the problem without any loss of generality.

The implicit factorization that Hausman and McFadden employ breaks the original
decision problem into a seguential two-step decision, first choosing between J and
C and second, if C is chosen, choosing from € . The classical interpretation of this
test is, then, as a particular parametric test of a single-step decision against the
alternative of a two-step decision in which the parameters used to choose between J
and C differ from those used to choose among the alternatives in  C . This suggests
that the subset of alternatives chosen to construct a specification test in this fashion
should refiect alternative sequential decisions thought to be likely, There seems to be
no other a priori guideline on how to choose the set ¢ and Hausman and McFadden
suggest that several be tried in actual application.

4.1.2 A Limited Information Test of Exogeneity

The motivation given by Hausman (1978) for his test of specification was to attack
the problem of testing the exogeneity of explanatory variables in linear regression
models, In the cases considered, the estimator contrast was an instrumental variables
estimator versus the efficient estimator under the exogeneity hypothesis. Recently,
several researchers have used conventional and Hausman methods to find tests of
exogeneity within a limited information framework for simultaneous systems of equa-
tions (Wu (1973,1974), Hwang (1980), Engle (1981), Nakamura and Nakamura
(1981)). Holly and Sargan (1982) give a systematic treatment of the exogeneity test
problem, based on a likelihood framework. They show the equivalence of the Hausman,
Wu, and classical tests. Spencer and Berk (1981} provide a closely related test within
the instrumental variables (IV) framework which we review here. In addition, we note
the more general treatment of such test problems by Newey (1983), who derives optimal
instrumented score tests,

Consider the " structural eqguation in a system of simultaneous equations:

2  Small and Hsiao (1982) propose another LR statistic based on a random division of the sample.
This test, 2 more conventional Chow test, has the same distribution under the null hypothesis as
these tests, but does not under local alternatives. Small and Hsiao report computational stability of
their LR statistic in finite samples compared to the Hausman-McFadden statistic. Presumably, our
LR equivalent will share this stability. Vuong (1983) has also suggested a competing LR statistic.

32




Yi=YBi+ Xy + Xojvay + 4 (42.2)

where y; isa T by one vector of observations on the chosen endogenous variable,
Y; is the matrix of remaining endogenous variables in the equation, X;; isa T by
K, matrix of variables known to be orthogonal to u; , X3; isa T by K, matrix
of variables suspected to be correlated with u; ,and u; is a random disturbance with
zero expectation and a scalar covariance matrix. Spencer and Berk propose a test of
the hypothesis that X;; is orthogonal to wu; .

The Spencer-Berk procedure compares the two stage least squares (2SL.S) estimator
to another IV estimator that dees not include X,; in the list of instruments, The

2SLS estimator is efficient relative to other IV estimators that use instruments which
are linear combinations of the exogenous variables in the system. Thus, the statistical
comparison of these two estimators follows the method outlined by Hausman. Rewriting
equation (4.2.1) as

Yi=Zia+ y (4.2.2)

where Z; = [Y; Xy; X] and o' = [B/ v1 v2] . the 2SLS estimator can be written
as the minimum distance estimator

ap: min u(a)'X(X'X}FlX’u(a) (4.2.3)

where X is the matrix of all exogenous variables in the system. The alternative estimator
that remains consistent despite correlation between X,; and % is

L3 E ® "’1
ay: min u@'X (XX X 'u(a) (4.2.4)

where X * is the matrix of exogenous variables after removing the submatrix Xy, .
Spencer and Berk then form the test statistic

& Viayag) " d (4.2.5)
where d=a; —ag and V{aga) = Vyla;) — Volap) is a consistent estimate of the

asymptotic variance of d . They claimed that this statistic is asymptotically a chi
square with degrees of freedom dim(a) under the null hypothesis.?

3 This claim was corrected in Spencer and Berk (1982).
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Using the well-known matrix identity

X0~ = XX s wewwy W
« %, * —1 (426)
where W=[I-X (X'X) X 'IXy;

one sees that the Spencer-Berk method falls within the family of factorized criterion
function tests, where the third criterion function is

u(@) WV Wy " W ula) 4.2.7)

The implicit third estimator contains only X, estimable the parameters, given the
dimensions of W, so that the test can really only have K, degrees of freedom. The
Spencer-Berk d , therfore, has a singular asymptotic distribution. One can either amend
(4.2.5) to use a generalized inverse or simply reduce d to the competing estimates
of Y2i -

The method of factorization used in this problem is, of course, exactly analogous to
the method described in the panel data problem. The error term is projected into the
space spanned by a subset of explanatory variables and the orthogonal space to create
two orthogonal estimators, These may be compared with the relatively efficient estima-
tor. If one adds the assumption of normality of the u , there is an immediate likelihood
ratio test based on this same factorization, as Holly and Sargan (1982} conjectured.

4.1.3 Censored Norma!l Regression

Finally, let us return to the introeductory example of testing for misspecification of the
distribution in the censored regression model {Tobit).* In the example, we constructed
several Hausman specification tests based on a likelihood factorization into Probit and
truncated regression likelihoods. Nelson (1981} has proposed a test of the Tobit model
based on Hausman's method which we will compare with the test of our example.’
Both tests can be viewed as tests based on estimators that are both inconsistent under
the alternative hypothesis, even though Nelson constructed a comparison of efficient

4 See also Vuong (1983).
5 Amemiya (1982) suppests an alternative comparison of the Tobit estimator with the robust estimator

by Powell (1981). Lin and Schmidt {1984) propose a specification test based on a classical score
test for a two-stage alternative model.
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and and inefficient, but consistent, estimators of raw data sample moments. Implicitly
Nelson’s test is also a comparison of alternative estimates of the regression slope
parameters.

In the simplest case, the Nelson test amounts to comparing Probit and Tobit MLE’s
for the standardized mean. In the extension to full regression models, Nelson's test
is a score test which compares the Tobit MLE with an unusual, inefficient, binary data
estimator, and not Probit. We will argue that the relative efficiency of the Probit
estimator may make it a better choice for comparison. In addition, such an ammended
test has the interpretation of comparing an out of sample predictor for the dependent
variable with its realization, as in our multinomial logit example.

Nelson proposes a test of the normality assumption in the Tobit model by comparing
N71X'y with its efficient estimator

d= N"H{X'y — [X'P(cg)Xcg + 56X pleg)1}

where Plcg) = diagl®(x,’cp)] and pleg) = [6(x, o) (4.3.1)

based on the Tobit MLE, But by concentrating out o from the the Tobit log-likelihobd
function, this difference can be rewritten as

Nl X 110> 0) = Pleg)IXeg — X'T1(r> 0) — Plcg)} [T — Pe)T ™ p (o)} (4.3.2)

where 1(y > 0) is a diagonal matrix with 1{y, > 0) in the diagonal positions. The
expression in the brace brackets implicitly gives the estimator with which the Tobit
estimator is being compared in this test when the test is viewed as a score test:

¢ X1 > 0) —P@1U - P()] 2@ (4.3.3)

Note that this estimator uses only the sign information about the dependent variable
and is therefore similar to the Probit estimator which solves the normal equations

d pn(cl)

Ligled = 2, P (cD1 = P(c))]

(10, > 0) =P, (c)]x, = 0 (4.3.4)

A=l
but these are not identical estimators.

Given that one can construct a variety of binary data estimators for y , which should
we compare with ¢; 7 For guidance, note that the properties of a powerful test of
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this kind are (1} a large difference between estimators under the alternative model
and (2) = relatively efficient alternative estimator to the MLE. Without specifying the
alternative model parametrically, there is no information about the estimators’ differenc-
es, However, Probit is the most efficient binary data estimator for the normal model
and is in this sense the preferred contrast to Tobit. Qur results on factorization indicate
that a Probit-Tobit contrast is asymptotically equivalent to the contrast of Tobit and
the truncated regression MLE and of Probit and the truncated regression MLE. All
three tests are asymptotically chi square with degrees of freedom equal to the number
of regressors.

We muster several observations in support of using this as a diagnostic test for censored
regression. First, one version of the score test computes the truncated regression
estimator, ¢ , and examines the Probit score
N
Pn(cz)
Ly _{ca} =
12
v 2 P ()1 ~ P {cy)]

a=1

[1(y, > 0) —P,(c)] %, (4.3.5)

Once again, the interpretation of (4.3.5) is that one is comparing a prediction with
a realization; that is, the predicted probability of a positive observation, P,(c;) , and
whether the observation is positive, 1(y > 0) . This is an intuvitive verification of the
usefulness of the test in detecting model misspecification. Second, Nelson’s Monte Carlo
experiment adds further support. Third, the contrast of the binary data with the
continuovs data is also consistent with the kinds of misspecification that have concerned
econometricians {see Cragg (1971} and Lin and Schmidt (1984)). Finally, the test uses
estimators available from computer software, Note that normality is inessential to our
arguments for testing the censored regression model and the factorization is just as
convenient for other distributions. This is not true for the logit problem discussed above,
but such generalized Chow tests as these seem natural for general application to limited
dependent variable models. These models typically yield likelihood functions with
conditional and marginal factors,
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