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TESTS OF STATISTICAL HYPOTHESES CONCERNING
SEVERAL PARAMETERS WHEN THE NUMBER OF
OBSERVATIONS IS LARGE()

BY
ABRAHAM WALD
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1. Introduction. In this paper we shall deal with the following general prob-
lem: Let f(x!, x2, « ++, x7, 0%, - - -, 8%) be the joint probability density func~
tion of the variates (chance variables) %!, - - -, x7 involving & unknown pa-
rameters ', - - - , 8%, Any set of & values 8, - - -, 0% can be represented by a
point 8 in the k-dimensional Cartesian space with the coordinates ¢!, - - -, 6%.
We shall denote the set of all possible parameter points by €. The set Q is
called parameter space. The parameter space { may be the whole k-dimen-
sional Cartesian space, or a subset of it. For any subset w of , we shall
denote by H, the hypothesis that the parameter point lies in w. If w consists
of a single point, H, is called a simple hypothesis, otherwise H,, is called a
composite hypothesis. In this paper we shall discuss the question of an ap-
propriate test of the hypothesis H,, based on a large number of independent
observationson x1, - - -+, x".

For simplicity we shall introduce the following notations: The letter 8 or 8;
for any subscript ¢ will denote a point in the parameter space Q. The letter x

Some of the results contained in this paper were presented. to the Society, February 22,
1941 and September 2, 1941; received by the editors March 31, 1943.
(1) Research under a grant-in-aid from the Carnegie Corporation of New York.
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will denote the random vector with the components «x!, - - -, x7, and %,
will denote the random vector with the cofmponents x}, - - +, xf, where x%
(4=1, 2, - - -, r) denotes the ath observation on x% In general, the com-
ponents of a vector v in the s-dimensional space will be denoted by ¢, - - -, ¢,
that is the components of a vector will always be indicated by superscripts.
Throughout this paper all vectors have their initial points at the origin.
We denote by E, a sample point in the rn-dimensional sample space of #
independent observations on the random vector x. For any relation R we
denote by P(R[ 6) the probability that R holds under the assumption that
is the true parameter point. A region (subset) of the rz-dimensional sample
space will always be denoted by a capital letter with the subscript #. For any
region W, the symbol P(W,.IG) will denote the probability that E, falls
within W, under the assumption that 8 is the true parameter point. Through-
out this paper the word “region” will be used synonymously with “subset,”
since in the theory of testing statistical hypotheses it is customary to call the
subsets which are used as criterions of rejection, critical regions.

By maximum likelihood estimates 65, - - -, & of 6, - - -, 8% we mean
values of 61, - - -, % for which [[2..f(L, - -+, %, 6%, - - -, 6%) becomes a
maximum. The subscript # in the symbol ¢} will indicate that the maximum
likelihood estimate is based on 7 independent observations on x’, - - -, x".
A region W, in the rz-dimensional sample space is called a critical region
for testing the hypothesis H, if we decide to reject H, when and only when
the observed sample point falls within W,. For any 6 not in w the value of
P(W,.IG) is called the power of the critical region W, with respect to the
alternative hypothesis 6. The least upper bound of P(W,.|0) with respect
to 0, restricting 8 to w, will be called the size of the critical region W,. A criti-
cal region is considered the better, the smaller its size and the greater its
power.

In several previous publications(?) the author has considered the case of
a single unknown parameter 8 and the problem of testing a simple hypothesis
6 =0,. It was shown, among other things, that under certain conditions the
critical region given by the inequality In” 2(9, —04) [ = A, has certain optimum
properties. Here the symbol 4, denotes some properly chosen constant. In
this paper the general case of several unknown parameters is treated and
simple as well as composite hypotheses are considered.

By an equality or inequality among vectors we shall mean that the equality
or inequality holds for all components. For example, if 6, denotes the vector
with the components 6}, - - -, 6%, where 6}, is the maximum likelihood esti-
mate of 8%, and if 4 is a real number, then the inequality

nl/2(8, —0) < 4

(®) Asymptotically most powerful tests of statistical hypotheses, Ann. Math. Statist. vol. 12
(1941). Some examples of asymplotically most powerful tests, Ann. Math. Statist. ibid.
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denotes the set of inequalities

n'"(6, — 0% < 4 (G=1,---, k).
Or, if ¢ is a vector with the components £, - - +, ¥, then

nl2f, — 6) <t

denotes the set of inequalities
n6n —0) < ¢ (G=1,---,%).
2. Assumptions on the density function f(x,8). For any function ¥(x) weshall
use the symbol [*2y(x)dx as an abbreviation for [*3 - .- [f3y(x) dx!- - - dx™.
Denote by Eq/(x) the expected value of ¢(x) under the assumption that 8 is
the true parameter point, that is

0
Egp(x) = | ¢(2)f(x, 6)dx.

For any «x, any positive value 8, and any 6, denote by ¥:ix, 6:, 8)
the greatest lower bound, and by ¢:i(x, 6;, §) the least upper bound of
97 log f(x, 6)/86907 with respect to 0 in the f-interval |8—6,| <.

Throughout this paper the following assumptions on f(x, §) are made:

AssumrTiON 1. Denote by D, the set of all sample points E, for which the

maximum likelihood estimate 6, = (6L, - - -, 0F) exists and the second order par-
tial derivatives 0*f(xq, 0)/00°00F (=1, - - -, m; 4, j=1, - - -, k) are continuous
Sfunctions of 0. 1t is assumed that
lim P(D,|6) =1 uniformly in 6.
Ne ®

If for a sample point E, there exist several maximum likelihood estimates,
we can select one of them by some given rule. Hence we shall consider 4, as
a single-valued function of E, defined for all points of D,.

AssumpTiON II. For any positive e
lim P[| 6, — 0] < €| 6] =1
n=o
uniformly in 6, where 8, denotes the vector with the components 6, - - -, 6%
and 6% is the maximum likelihood estimate of 0.

Assumption II is somewhat more than consistency of the maximum likeli-
hood estimate 6,. In fact consistency means only that for any positive e

lim P[| 6, — 0| < ¢|8] =1,

without requiring that the convergence be uniform in 6. If §, satisfies Assump-
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tion IT we shall say that é, is a uniformly consistent estimate of 8. A rigorous
proof of the consistency of 6, (under certain restrictions on f(x, 6)) was given
by J. L. Doob(®). The uniform consistency of 6, together with the uniform
consistency of the likelihood ratio test will be proved on the basis of some
weak assumptions on f(x, 8) in a forthcoming paper.

AssuMpTION II1. The following three conditions are fulfilled:
(a) For any sequences {601n}, {02}, and { 8.} for which limamsy, 610 =liMuay O2n
=0 and lim §,=0 we have
, 9% log f(x, 6)
Hm Eﬂln\bii(xy 021" 57:,) = l-im E01,.¢ij(x, o2m an) = EB—'—'——

49307

uniformly in 6.

(b) There exists a positive € such that the expectations Eo,[Wis(x, 02, 8)]2 and
Es,[¢:5(x, 02, 8) ]2 are bounded functions of 01, 02 and & in the domain D . defined
by the inequalities |6,—0;| < € and |§] e

(c) The greatest lower bound with respect to 0 of the absolute value of the de-
terminant of the matrix || — Eo(d% log f(x, 6))/ 69’569"“ is positive.

AssUMPTION IV. [*29f(x, 6)/00% dx = [130%(x, 0)/06'0¢ dx=0.

Assumption IV simply means that we may differentiate with respect to 8
under the integral sign. In fact

4o
flx, Odx =1
identically in 6. Hence -
] Fe 9?2 +o
207 _wf(x, O)dx = PYTETY _wf(x, 6)dx = 0.

Differentiating under the integral sign, we obtain the relations in Assump-
tion IV.
AssuMPTION V. There exists a positive n such that

249
E,

d
—1 ,
2gt 08/ )

are bounded functions of 6.

3. The joint limit distribution of §,. Denote n'/%(f;,—6%) by 2;,(6%) and let
2,(6) be the vector with the components z3(6"), - - -, 2:(6%). For any constant
vector ¢ denote the probability P[z.(6) <t| 8] by <1>,.(t[ ). We shall prove the
following proposition.

() J. L. Doob, Probability and statistics, Trans. Amer. Math. Soc. vol. 36 (1934) pp. 759~
775.
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ProvrosiTION 1. The distribution function <I>,.(t| 68) converges with n— oo, uni-
formly in t and 0, towards the cumulative multivariate normal distribution with
zero means and covariance malrix

llezi@| = lless @)~
where
c:i(8) = — E,s3? log f(x, 6)/30%361.
Proof. Because of Assumption IV, we have

£l d log f(x, 6) _ f+°° af(x, 6) s

1
) a61 — LA

= 0.

From

a2 log f(x, 6) 1 9%(x,0) 1 [ af af]
39%097  f(x,8) 00°067  f2 L 36° 067
we obtain because of Assumption IV

d lo d lo 92 log f(x, 6)
(2 Eo{[ g.f gj]} = — E ____gL(—__ = ¢;;(6).
06+ 06? 00%a07

From (2) it follows that the matrix ||c:;(8)|| is positive definite or semidefinite.
Because of condition (c) of Assumption III the matrix'”c;,-(())“ must be posi-
tive definite, For any point E, of the set D, defined in Assumption I consider
the Taylor expansion

d log f(xa, 61) _ dlog f(%4, 6)
? a6 - z‘," 9

+ T ol o] £ el D]

; " 30907

3

where @ lies on the segment connecting the points € and 6. Denote
n=Y2y_ .0 log f(xa, 8)/86° by v:(8) and let y.(60) be the vector with the compo-
nents ya(0), - « -, y&(8). Substituting 6, for 6 in (3), the left-hand side of
{3) becomes equal to zero and we obtain

i ve, i iq 1 a? log f(xa) O
)] }%(0)'*‘;{[‘” (0;;"0)]—’;[%:-——-’6—0765;—-]}—0

or

‘ i1 0? log f(xa, 8) _
(5) n(8) + ; EM()) ;[ ; W] =0
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-Let » be an arbitrary positive number and let Q.(f) be the subset of D, for
which the inequality

1 0% log f(xz, 0)
6 — > ="ty
(6) Tl g T @ | <

holds. We will prove that
(7 lim P[Q.(6) | 6] = 1

7=z 0

uniformly in 6.
Let 7o be a positive number such that

92 log f(x, ) v
Eo(ﬁ,'i(x, 0, ’ro) - Eo ———g—“f‘———l < -

90007 | 2

® : 3% log f(z, 6) v
Eabii(%, 0, 7o) — Ey ———————= ‘<—-

l il 0 ma) = Bo—— o 2

for all values of §. Because of condition (a) of Assumption III, such a 7o cer-
tainly exists. Denote by R,(f) the subset of D, consisting of all points E, for
which the inequality

(9 |6, — 0] <70

holds. Because of Assumption I1

(10) lim P[R.(6)|6] = 1

uniformly in 8. Since § lies in the interval [b,,, 6] we have for all points of R,(f)

(11) |8 —6i] < 7o (i=1,---,k).
Hence at any point of R.(f) the inequality

(12) 2o Vii(®a 6, 70) £ 25 9% log (%, §)

201907 < > ¢ii(%ay 6, 7o)

holds. Let the region S.(f) be defined by the inequality

1 v
(13) _n_ Z d’ii(xou 0, 7'0) - E0¢ii(xv 0, 70) < 'E'
and T,(6) be defined by the inequality

1 v
(14) . D Vii(%ay 8, 7o) — Eelis(%, 8, 7o) | < 5

It follows from (b) of Assumption III and Tshebysheff’s inequality that
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(15) lim P[S.(0) lo] = lim P[T+(6) 6] =1

uniformly in 6. Denote by U.,(f) the common part of the regions R,(6), S.(6)
and T,(6). In U.(0) we have because of (8), (13) and (14)

1 9? log f(x, 6)
" Ea: ¢ii(%ay 0, 7o) — Eo W' <v,

(16) 1 3% log f(x, 6)
— ii(%a, 0, — Fp— 2 T <y,
' 5 L il 0, m) = B s ' ’

From this we obtain (6) because of (12). That is to say, the inequality (6)
is valid everywhere in U,(6). Since lima~, P{UA(0)|6] =1 uniformly in 6 and
U.(0) is a subset of D,, our statement about Q.(9) is proved.

Since the determinant Ic,-,-(@)l has a positive lower bound, we obtain
easily from (5) and (6)

(17) 20 = T 5.0 [04i6) + vein(En, 0, 9],

where €;;,(E,, 8, ») is a bounded function of E,, 8, and », provided that, for
each 0, E, is restricted to points of Q,(f) and lv[ is less than a certain posi-
tive number v,.

Let 2,(0) be defined as follows: z,() =2.(f) at any point of Q.(8), and

5.0) = X 7.(0)0+0)
at any point outside Q.(6). It follows from (7) that
(18) lim {P[z.(6) < t]|0] — P[z.(8) < t]|6]} =0

uniformly in ¢ and 6.

Denote »_;¥4(0):;(8) by .(6) and let #,(8) be the vector with the com-
ponents #y(6), - - -, #(6). From (1), (2), Assumption V and the general
limit theorems it follows that P[y,(0) <t| 8] converges with #—s «, uniformly
in ¢ and 4, towards the k-variate cumulative normal distribution with zero
means and covariance matrix ”c,',-((?)H. From this we easily obtain that
P[3.(8) <t|0] converges with #— w0, uniformly in ¢ and 6, towards the cumu-
lative joint normal distribution with zero means and covariance matrix
[lo:5(6)|]. Since » can be chosen arbitrarily small, we obviously have because

of (17)
(19) lim {P[2.(0) < t]8] — P[z.06) < t]6]} =0

uniformly in ¢ and 0. Proposition I follows from (18) and (19).
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4. Reduction of the general problem to the case of a multivariate normal
distribution. In this section we shall prove two lemmas which will enable us
to reduce the general problem of large sample inference to the case where the
variates under consideration have a joint normal distribution.

LemMa 1. For each positive inleger n there exists a set-function W} W)
defined over all Borel measurable subsets W, of the rn-dimensional sample space
such that the following two conditions are fulfilled:

(a) For each W., WX(W.,) is a Borel measurable subset of the rn-dimen-
stonal sample space with the following property: For each point of W¥(Wa,) the
maximum likelihood estimale exists and if a sample point E, lies in WX(W,)
then also all those points E. lie in WX(W,) for which 6.,(Ex) =0n(E,).

(b) LiMpew {P{WHW.)|0]—P[W.|6]} =0 uniformly in 0 and W.,.

Proof. Let A be a real variable which takes only non-negative values and
consider the region W,(8, N\) defined as the common part of the region W,
and the region ]n"z(éﬂ—f))l <\. Similarly let W}(W., 6, N\) be the intersec-
tion of W,*(W.,) and the region |n'/2(§,—6)| S\.

For any function ®(3) we will denote by g.L.b., ®(v) and lL.u.b., ®(v) the
greatest lower bound and the least upper bound of ®(v) respectively.

Since, on account of Proposition I, for any sequence {)\,.} for which
liMpeg Ap =

lim {glb. [P[]| V%6, —6)| = .| 6]}} =1,

n=w ¢
Lemma I is proved if we show that there exists a sequence {\,} not depending
on 6 and W, such that limy.., A, = © and

(20) lim {P[W.(0,\) | 6] — P[Wa(W.,0,\) | 6]} =0

n=ow
uniformly in W, and 6.

Let ¢ be a real variable restricted to values greater than 1. For any set
of % integers (71, - - -, ri) and for any value ¢ denote by L,(r1, * - -, & @)
the region defined by the inequalities:

rn—1/2 ) ri+1/2 ry — 1/2 re + 1/2
(21) _1___._{_,<9;<_¥_,... _f__.,.l._<9:<_f____*i_

gnt/? qnii? ! qnl/? qni'?

Furthermore denote by 8.(r1, - + -, 7i, ¢) the parameter point with the co-

ordinates r,/gnt/?, - - -, ri/qn'’% We order the system of all sets of £ in-
tegers (71, - + -+, 7%) in a sequence and we shall denote by I.,(¢) the interval
I.(ry, -+, 7 q) where (r, - - -, ) is the sth element in the ordered se-
quence (s=1, 2, - - -, ad inf.). Similarly 6,,(g) denotes the parameter point

6.(r1, - - -, rx, @) where (71, - - -, i) is the sth element in the ordered sequence.
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Let J..(W,, ¢) be the common part of the three regions I,,(g), W, and
Q.[0..(g)] where for any 6, Q.(6) is defined by the inequalities

1 1 1
- Z ¢o'f Zay 0’ + c‘l](o) é + V(n) + 7(”)1
n nli3 nt/3

(22)

1 1 : 1
— Z '[/,-,-(xa, f, _1/—3) + 655(0)1 = T 4+ v(n) -+ 'i(n). :
n o n n

The expression ¥(n) is equal to L.u.b.g [Eepis(x, 6, 2/n13) — Egis(x, 6, 2/n13)]
and the expression ¥(n) is defined as follows: Denote by c;;(8, ) the least
upper bound of |¢:;(0) —c:;(8)| with respect to 8 where § can take only values
in the interval [§—1/2/3, 6+1/nY8]. Then 5(xn) is defined as the least upper
bound of ¢;;(f, ») with respect to 8, 7 and j. Because of condition (a) of As-
sumption III, we obtain

(23) . lim »(#) = lim $(n) = 0.

Let J5(W., g) be a subset of I.(g) such that the following two conditions
are fulfilled:

(24a) If E, is an element of JA(W., ¢) then also all those points E,/ for
which 8,(E,) = 0.(E,) are elements of J5(W.,, ¢), that is J5(W., ¢) can be
represented as a subset of the space of the maximum likelihood estimates.
Furthermore JX(W.,, q) is an interval in this space.

(24b) Limpmw {LU.beswa] P[Tue(Wa, @)|00a(@) | = B[TE(Wn, @) 0n(0)]] }
=0 where J5( Vﬂ| 0) denotes the probability of V, calculated on the basis that
the joint distribution of nV2(f,—6Y), - - -, nV2(6;—06%) is normal with zero
means and covariance matrix ||os;(8)|| =||c:(0)]] .

The existence of such a set Ju(W., ¢) can be proved as follows: Obvi-
ously there exists a subset Ju(W., q) of I.(g) such that (24a) is fulfilled and

B ms(War @) | 8na(@)] = min {P[Te(Wa, @) | 62s(9)], BlL0al) | a1}

Since Ja,(W,, ¢) is a subset of I.(¢g) and since limu., {P[I,..(q)|0,.,(q)]
~B[7..(9)]0n:(g)]} =0 uniformly in s, the above defined subset J¥%(Wa, g)
satisfies also the condition (24b). We define

(25) W W g) = 3 To(Wa, ).

a=1

Furthermore we define the regions J.(W,, 8, \, g) and JX(W,, 6, \, q) as
follows:

(26) JaWa 0,7, @) = 2 Jue(Wa, @),

(27) TnWa 0,0, q) = 2 Tu(Wa, @)
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where the summation is to be taken over all values of s for which |0—-0,..(q) |
SN/nle

Let 7X(W., q) be the intersection of JA(W,, ¢) and Q.[0..(g)], and let
TX(Wa, 0, N, @) =2 T %(Wa, q) where the summation is to be taken over all
values of s for which |0—-0,..(q)| <\/n'% Furthermore let W.}(W.,, 8, \, g) be
the intersection of W,*(W,, ¢) with the region Inllz(ﬂ,. —-0)] =\

If for a value of s we have n1/2| 0—0,..(q)| =<\ then for all points of I.,(q)
we have n‘/2| 0-—0,.] <\+1/q. If there exists a point in I,(g) for which
nY2|0—6,] S\ —1/q then #Y?|8—0.,(q)| S\. Hence WX(W., 6, \—1/g, g) is
a subset of J*(W,, 8, \, g), and the latter is a subset of W.X(W., 0, \+1/g, q).
Thus

| P[Wa(Wa, 8,7, @) | 6] — PLJ2(W., 6,7, 0)| 6]]
(28) < P[Wi(W., 6,\+ 1/g, 9)| 8] — P[Wa(W., 6, — 1/g,9)| 6]
< P[\—1/g S n2] 6, — 0] <X+ 1/g]|06].

According to condition (b) of Assumption III Es[¢i;(x, 6, 8)]* and
Eg[¥ij(x, 6, 8)]* are bounded functions of 8. Hence also Espis(x, 6, 8) and
Ealij(x, 6, 8) are bounded functions of 8. Substituting § =0 we find that ¢:4()
is a bounded function of §. From the boundedness of ¢;;(f) and from the
fact that the determinant |c.~,-(0)| has a positive lower bound (condition (c)
of Assumption III) it follows because of Proposition I that

(29) lim {Lub. P]\ — 1/g < n'?| 6, — 0| S X+ 1/g| 6]} =0
[

=

uniformly in \. From (28) and (29) we obtain

(30) lim sup{Lu.b. | P[Wa(W., 6,\, )| 6] — PLT.(W., 0,7, 9| 6]]} = e, @)

n=w 6, W,

where lim g, e1(\, ¢} =0 uniformly in A.

Denote by R.(6, A\, ¢) the common part of the regions Q. [8..(¢)] formed
for all values s for which |0—0n.(q)] <\/nY2, Then for almost all # the region
R.(6, \, ¢) contains the region T',(6) as a subset, where T',(f) is defined by the
inequalities

1 2 ) 1
—2 ¢ii<xar 8, —1/—3> + ¢:i(0) ’ < — +v(n),
n n n
(31)
1 2 1 ,
] ; ; \l’ii<xao 9, ;1—/—3) + ¢:;(0) ] < —7 ~+ »(n).

In fact, from (31) it follows that
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1 2
C.',-(0) T V(n) = — Z ¢u<xav :;;'/_3) = 517(0) + —+ V(”)

nlld nlls
(32)

1 2

s0) = = =) S - E s 02 S 0+ 5.
Since
2
- Z ‘/’u(xa, y /3> = — Z ¢iil %a, 0ns(q) _1_/3'>
= — Z oij >

and

IA
s |-
»M
b

1 2
_; ; wﬁ(xav 0: ;1-/—3) =

IIA

(

(e

(70 0, 1)
~Z¢,,(xa,o, )

for almost all % and for all s for which #'2|§—0,,(g)| <\, we obtain from (32)

1 1
6il0) = = = o) 5 — }: ¢(x 0un(g), ) S 60 + — (),

(33) 1 1
Cu(0> _ V(”) s — Z ‘/’m(xa: M(Q) ) = 51'1'(0) -+ m -+ V(")3

for almost all # and for all s for which n”2|0 0. (q)] =A\. Since |c.,[0,,,(q)]
—¢:§(8)| <%(n) for almost all # and for all s for which »'/2|§—8, (q)] =\, we
obtain from (33)

1
il @] = = o) = 300) % = 3 (700 0.0, =)
é Cs‘i[gm(q)] + ;1,7:; + V(’ﬂ) + 7(")7
(54) 1
Gw[ons(‘I)] —— —v(n) — 3(n)

1/3

A

1 1
— Z ‘/’n‘(xw 6:s(), E)

IA

Gu[onc(‘Z)] + — + v(n) + 7(n)

1/3

for almost all #» and for all s for which nl/“’l 0—0,,,(q)| =\. The inequalities
(34) are equivalent to the inequalities (22) if in (22) 0.,(g) is substituted for 8.
Hence our statement about the region R,{0, N\, ¢) is proved.
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Consider the region U,(f) defined by the inequalities

1 2 2 1

— E ¢ii(xa, 6, '—‘> - Eo¢¢i(x, 0, ——> —_

n o nli3 nli3 nll3
(3%)

1 > 2 2 1

s Vil %a, 0, ) T Eg):il =, 0, n—ll—"") e
Since

2
v(n) 2 l Eo¢ﬁ(x, 8, ——> + ¢:(0) l
nl/a

and

v(n) =

2
¢ii(0) + Eeobi; (x, 6, ;”—3>

the validity of (35) implies the validity of (31). Hence U.(6) is a subset of
T.(6). From condition (b) of Assumption III and Tshebysheff’s inequality it
follows that lima P [U4(6) | 8] =1 uniformly in 8. Hence lim,—., P[T%(6)| 6] =1
uniformly in 6. Thus, as can easily be seen,

(36) lim P[Ra(6, ny q) | 6] = 1

for any bounded sequence {\»} uniformly in 6 and g.

Let Jn(Wa, ) be the intersection of the regions W, and I..(q). Further-
more let Ju(Wa, 8, \, g) be equal to D oJns(Wa, q) where the summation is
to be taken over all values of s for which n”?I 0—0..(q) I ZA\. Then the common
part of Y o1 T,(g) and W.(6, N—1/q) is a subset of Ju(Wa, 6, N, @), and the
last is a subset of the common part of »_w1T,(¢) and W.(8, A\+1/¢). Hence,
since P[Z:,llm(q)|0]=1, we have

| P[Wa6, )| 6] — P (W, 6,7, )| 6]
(37) < P[Wa6,x+ 1/g)| 8] — P[W.(06, % — 1/9) | 6]
<P\—1/g< n| 6, — 8] =N+ 1/q]0].

From (37) and (29) it follows that for any sequence {gn} for which lim g, = e,
we have

(38) lim | P[W.(0, )| 0] = PIu(Ws, 0% g 0]] = 0

uniformly in 8, W, and A.

Since the common part of the regions Ju(Wa, 0,7, @) and R.(8, X, @) is
contained as a subset in J.(Wa, 8, \, ¢) and since the last is a subset of
Ja(Wa, 8,7, @), we obtain from (38) and (36) that for any bounded sequence
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{\+} and for any sequence {ga} for which limu.. gn=  we have

(39) lim {P[Wa(0,\a)| 0] — PITu(Wa, 0, Ny ga) | 6]} =0
uniformly in 8 and W..

Since the common part of the regions J*(W,, 6, \, g) and R.(8, )\, g) is a
subset of J,*(W,, 8, \, ¢) and the last is a subset of J*(WS,, 8, \, ¢) we obtain
from (36) that for any bounded sequence {\. } and for any sequence {q,,}
for which lim,~, ¢g.= «, we have

(40)  lim {P[Tr(Wa, 0, M, g} | 8] — P[Ta(Wa, 6,0, g2) [ 8]} =0
9= o0
uniformly in 8 and W,.

Now we shall evaluate the limit values of P[J.(W,, 0, X, q)ll) ] and
P[TX(Wa, 6, \, ¢)|6]. Denote by 4.(\, ¢) the domain in the space of the
variables 8, W,, ¢’ and E, defined as follows: # and W, can take arbitrary
values, @’ is restricted to values for which !0’ —0| Z<\/nY2; and for any 6 and
W., E. is restricted to points which lie in the sum of the sets J.(W,, 8, \, @)
and T *(W.,, 0, \, q). Denote furthermore by p.(8’, 8, 6,) the function

1 ’” 3 17 i,
(41) pald, 0,00) = — — 2 2 m(0" — 00" ~ 6)c4;(0).
P
Consider the Taylor expansion

2. log f(%a, 0)

(-3

= i i giesi i 1o 9% log f(ze, 8)
= Zd:logf(xa. b) + ;Z‘_)(o 00" — ) — ; e

(42)

where § lies in the interval [6”, 4,].

Since in the domain 4,(\, ¢) any point E, lies in the sum of the sets
Ja(Wa, 0, ), g) and TX(W., 6, \, @), it follows from the definitions of these sets
that E, lies in the set D _,Qn [0,..(q)] where the summation is to be taken over
all values of s for which n‘”! 0— 0,.,(q)| =X (the set Q.(0) is defined in (22)).
Hence for any E, in the domain 4.(\, ¢) we have

L 4>(x bu@), ) + ciilbun()]

1
= _—l_/; + ”(”) + 7("’)9

(43) «
l—— ) ¢(x O ) + ¢ii6ni(g)] | S — + v(n) + (n)

for that value of s for which E, lies in I,,(g). In all that follows, with any
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pomt of the domain 4,(\, ¢) we shall associate the integer s for which E, lies

in I,.(g). Since n1/2|0 0 .(g)l 2\ in the domain 4.(\, ¢), we have in the
domain 4,.(\, ¢)

_:7 = ¢,.,.[xa, 6ue(q), ﬁ] N (x ' 11/3)

é 7 ; ¢,-,-[x¢., Ons(9)s ﬁ]’
TRV RN

S — X bu] 5n 0ula), =

(44),

for almost all values of . From the definition of () and from the validity
of the inequality #Y2|6—0.(g)| S\ in A.Q\, g) we find that in the domain
4.\ @)

(45) | cilbn(@) ] — €:i(6) | < 3(n)

for almost all values of #. From (43), (44) and (45) it follows that in the
domain 4.\, ¢)

1

25 g2 ) 6@ | S o) + 2800,
(46) ® o

iZ:w--(x . )+c (e)l —+v(n)+zv<n>

n " L ¥) oy ? 2 ]/3 2

for almost all values of #n.
Since n‘”lﬂ—@,..(q)l =\ in A.(\, ¢), we have

47 w20 — 6, A+ 1/¢ in 4.0\ g)
and therefore

(48) w20 — 6, <20+ 1/g in 4.0\ g).
Since 7 lies in the interval [6”, 6,], from (48) we obtain
(49) w26 — 0, <20+ 1/¢ in 4.\ g).
From (47) and (49) it follows that in 4.(\, @)

1 0% log f(%a, 5) 1
(50) Za:'hi(xa, 6, w) =y —"= Z ¢u(xa, ' ”3)

« 0967
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for almost all #. Because of (23), (46) and (50) we obtain from (41) and (42)

b-o

(51) lim {l.u.b. > 1og f(%ay 67) — D log f(%ay 6) — pa(8', 6, 6,)

n=wo (A, @)

and
lim {l.u.b. [Z log f(%e, 6) — D log f(#a, e')]
n=w (A, @ a

(52)

_— [p,,(e, g, 9,,) - Pn(eiy 01 0")]

b=o

_ Denote P[Jna(Wn, q)|6m(q)] by Pna(Wm q) and P[j,:(Wﬂ, Q)IO"S(Q)] by
Bi(W., ¢). Substituting 6,,(g) for 8’ we easily obtain from (52)

lim {l.u.b. P[J.(W.,6,\, )| 6]

n==00 8, Wy

(53)

b=o

where the summation with respect to s is to be taken over all values for which
n12|§ —0,,(q)| N and 6}(g) is a parameter point for which

= X Pod(Way @) exp (016, 8, 622(9)] — pal0ns(q), 6, 0ma(g) )

(54) n112] 0,,(9) — Om(g) | < 1/4.

Since ¢i;(0) is a uniformly continuous and bounded function of 8, it follows
from (41) and (54) that

| 66, 8, 02:(9)) — £16, 8, () ]| = 6110, 0n(0), 60() 1/,

55 * *
( ) | P[am(fl), 6, 07»8(9)] - P[om(Q)v o, ens(Q)] ; = ¢2 [0, ona(Q)v om(Q) ]/91

where ¢,[0, 6%(q), 0..(¢)] and [0, 6%(q), 0..(¢)] are bounded functions of
6, 0%(q) and 8,,(g) in the domain n1/2| 0—0,.,(q)| =A. From (53) and (55) it fol-
lows that

PTu(Wa, 0,1 9 6]

lim sup {l.u.b.
n=o 0, Wy

(56)
— 2 PusWa, @) €xp (pa[8, 0, 0aa(@) ] — pn[02:(9), 6, 0s(g) ]) l} = ¢(\, @)

where

(57) lim (2, ¢) = 0
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uniformly in X over any dinite positive interval. Similarly we obtain

lim sup {l.u.b. P[Ta(W., 6,7, ¢) | 6]

(58) = o 6 Wn

- E T):l(Wm Q) exp (pn [0, 6, em(q)] = Pn [om(Q)» 6, 0m(q> ]) l} = n(\, )
where
(59) lim 7(\, ¢) = 0

uniformly in N over any finite positive interval. In the formulas (56) and (58)
the summation with respect to s is to be taken for all values for which
|6 —6,.(g)| S\/n*2 The expression pa[0..(g), 0, 6..(g)] is obviously equal to
zero, hence (56) and (58) can be simplified by substituting zero for this ex-
pression. Denote P[JX(W., q)l(),..(q)] by Pr(Wa, ¢). Because of Proposition 1
we have

lim {‘B[]:,(W,,, 9) | ena(Q)] - P:c(Wm q)} =0

uniformly in s and W.,. Hence we obtain from condition (b) of (24)

(60) lim {Pr(War @) — Po(Wa, @)} = 0

n=o0

uniformly in s and W,. Since JX(W., ¢) is the intersection of Q.[0..(q)] with
J i (Wa, @) and since

lim P[Qa[0ne(@) ]| 6ns()] = 1

uniformly in s, we have

(61) lim {Pr(Wn, @) — Pr(Wa, 9)} =0

uniformly in s and W,. Since for any given A and ¢ the number of different
values of s satisfying the inequality nY2|8—0,.(¢)| <\ is a bounded function
of 8, from (56), (58), (60) and (61) we obtain

lim sup {Lu.b. | P[Ja(W., 0, N, )| 8] = P[Ta(W., 6,2, 9)] 611}
n=w 0, Wy

(62)

= g‘()‘s Q) = E()\v Q) + 77()‘1 9)'
Hence
(63) lim ¢\, ¢) =0

=
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uniformly in X over any finite positive interval.

For any positive N’ the sets J.(Wa., 8, AN, @@ —J.(W,, 6, X\, @),
TX(Wa, 8, \+N', @) =T X W, 0, N, @, JX(Wa, 0, N\+N, @) —T*(Wa, 0, N, @),
WX W, 6, \+N, ¢ — WX (W,, 6, \, @) and W,(0, N\4+N')—W,(8, \) aré sub-
sets of the set defined by the inequality

A—1/g < n2|0 6| SN+ N+ 1/g
Since for any sequence {\,} for which limu—, As= we have

lim P\, — 1/¢ S 2|0 — 6| S\ + N+ 1/g|6] =0

n= %

uniformly in 6, ¢ and N/, (39) and (40) hold for any arbitrary sequence {\.}
and (63) holds uniformly in N where N can take any positive value. Thus
from (30), (39), (40), (62) and (63) we obtain

(64) lim sup {l.u;vb. | P[W.(6, M| 6] — PIWi(W., 0,7, 9| 6]] } = (0, 9),

=0 8,
where
(65) lim es(\, @) =0
= w
uniformly in \. Let {g:} ((=1, 2, - - -, ad inf.) be a sequence of positive

integers such that lim;., ¢;= -+ <. Furthermore let { m} be a sequence of
positive numbers such that lim;.., 7:=0. We define W,*(W,) as follows:
(66)  Wa(W,) = Wa(W., gis) for mi<m<my (§=0,1,---,adinf).

The sequence {n.} (i=0, 1, 2, - - -, ad inf.) of integers is chosen as follows:
Denote by F.(\, ¢) the expression

Lub. | P[W.0,%) | 6] — P[Wa(W.,6,%, q)]0]].

The integer n, is put equal to 0 and #; is chosen such that
n; > Ny,
Fa(hiy gir1) < (N, gin) + 04

for all n>n;, and where {M\:;} denotes a sequence of numbers such that
lim.-_w )\.-= + w0,

Let M, =\;, 7 =ni,and g =i forni<nSn:,(6=0,1,2, - - -, ad inf.).
Then from (64), (65) and (67) we obtain

(67)

(68 lim {Lub. | P[W.0, M) | 0] - PIWi(W., 0,M, ¢)]6]]} = o.

n=w
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Denote by W.*(W., 8, N) the intersection of W ¥(W,) and the set defined by
the inequality n”’lo—é,.] <\. Since W.*X(W,, 68, \, q) is the intersection of
W.¥(W., g) and the region #1/2|8—6,| <), it follows from (66) that

(69) We(Wa, 8, M, ¢4) = Wa(Wa, 0,\).

Equation (20) follows from (68) and (69). Hence Lemma 1 is proved.

We shall say that a region V.* lies in the space of the maximum likelihood
estimates if it has the following property: If E, is an element of V,* then
also all those points E, for which 8,.(E.)=0.(E.) are elements of V,*. In
all the following considerations the symbol * as a superscript in the notation
of a region will indicate that the region lies in the space of the maximum
likelihood estimates, except if a statement to the contrary is explicitly made.
For any region V.* we shall denote by P( V,.*|0) the probability that the
sample point will fall in V,* calculated under the assumption that
nV2(g—0Y), - - -, nV2(6;—6*) have a joint normal distribution with zero
means and covariance matrix ||o:;(0)]] =|::(8)|| %

LeEMMA 2. There exists a function W.*(R*) defined over all Borel measur-
able subsets R* such that

lim {P[R}| 0] — BIWa(R) 6]} =0

uniformly in 6 and R.*.

Proof. Since we assumed that the set J5(W,, ¢) defined in (24) is an in-
terval in the space of the maximum likelihood estimates, it follows from
Proposition I that
(70) lim {P[I3(Wa, g)| 0] — BUm(Wa )] 6]} = 0

== 0
uniformly in 8, W,, and s. Let W.*(W., ¢) be the set defined in (25) and let
W.X(W., 8, \, q) be the intersection of W*(W,, ¢) and the region n12| 0 — 6,
<. For given values of X and ¢ the number of different values of s, for which
JX(W., ¢ has at least a point common with the region n2|9— 6, SN, is
a bounded function of 8. Hence it follows from (70) that

(1) lim (PWE(W..0,\ )| 0] — BIWa(Wa, 0,7 9)| 6]} =0

uniformly in 8 and W,. From (64), (65) and (71) we obtain

(72)  lim sup {l.auv.vb. | P[W.a(6,0)] 6] — BIWa(Wa, 0, N, ) | 6]} = €0, 0)

where
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(73) lim e\, g) = O
g=ow

uniformly in A. The set W,(6, \) denotes the intersection of W, and tlie re-
gion n!/2|0—4,] <\

Let q,-} (=1, 2, - - -, ad inf.) be a sequence of positive integers such
that lim;_,, g;= . Furthermore let {7:} be a sequence of positive numbers
such that lim;.,, 7:=0. We define W.*(W,) as follows

(74) Wa(W.) = Wa(Wa, qizr) for mi<n<mnus (6=0,1,2,--,adinf).

The sequence {n.} (¢=0, 1, 2, - - -, ad inf.) of integers is chosen as follows:
Denote by F,.()\, ¢) the expression

Lub. | P[W.0, )| 0] = B[Wi(W. 6, 9] 6]].

The integer 7, is put equal to zero and #; is chosen so that
n; > i1,
FalNiy giv1) < ey qopr) + m4

for all #>#=;, and {)\;} denotes a sequence of numbers such that lim A\;= o,
Let N =N\, 94 =miand ¢ =¢iaform;<n=n,1 (6=0,1, - - -, ad inf.). From
(72), (73) and (75) we obtain

(76)  lim {l.uﬁ’b. | P[W.(6, )| 6] — BIWa(W., 6,\, ¢)|6]]} = o.

n=cwo

(75)

Denote by W.XW,, 0, \) the intersection of W,*(W,) and the region
n1/2|§ — §,| <\. Because of (74) we obviously have

WaWa, 0, ) = Wa(Wa, 0, N, ¢1).

Hence from {76) we ob*ain

(77)  lim {Lub. | P[W.8, N | 0] — BWaW., 6, M) ] 6]]} = 0.

nx= w0 Wa

Since lim,.., Ad = =, it follows from (77) that

(78) lim {Lub. | P[W.]6] — B[W.w.) | e]]} =o.

The region W, may be any Borel measurable subset of the rz-dimensional
sample space. In particular, W, may be any Borel measurable subset R,;* in
the space of the maximum likelihood estimates. Hence Lemma 2 follows from
(78).

On the basis of Lemmas 1 and 2 we can restrict ourselves in case of large
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samples to subsets of the space of the maximum likelihood estimates and we
can substitute B[V.*|6] for P[V.*|6]. Hence, if the sample is sufficiently
large, the problem of statistical inference concerning the unknown parameter
0 can be reduced to the case where the variates involved have a joint normal
distribution.

5. Tests of simple hypotheses which have uniformly best average power
over a family of surfaces. For any value ¢ let K, denote a surface in the
parameter space. For instance K, may be defined by the equation ¢(0) =¢
where ¢(f) denotes some analytic function of §. Consider furthermore a non-
negative function w(f) of 0, called a weight function. For any function y(6)
of § the symbol fxy(6)d4 will denote the surface integral of the function
¥(6) over the surface K..

DEeFINITION 1. A critical region W, is said to have uniformly best aver-
age power with respect lo the surfaces K, and the weight function w(@) if
for any region Z, of size equal to that of W, we have [ KcP(Wn|0)w(0)dA
2 [x.P(Z, | N w0)dA for all values ¢ for which K, is defined.

Let y!, - - -, y* be k variates which have a joint normal distribution. The
mean values 601, - - -, 8% of the variates y!, - - -, y* are unknown, but the
covariance matrix “Uijll (¢, j=1, - - -, k) is known and is nonsingular. Sup-
pose that we wish to test the simple hypothesis that § =0, Consider the
family of ellipsoids given by

(79) PPV BT AT A

where H)\;, ] =[ o;,|| 1 For any ¢ denote by S, the ellipsoid given by (79). Con-
sider a nonsingular linear transformation of the parameter space

(80) 8" — 65 = (6 — 80) + - - - -+ B0’ — 65

such that the family of ellipsoids S, is transformed into a family of concentric
spheres with the center at #o. Denote by S/ the image of S,. For any point 6
and for any positive p consider the set w(8, p) consisting of all points &, which
lie on the same S; as 6 and for which |8, —8| <p. Let

A [w’(oy p)]
= 1. T . <1
(81) (0 = lm o6, o]

where w’(0, p) is the image of w(f, p) and for any set w, 4(w) denotes the
area of w.

ProrositioN 11. If the variates v, - - -, y* have a joint normal distribu-
tion with unknown mean values 6%, - - -, 0% and a known covariance matrix
loiil|, then for testing the hypothesis 0=0 on the basis of a single observation
on each of the variates ¥, - - -, y*, the critical region given by the inequality
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(82) iy =8y — i) = d Anidl = lloail
i $

has uniformly best average power with respect to the surfaces S. defined in (79)
and the weight function given in (81).

Proof. Consider the linear transformation

i T 1 k k
(83) ¥ =0 =Baly —00) + -+ Baly — 60,
where the matrix “B.~,~|| is the same as in (80). The variates y'¢ (1=1, - - -, k)
are normally and independently distributed with mean values 6, - - -, 6¢

(under the hypothesis #=60,) and have a common variance o2 We will as-
sume o¢2=1, since this can always be achieved by multiplying the matrix
“5.’:‘“ by a proportionality factor. The critical region W given in (82) will be
transformed into the region W’.given by

(84) G =)+ (-6 2 d

Because of (81) we obviously have

(85) f P(Z| 0)£(6)dA = f P(Z'| 6"dA4,

S, 8
where Z denotes an arbitrary region in the space of y!, - - -, ¥* and Z’ is
the image of Z in the space of ¥’%, - - -, ’%. Hence in order to prove Proposi-

tion II we have merely to show that

(86) f POW' | 0)dd 2 f P@'| 04

s 8;
for any region Z’ in the space of y’!, - - -, % which has a size equal to that
of W',

By a lemma of Neyman and Pearson(*) we see easily that (86) is proved,
if we can show that there exists a function d(c) of ¢ such that

(87 fs p(y'| 0)dA/p(y' | 00) Z d(c) within W
and
(88) fs p('| 8)dA/p(5'| 00) S d(c) outside W’

for all positive values of ¢, where p(y’|6") denotes the joint density function
of y1, - - -, y'% under the assumption that the true means are 8%, - - -, 8%

() J. Neyman and E. S. Pearson, Contributions to the theory of testing statistical hypotheses,
Statistical Research Memoirs vol. 1 (1936).
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If we denote y’i—6 by »* and 8’ —6 by 6*¢, we have

P10 = (amyrie P (= 27130 (v — %97
and )
p(y' | 60) = YT exp (— 2713 (29)?).
Hence
1 £ i % 1Y 2
J o0l oraa - (57;) J, o (- 2 2 -9

1

k2
= (g) exp (= 271X (09?)
. j;’ exp (Z ig*E — 2—12 (6*)2)dA

= 2(5'] 09 exp (= 22X @99 [ exp (o)A,

since Y_(6*)? is constant on the surface S/. Hence (87) and (88) can be writ-
ten

(89) I, - ,9%) = f exp 2 vig*idA = d*(c) within W,
8%
(90) I(, - - -, 9%) < d*(c) outside W".

Denote I(Z(vi)2)1/2| by r, and I(Z(G*i)2)1/2| by 7*. On the surface S/ we
have r*=¢. Denote by a(6*) the angle (0 Sa =7) between the vector » and
the vector 6*. Then we have

N j;' exp (cr, cos [a(6*) ])dA.

Because of the symmetry of the sphere, the value of this integral will not be
changed if we substitute 8(8*) for a(6*) where B(6*) denotes the angle
(0 =B(6*) = 7) between the vector 8* and an arbitrarily chosen fixed vector «.
Hence I(2%, . - -, v*) depends only on r,, that is I(z%, - - -, v*)=1I(r,). The
inequalities (89) and (90) are obviously proved if we can show that I(r,)
is a monotonically increasing function of r,. We have

dI(r,)

(91) o = fg; ¢ cos [B(6%)] exp (cr, cos [B(6*¥)])dA.

Denote by w; the subset of S/ in which 0 <8(#*) £ /2, and by w. the subset
in which 7/2 £8(0*) £7. Because of the symmetry of the sphere we obvi-
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ously have

f ¢ cos [B(6*%)] exp (cr, cos [B(6*)])d4

(92) = f ¢ cos [r — B(6*)] exp (cr, cos [x — B(6*)])d4
= —f ¢ cos [B(6*)] exp (— cr, cos [8(6%)])dA.
Hence B
al(r,
(93) dE'r ) = cf cos [8(6%)] {exp (cro cos [B(6*%)]) —exp (—cr, cos [B(B*)])}dA.

The right-hand side of (93) is positive. Hence Proposition II is proved.
Now let us turn back to the general problem of r variates x1, - - -,
whose joint probability density function f(x?!, - - -, %", 61, , 08y =f(x, 0)

involves 2 unknown parameters, as considered in the previous sectlons

DEFINITION I1. 4 sequence {W,} (n=1, - - -, ad inf.) of critical regions
of size o for testing the simple hypothesis 0 =20y is said to have asymptotically
best average power with respect to the family of surfaces K. and the weight func-
tion w(0) if for any sequence {Z.} for which P(Z,.l o) = we have

lim sup {lub [f P, 10),4(;{00)) RAADS (EK)C) dA]} <o,

where

A(K,) = fK w(6)dA.

We shall prove the following theorem.

THEOREM I. Let W,* be a critical region for testing 0 =0, defined by the in-
equality

w2 2 (0 — 600 — Go)ci(6) = d
i i
where the real number d. is chosen so that P(W,.*l 00) =c. Denote by S, the sur-
face in the parameter space defined by the equation
22 (Bi - 0;)(9i - 95)0-'1'(00) = C.

Furthermore let £(0) be the weight function as defined in (81) where Hci,-((}o)H is
substituted for |Nijl|. Then the test {W.*} has asymptotically best average power
with respect to the family of surfaces S, and the weight function £(0).
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Proof. Because of Lemma 1 we can restrict ourselves to subsets of the
space of the maximum likelihood estimates. Let us assume that Theorem I
is not true. Then it follows from Lemma 2 that a sequence of values {c.}
and a sequence of regions {Z.*} exist such that P(Z,.*| fy) =a and

09 tmsup § f BEE| )50 — f POV D504} = 5> 0

£a(0) = £(9) / fs %s(e)dA.

From (94) it follows that there exists a subsequence {#’} of the sequence {7}
such that

where

o9 tm{ [ om0 - | BOV2 | ru@id | =5 > 0.

It is easy to verify that
lim B(Wo | 6a) = 1

n= o0

if 8, is a point of S,,, and if liMuw, #/c,r = -+ ©. Under the latter condition
also

lim BWr | 0w (6)dd =

=
n cnt

Thus (95) can hold only if the sequence {n’c,.:} is bounded. If {n’c,.'} is
bounded, we obviously have for any sequence of regions { A

lim { f *B(V,.'Ie)a (6)d4 — f “P(Vﬁle)rn,(e)dA} =0,

where P( V,.*I #) denotes the probability of V,* calculated under the assump-
tion that nV/2(6,—@"), - - - , n¥/2(6%—0*) have a joint normal distribution with
zero means and covariance matrix equal to ]|c,~,~(00)]]‘1. Hence from (95) we
obtain

60 lim {f P& | 65w (0)dA — f PAY | 6)5 (a)dA} — 5> 0.

Denote by W.* the region defined by the inequality

13 3 (6 — 60)(6) — 00)cii(B0) = dny

where d, is chosen so that P(W *|00) a. Furthermore denote by Z.* the
sum of Z.* and the region n”"’lf)o—e , =\., where N\, is chosen so that
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P(Z*|65) =a. Since, as can easily be seen,

lim { fs P("WZ'LI 0w (0)d4 — fs P(W,",‘,|e);n,@)dA} =0

n== o

and

lim { f ?(Z:,] 8)¢nr(6)dA — fs ?(z:|a)g~,,,(a)dA} =0,

n=o0 n

we obtain from (96) a contradiction to Proposition II. Hence Theorem I is
proved.

6. Tests of simple hypotheses which have best constant power on a family
of surfaces.

DeriNiTION II1. A critical region W, for testing 8 =0, is said to have uni-
Jormly best constant power on the family of surfaces {Kc} if the following two
conditions are fulfilled :

(a) P( W,,| 61) =P(W,,| 62) for any pair of points b1, 02 which lie on the same

surface K..

(b) P(W,.]O);P(Z,,/O) for any Z, which satisfies condition (a) and for

which P(Z.|00) =P(W,|00).

From Proposition 11 we obtain the following:

ProrositioN III. Let yt, - - -, y* be k variates which have a joint normal
distribution with unknown mean values 6, - - -, 0% and a known covariance
matrix ||os|| = ||Nif| 2. Then for testing 0="0,, the region defined in (82) has uni-
formly best constant power on the surfaces S, defined by the equation

97) S0 - 00 — oy = c.

Since the critical region defined in (82) satisfies condition (a) of Defini-
tion I1I, Proposition III is an immediate consequence of Proposition II.

DEerINITION 1V. A sequence of critical regions {W.,} for testing =00 is
said to be of size o and to have asymplotically best constant power on the surfaces
K. if the following three conditions are fulfilled:

(2) P(Wa|8o)=a (n=1,2, - - -, ad inf.).

(b) limam, {Lub.. [Lub.sgx, P(W.|60) —glb.sck, P(Wa|0)]} =0, where
the symbol l.u.b.eck, means that the least upper bound is to be taken with respect
to O restricting 0 to points of K..

(c) For any sequence {Z,} which satisfies (a) and (b) we have
lim {Lub. [PZ.|0) — P(W.|6)]} = 0.

]

n=w

It is easy to verify that the sequence {Wn*} defined in Theorem I satis-
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fies the conditions (a) and (b) for K,=S,, where S, denotes the surface de-
fined in Theorem I. Thus from Theorem I we obtain the following theorem.

Trreorem 1. Let {W.*} and S. be defined as in Theorem 1. For testing
0=0,, the sequence {W,.*} has asymptotically best constant power on the sur-
faces S..

7. Most stringent tests of simple hypotheses. Let 6 and 6, be two parame-
ter points and let a denote a positive number less than 1. We denote by
P,(0, 6o, o) the least upper bound of P(W,.[ 0) with respect to W, where W,
is restricted to regions for which P(W,,[Go) =a. It is clear that if W, is a
critical region of size « for testing 6 =48,, its power function can nowhere ex-
ceed the value of P.(0, 6o, ), that is P(W,.l 6) £ P.(0, 64, ) for all values of 6.

DEFINITION V. A4 critical region W, is said to be a most stringent test of the
hypothesis 0 =0, on the level of significance o if P(W., I 0o) = and if

Lub. [P.(6, 6o, @) — P(W,|6)] < Lub. [P.(8, 6, a) — P(Z,]6)]
] ]

for all regions Z, for which P(Z,.[ 6o) =cr.
We shall prove the following proposition.

ProrosiTioN IV. Let ¥*, - - -, y* be k variates which have a joint normal
distribution with unknown mean values 6, - - -, 0% and a known covariance
matrix ||owl| =||Nijl| 2. Then for testing 0 =0, the region W defined in (82) is a
most stringent test.

Proof. We shall assume that Proposition IV does not hold and we shall
arrive at a contradiction. If Proposition IV is not true, then there exists a
region Z in the space of y%, - - -, ¥* such that P(Zl 6o) = and

(98)  Lub. [P(8, 6, @) — P(W]|6)] > Lub. [P(8, 60, a) — PZ]6)].
0 )
Let S, be the surface defined by the equation
E X6 =60 — ons = c.
P

The functions Py(f, 8, @) and P(Wl 6) are constant on the surface S,. Hence,
on account of (98), there exists a value ¢, such that
P(Z|9) > P(W|0)

for all points 8 on S.,. But this is a contradiction to Proposition I1I. Hence
Proposition IV is proved.

DEeriniTION VI. 4 sequence of critical regions { W,.} s said lo be an asymp-
totically most stringent test of the hypothesis 0=0¢ on the level of significance o
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if P(W.|00) =a and if for any {Z.} for which P(Z,|60) =a we have
lim sup {Lu.b. [Pa(8, 80, @) — P(W,| )] — Lu.b. [Pa(6,00,0¢) — P(Z.| 0)]} < 0.

We shall prove the following theorem.

TueoreM 111. Let W,* be the region defined in Theorem 1. Then the sequence
{W,.*} is an asymptotically most stringent test of the hypothesis 6 =~0o.

Proof. Denote by B.(8, 0o, ) the least upper bound of ‘B(Z,.*l 0) with re-
spect to Z.*, where Z* is restricted to regions in the space of the maximum
likelihood estimates for which B(Z.*|6) =a. Because of Lemma 1 we have
(99) lim [P.(6, 6o, @) — B8, 60, )] = 0
uniformly in 6. Denote by P.(8, 8, ) the least upper bound of P(Z.*|0) with
respect to Z.*, where Z,* is restricted to regions in the space of the maximum
likelihood estimates for which I_’(Z,.*IGO) =a. The symbol P( V,.*| 6) denotes
the probability of V.* calculated under the assumption that the joint dis-

tribution of n!/2(6i—61), - - -, n/2(£—0%) is normal with zero means and
covariance matrix ||cij(60)||~*. For any positive X we have
(100) lim [B.(8, 80, @) — Pa(6, 6o, a)]=0

7= 0

uniformly in @ in the domain In‘/2(0—00)[ £\. Since for any sequence {01.}
for which lim ln‘/2(0,.—00)| = 4 », we have

lim ‘B,.(B,., 00, a) = lim Pn(em 00, a) = 1,
n=w

n= o0
we obtain from (100)

(101) lim [P.(8, 0, @) — Pa(0, 60, )] = 0

uniformly in 0. For any ¢ let S. be the surface defined by
Eo o .
0" = 05)(6" — Bo)cii(Ba) = ¢

1

=14

Obviously P.(8, 0o, @) is constant along the surface S.. From (99) and (101)
we obtain

(102) lim {Lub. P.(0, 6o, @) — g.lb. Pu(8, 60, @)} = 0
n=o 0ES, [ISEN

uniformly in 6. We shall derive a contradiction from the assumption that
Theorem III is not true. If Theorem III is not true, there exists a sequence
{Z.} of regions such that P(Zn|0) =a and
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lim sup {1.1;.1). [P.(6, 60, @) — P(Wa|6)]

(103) — Lub. [P.(8, 60, @) — P(Z,|O)]} =35> 0.

On account of (102) and since

lim [Lub. P(Wh]0) — glb. P(W,|0)] =0
rR=w 6E8, E S,
uniformly in ¢ (see Theorem II), we obtain from (103) that there exists a

sequence {c,} and a subsequence {#n’} of {n} such that for all points 6,
of S,

P(Zur | 0w) > P(Wre| 00) + 8/2

for all n greater than a certain no. But this contradicts Theorem I. Hence
Theorem I1I is proved.

8. Definitions of “best” tests of composite hypotheses. In this section we
shall extend the definitions given in the previous sections to the case of com-
posite hypotheses. Let w be a subset of the parameter space and denote by
H, the hypothesis that the true parameter point is contained in w. In all
that follows the letter 6 printed in boldface will indicate that the parameter
point lies in w. For example, the symbol L.u.b.e f(8) denotes the least upper
bound of the function f(8) with respect to 8 where 0 is restricted to points of w.
For any point 8 and for any real value ¢ let K.(8) denote a surface in the pa-
rameter space. For instance K,.(08) may be given by r equations in 6

¢l(01 0) = = ¢r(01 0) = 0;
where ¢.(8, 0), - - -, ¢.(8, 0) are some analytic functions of 6 and o.

DEerFiNiTION VII. A4 critical region W, for testing H., is said to have uniformly
best average power with respect to a family of surfaces K.(8) and a weight func-
tion w(0) if for any Z, for which

Lub. P(Z.|6) = Lub. P(W,]|6)
0 0
we have

f K.() P(W, | )u(®)d4 2 f £6) P(Z.| 0)w(6)d4

c

Sfor any @ and for any c for which K.(0) is defined.

DeriniTION VIII. A sequence {Wn} (n=1, 2, - - -, ad inf.) of critical re-
gions for testing the hypothesis H, is said to have asymptotically best average
power with respect to a family of surfaces K.(0) and a weight function w() if
the following two conditions are fulfilled:
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(a) There exists a fixed o such that
Lub. P(W,|0) = a (n=1,2,---,adinf)
]

(b) For any sequence {Z,} for which l.u.b.e P(Z,.[ 6) =«, we have
. w(6)
1 u.b. w| ) —————r
et {l by [f w0 P10 T
Joo P19 574 ]}
- Wal6) ————d4 |¢ <0,
TI0)]

AlK.0)] = fK © w(6)dA.

where

DerINITION IX. A critical region W, for testing H., is said to have uniformly
best constant power on the family of surfaces K.(8) if the following two conditions
are fulfilled:

(a) P(W,.| 0") =P(W,.] 0'") for all pairs of points 6’ and 0'' which lie on the
same surface K(0). A

(b) P(W,.| ) gP(Z,.l ) for any 6 not in w and for any Z. which salisfies
(a) and the condition

Lub. P(Z.|8) = Lub. P(W,]|6).
[] 0

DEeFINITION X. 4 sequence of critical regions {Wn} for testing H, is said
to have asymptotically best constant power on the surfaces K.(0) if the following
three conditions are fulfilled:

(a) Lu.b.e P(W,.|0)=a (n=1,2, - - -, ad inf.).

(b) limaey, {lu.b.co [luboex(e) P(W,,|o) —glbuex g P(W.|6)]} =0

(c) For any sequence {Z,.} which satisfies (a) and (b) we have

lim {lub [Pz.|6) — P(W,|6]} =0,

n=c
where @ is the complement of w.

DEFINITION X1. Denote by P.(0, w, &) the least upper bound of P(Z.|6)
with respect to Z,, subject to the condition l.u.b.e P(Z,.| 0) =a. A critical region W,
is satd to be a most stringent test of the hypothesis H, if for some positive o

Lub. P(W,|0) = a
0
and

Lub. [Pa9, @, @) — P(W,|6)] < Lub. [Pa(8, @, @) — P(Z.]|6)]

for all regions'Z, for whick L.u.b.e P(Z.|0)=a.
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DEFINITION X11. A sequence of critical regions { W} is said to be an asymp-
totically most stringent test of the hypothesis H., if the following two conditions
are fulfilled :

(a) There exists a positive o such that

Lub. P(W,|0) = (n=1,2,---,ad inf.).
0

(b) For any sequence {Z.} which satisfies (a) for the same o we have

lim sup {Luwb. [Pa(8, @, @) — P(W,|6)] — Lub. [Pu(6,,a) — P(Z.| 6)]} < 0.
n=o [} [}
In Definitions VII-XII we have formulated the condition
Lub. P(W,|0) = a.
0

The question can be raised whether, in place of this condition, the require-
ment that

™* P(W,|0) = a
for all points 8 should be made; or whether the weaker condition that
**) lim P(W,]0) = «

uniformly in 6 should be required. Condition (*) has the serious drawback
that regions satisfying it do not always exist. Even in cases where (*) can
be fulfilled, it imposes too strong a restriction on the possible choice of W,,
which does not seem to be quite justified. It is conceivable that in some cases
a region W,! may exist which does not satisfy (*) but has such an advanta-
geous power function that we prefer it to any region W, which satisfies(*).

As to the condition (**), we shall see that it is satisfied for the sequence
{W,,} which is shown in this paper to be asymptotically best according to all
three definitions VIII, X and XII. Hence the same sequence {W,} remains
asymptotically best if we replace the condition Lu.b.e P( W,.l 6) =« by (**) in
the definitions VIII, X and XII.

In the following §§9-11 we shall discuss a linear hypothesis of the follow-
ing type: 6'=80}, - - -, 6 =0; (r<k), where 68, - - -, 0 are some specified
values. That is to say, the set w is the set of all points 6 for which the above
equations hold. In §12 the general composite hypothesis will be discussed.

9. Tests of linear composite hypotheses which have uniformly best
average power over a family of surfaces. Let H, be the hypothesis that
' =0y, - - -, 07=06; (r<k). We shall introduce the following notation: For
any parameter point 6=(6!, - - -, 6%) the symbol ;0 will denote the vector
in the r-dimensional space with the components 6!, - - -, §7, and 20 will de-
note the vector in the k—r dimensional space with the components
g+, - . -, 6%, For any function ¢(6) of § we shall use the synonymous nota-
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tion Y(i8, o8). For instance P(W| 18, o) is synonymous with P(W[ ).

Let 3!, - - -, y* be k variates which have a joint normal distribution
with unknown mean values 6%, - .-, 0¥ and known covariance matrix
”o’;,-”=”)\¢]”_1 (#, j=1, - - -, k), which is nonsingular. Denote by W the
region in the space of y!, + - -, ¥* given by the inequality
(104) 2 X Xnald” = 0)" = 60) 2 d,

g=1 p=1
where [|Apq| =||osd|™ (&, ¢=1, - - -, 7). Consider the nonsingular linear
transformation of the variates y!, - - + , y* given by the equations
1 1 r r
oy 0 TH=Bn0 —l ko G =) (=1,
Y= yay + - + vayt (t=r+1,---,h),
such that y'%, - -+, 9’% are independently distributed with unit variances.

Denote by S.(8) the surface given by the equations
S K0 — DY — ) = o,
06 5 En - -
vauf + - Foyabt = 2 va8t (G=r41,- k).

i=1

Consider the transformation of the parameter space given by

6" — 05 = Bo(® — 00) + - - - + Bpl6 — 60) p=1,---,7,
0,t=7t101+"'+7tk0k (t=r+1y"'1k)v

where the coefficients 8,, and 7;; are the same as in (105). The transforma-
tion (107) transforms the surface S.(8) into a sphere S/ (8) given by

(107)

r k

(108) SO =) =c,  Ot= 3 v =0

p=1 i=1
For any point # and for any positive p consider the set w(f, p) consisting of
all points *§ which lie on the same S.(8) as 6, and for which I*B—OI =<p. Let

Alw'(8,

(109) £(9) = lim ——[—(——’2]—
=0 Afw(8, p))
where w’(8, p) is the image of w(f, p) (by transformation (107)) and, for any
set w, A(w) denotes the (r—1)-dimensional area of w. We shall prove the
following proposition.

ProrosiTioN V. Let y, - - -, y* be k variates which have a joint normal
distribution with unknown mean values 01, - - -, 8% and Enown covariance ma-
trix ||ol| =||Nijl| L For testing the hypothesis 10 =100 on the basis of a single
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observation on each of the variates y*, - - -, y*, the critical region W given in
(104) has uniformly best average power with respect to the family of surfaces
S.(0) defined in (106) and the weight function £(6) given in (109).

Proof. Because of (109) we have
(110) f P(Z| 0)£(6)dA = f P(Z'| 6"dA,
5:(0) RACY

where Z denotes an arbitrary region in the space of 3%, - - -, 9% and Z’ is
the image of Z by transformation (105). The region W is transformed into
W’ given by

1 1.2 r r 2
(111) ' —0) +- -+ —6) 24

In order to prove Proposition V we have merely to show that
(112) f P(W'|0)dA = f P(Z'| 0)dA
5:(0) LAC)]

for any ¢ >0, for any 6, and for any region Z’ in the space of y't, - - -, y'*
for which Lu.b.,¢r P(Z’| 186, 88’) =L.u.b. o P(W’|:80, #8’). For any point 6’ of
S/ (6) we have 20’ =:0". By a lemma of Neyman and Pearson, (112) is proved
if we can show that there exists a function d(c) such that

Js@p(y, - - 9k, 20')dA} = d(c) within W,
p(YY, -, ¥k 6o, ) < d(c) outside W’
for all values of ¢ and 8 where p(y'Y, - - -, 9| 8’) denotes the joint probability

density of ¥’%, - - -, ¥'* under the assumption that 6’ is the true parameter
point. Obviously

pUYY - YR, 8) B, Y] 48)
PO Y e, ) P, ] )
Hence (113) is equivalent to
Js@p(y'L, - -+, ¥'r| 10)dAY Z d(c) within W,
Py -, ¥ 180) } < d(c) outside W".

The proof of (114) is omitted, since it is the same as that of the inequalities
(87) and (88). Hence Proposition V is proved.
Let the critical region W,* be defined by the following inequality

(113)

(114)

(115) 233 @ — O — 69ea(0) = d,

g=1 p=1

where [[6,0(0)]| =[|oso(0)]|* (&, g=1, - - -, ) and [jo O] =]lcis(®) | G, j
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=1, - . -, k). The constant d, is chosen so that

Lub. P(W*|0) = a.
0

Let Z}(0) =n'?(6,—0%) (i=1,+ .-, k) and consider the nonsingular linear
transformation

— 1 r

Z:(6) = Bo®Za(8) + - - - + B2(6)Z.(0) =17,
(116) e

Zu6) = va®)Za0) + - -+ +7aOZa6) =7+ 1, A),
such that Zy(0), - - -, Z%(#) would be independently distributed with unit
variances if the covariance matrix of ZL(), - - -, ZX(0) were given by

llo:s(8)]]. Denote by S.(8) the surface defined by the equations

(117) EE (07 — 60)(0° — 60)¢pe(8) = ¢,

va(0)8 + - - - + (008 = D yu(0)0F (t=7+1,---, k).

For any positive & denote by S; the set of all points 8 for which
[0”—0{,’[ =6 (p=1,---, r). We shall prove the existence of a positive &
such that for any point 6 in S; there exists exactly one surface S.(8), that is
exactly one value of ¢ and exactly one point 8, such that 8 lies on the surface
S:(0). This statement is obviously proved if we show that for any point 8 in
S the set of £ —r equations

(118) 7a(0)(8* — 6Y) + - - - + i (0)(8* — 6%) = 0 (t=r+1,---,k

has™a unique solution in the unknowns 67!, - . ., 8% From the definition
of the quantities 8,,(8) and v,:(8) it follows that
(119) A®)|e:;®][40) =1,
where 4 (0) denotes the matrix
B1.(6) B120) - -+ Bu(6) 0 cee 0
B12(6).  B22(0) - - - B2(6) Y
(120) B:1(6) Br2(®) - - - B.r(6) 0 e 0 )

Yrr110)  ¥rr12(0) < - - Vrg1+(0)  Yrr1,41(8) - - - Yrr1 £(6)

v11(8) ve2®) - ve®)  vee1(0) - - - vei(8)

A(0) is the transposed of 4(8) and I denotes the unit matrix. Since ¢:;(8)
is a continuous and bounded function of 8 and since the determinant lo‘,-j(a)|
has a positive lower bound, we find that 8,,(8) and v.:(8) are continuous and
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bounded functions of 8 and that the absolute value of the determinant A(6)
has a positive lower bound. Hence also the absolute value of the determinant

Yrt1r41(8) - - - Yri24(0) |
(121) v(®0) = '
Yerr1(0) - - - v2i(8)

has a positive lower bound.

Let 6 =0* where 0* denotes an arbitrary point of w. Then, since the de-
terminant in (121) has a positive lower bound, the equations (118) have a
unique solution in the unknowns 6t1, - . . | 8%, namely the solution 6=0%,
Furthermore we see that the Jacobian of the equations (118), taken at the
point 0 =0*, is equal to (0*). Since the absolute value of ¥(0*) has a positive
lower bound, there exists a positive & such that the equations (118) have a
unique solution in 0 if l0—0*[ =< 6. This proves the existence of a positive §
such that for any point @ in S; there exists exactly one surface S.(0) such that
6 lies on S.(0). ’

Since for the critical region W,* defined in (115) we obviously have
limgee P(W,,*] 6) =1 uniformly over the domain lo”—egl = 8, we shall restrict
ourselves to the consideration of points 8 for which I 67 —-68‘ Sé(p=1,:--,1).

Consider the transformation of the parameter space given by

0 =6 = Bn@O — )+ + @@ —0) (p=1,---,7),
0 = 7@ + - - - + Yu(0)0* G=r+1,-,4),

where 0 denotes the point for which 8 lies on S.(8). The transformation (122)
transforms S,(0) into the sphere S¢ () given by

(122)

123) S =6 =c 0" = 7u@)0 = 0" G=r+1,---, k).

pe=1
We define a weight function £(8) as follows:

Alw'(6, 0)]
124 = lim ———,
(124 0 o= A [w(8, p)]

where the symbols on the right-hand side have the same meaning as in (109).

TaEOREM IV. Let the critical region W.* for testing 10 =100 be the region
defined in (115). Furthermore, let S.(0) be the surface defined in (117) and let
£(0) be the weight function defined in (124). Then {W.*} has asymptotically
best average power with respect to the family of surfaces S.(8) and the weight
Sfunction £(6).

Proof. Because of Lemma 1, we can restrict ourselves to subsets of the
space of the maximum likelihood estimates. Because of Lemma 2, Theo-
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rem IV is proved if we show that for any {Z.*} for which Lu.b.s P(Z,*|68) =«
we have

n=w

tm sup {Lub. | o Yelonmat - [ gonlonwal} s,

Se

£a(0) = £(6) / f&(e) £(6)dA.

If Theorem IV were not true, there would exist a sequence {c,}, a se-
quence {0,}, a sequence {Z,*}, and a subsequence {n'} of {n} such that

where

Lub. P(Zr|0) = a,
(125) °
im { [ 96 oru@as - [
Senr (041

n=os

B(Wa | e)g',,,(o)dA} =5>0.
Senr0ns
It is easy to verify that for any sequence {c.} for which lim nc,= -+ we
have [s., @ B(W.*|0)¢.(0)d4 =1 uniformly in 6. Hence (125) can hold only
if the sequence {n'cnv} is bounded. If {n’c,./} is bounded, for any sequence of
regions { V.*} we obviously have

a26) tm{ [ 90l ocuda -
Senr\Oy,

n=cw

P, (VE | 0@t} = o,

Senr\Op

where Pe(V,,*] 6) denotes the probability of V.* calculated under the assump-
tion that n'/2(f.,—6%), - - - , n¥/2(65—6*%) have a joint normal distribution with
zero means and covariance matrix 7;;(0). Let W, *(8) be the region defined by

nE Z (Br — 65) (6% — 63)Cpe(0) = do.

g=1 p=1
Itis clear thatif {n’c, } is bounded, we have
(127) lim {Py(Wh|6) — P[Wa(0)] 6]} =0

uniformly in 6 and 8 over the domain in which 6 is a point of S.,-(8). From
(125), (126) and (127) we obtain

lim { f ) Py (Zn | 0)tn(6)dA
S

n=w

s (0,
(128) .
- Po,. [Wu (8. | o]y,,,(e)dA} =35>0,

Sens (0

The surface S.(8) defined in (106) is identical with the surface S.(6) defined
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in (117) if in (106) we substitute ¢;;(6) for N;; that is we substitute ,4(0)
for X,, Similarly, if we substitute c;;(8) for A;; for any point of the surface
S.(0), the value of the weight function £(f) defined in (109) is the same as
the value of £(#) defined in (124). Hence, since

lim [Lu.b. Py(Zn|0)] = a,

n=r ]

equation (128) is in contradiction to Proposition V. Thus Theorem IV is
proved.

10. Tests of linear composite hypotheses which have best constant power
on a family of surfaces. The critical region W defined in (104) satisfies condi-
tion (a) of Definition IX if K,(0) is equal to S.(6) given in (106). Hence from
Proposition V we obtain the following proposition.

ProrositioNn VI. The region W given in (104) has uniformly best constant
power on the surfaces S,(8) defined in (106).

If W,* is the region defined in (115) and if K.(0) is equal to the surface
S:(0) defined in (117), then {Wn*} satisfies conditions (a) and (b) of Defini-
tion X. Hence, from Theorem IV we easily obtain the following theorem.

THEOREM V. Let W.* be the region defined in (115) and let S.(8) be the sur-
face defined tn (117), then for testing 10 =10, { W,.*} has asymptotically best con-
stant power along the surfaces S.(0).

11. Most stringent tests of linear composite hypotheses. We shall prove
the following proposition.

ProrosiTioN VII. Let 9!, « - -, ¥* be k variates which have a joint normal
distribution with unknown mean values 6, - - -, 0% and, known covariance ma-
trix |lou]| =||Nail| . For testing the hypothesis 18 =100 on the basis of a single
observation on each of the variates y', - - -, ¥*, the region W given in (104) is a
most stringent test.

Proof. First we shall show that P(6, w, «) is constant along S.(0) where
S.(8) is defined in (106). Consider a linear transformation of »?, - - -, y* as
defined in (105). Then the transformed variates y’, - « -, y’* are independ-
ently distributed with unit variances. Denote by 8’ the image of 8 obtained by
the transformation (107) and let P’(¢’, @, &) be equal to l.u.b. P(Z’|8") with
respect to Z’/, where Z’ may be any region in the space of ', - - -, y’¥ sub-
ject to the condition that

I.U.;b. P(Z,l 100, 20') = .
(]

2

Obviously P/(¢/, w, a) = P(6, w, o).
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Hence we have merely to show that P’(8’, w, ) is constant along S/ (8) where
S/ (8) is the image of S.(8) and is given by '

SO -6)'=c 6 =9 ¢=r+1,---, k).
p=1 '
Let P*(6’, 180, ) be equal to the least upper bound of P(Z’|8’) with respect
to all regions Z’ in the space of y’1, - - -, 9’* for which P(Z’|:0,, 26') =a. Ob-
viously P*(8’, 100, ) Z P'(0’, , ). It is easy to verify that the region V’ for
which P( V’|10’, 20) = P*(6’, 100, @) is a subset in the space of y'1, - - -, y'r,

Hence
P(V'| 180, 20{) = P(V'] 180, 0%)

for any pair of points 6/ and 67, and therefore
P*(¢', 18, @) = P'(¢, w, @) = P(§, w, a0).

Since P*(#’, 100, o) is constant along S.(8), our statement is proved. From
this and Proposition V, Proposition VII easily follows.

THEOREM VI. Let W.* be the region defined in (115). Then {W.*} is an
asymptotically most stringent test of the hypothesis 10 =10,.

Proof. Denote by PB.(0, w, ) the least upper bound of ‘B(Z,.*‘ 0) with re-
spect to Z*, where Z,* is restricted to regions in the space of the maximum
likelihood estimates for which

Lub. B(Zr| 6) = a.
0

On account of Lemmas 1 and 2 we have

(129) lim {Pa(6, @, @) — Bal, @, @)} = 0
uniformly in 6.

Denote by P,(8, 100, &) the least upper bound of ?,.(Z,.*IO) with respect
to Z,*¥ where Z,.* is restricted to regions in the space of the maximum likeli-
hood estimates for which

l.u.b. T’(Z:l 100, 20) = .

,0
The symbol P( V,,*l #) denotes the probability of V.* calculated under the as-
sumption that the joint distribution of nV2(6,—6"), - - -, nV2(§5—6*) is nor-
mal with zero means and covariance matrix ||c:;(8)||~!, where @ denotes that
point for which 6 lies on the surface S.(6) defined in (117). It can be shown
that for any positive A we have
(130) lim {Ba(0, @, @) — Pa(6, 0o, @)} =0
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uniformly in § in the domain [16-—100[ =\/nY2, Since for any sequence {0,.}
for which

r 1/2
lim nm( > (0,,_ 0:)2) = 4 o,

n=o p=1
we have

lim B0, w, @) = lim P,(0,, 100, @) = 1,

n=00 =
we obtain from (130)

(131) lim {Pa(6, ©, @) — Pa8, 100, @)} =0

n=w

uniformly in 6. The function P,(f, 1o, ) is constant along the surface S.(8)
defined in (117). This can be proved in the same way as the constancy of
P8, w, a) on S;(0) defined in (106). Hence from (129) and (131) we obtain

(132) Iim{lub P,.(Owa)——glb P.(0, w,0)} =
n=w 0 8,(0) 0)

uniformly in 8 and ¢. According to Theorem V we have

(133) lim { Lu.b. P(W|0)—g1b P(Wlo)}
n=w 0 5,(0)

uniformly in ¢ and 0. Theorem VI follows from (132), (133) and Theorem 1V.

12. The general composite hypothesis. In §§9-11 we have considered the
linear composite hypothesis 16 =18. Now we shall discuss a general composite
hypothesis H, where w denotes a subset of the parameter space given by r
equations

(134) O =80 =---=¢0 =0 (r <°&),

that is, w is the set of all points 6 which satisfy equations (134). We make the
following assumption.

AssuMPrION V1. There exist k—r functions Er+1(0), - - -, E¥(0) such that the
following three conditions are fulfilled:

(a) The transformation whick transforms the point 0 into the point & with
the coordinates (), - - -, £¥(0) is a topological transformation of Q inlo itself.

(b) The first and second order partial derivatives of £(6), -+ -, £*(0) are
uniformly continuous and bounded functions of 0.

(c) The greatest lower bound of the absolute value of the Jacobian
AL, - - -, E5)/3(8Y, - - -, OF) is positive.

Let £=(&!, - - -, &) denote a variable point of the parameter space .
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Since according to Assumption VI the transformation

(135) £ = £40) (i=1,--,k)
is topological, we can solve the equations (135) and we obtain
(136) 9 = 01’(&-1’ ce e, Ek) (1 =1,..-, k)_

From conditions (b) and (c) of Assumption VI it follows that the first
and second order derivatives of @i(£L, - - ., £%) are uniformly continu-
ous and bounded functions of £ and the absolute value of the Jacobian
ae, - .-, 0% /(& - - -, £%) has a positive lower bound.

Let f*(x, £) be the probability density function we obtain from the proba-
bility density function f(x, 6) of x by substituting the right-hand side of (136)
for 8¢, Hence f*(x, £) is the probability density function of x in the trans-
formed parameter space. It is clear that the maximum likelihood estimate

of ¢£iis equal to £ =£i(f;, - - -, 65), where 0, is the maximum likelihood esti-
mate of 6.
Denote by I*, II* - .., V* the assumptions which we obtain from As-

sumptions I-V respectively by substituting f*(x, &) for f(x, ), £ for 8 and
£, for 8,. We shall show that Assumptions I*~V* can be derived from Assump-
tions I-VI.

Assumption I¥* is an immediate consequence of Assumptions I and VI.
Since according to Assumption VI the first derivatives of £%(6) are continu-
ous and bounded functions of §, the transformation (135) is uniformly con-
tinuous. Hence, for each positive €* there exists a positive € such that the
inequality I 0,.—0[ =<e implies the inequality |£n —EI = e*. From this and As-
sumption IT we obtain Assumption IT*.

Denote by vi(x, 61, 8) the least upper bound, and by ui(x, 6, 8) the great-
est lower bound of 9 log f(x, 8)/36% in the interval 6,— 8 <6 6,4+ 6. Using the
Taylor expansion we obtain

d log f(x, BT) 3 log f(x, 6y1)
9 36,

62 log f(xv gl)
9000

(137) + @ -6
i
where 8, lies in the interval [6;, 6*]. From (137) it follows that

3 log f(x, BT) d log f(x, 61)
a0¢ a4¢

(138) < 262 [] ¢ui(, 6, 3| +| viix, 0, 8) ]

for any # and § for which
§—6<6,<0+5 and 0 —06=<6; <6+
From (138) we obtain for any positive &

(139) | vi(=,6,8) — pi(=, 6,8 | = 235 [| dis(=, 6, 8) | + [ il=, 0, 9) |].
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Let {61,} and {8} (n=1, 2, - - -, ad inf.) be two sequences of parameter
points such that
(140) lim (61, — 62.) = O.

According to Assumption III the expectations Es, [¢ii(x, 03, 8)]2 and
Es, [W:i(x, 05, 8)]? are bounded functions of 6, 6; and § in the domain D. de-
fined in Assumption III. Hence also the expectations E9l|q‘>.-,~(x, 0, 6)| and-
Eollybﬁ(x, 02, 8)| are bounded functions of 6;, #; and & in the domain D..
From this and relations (139) and (140) it follows that for any sequence {6.}
of positive numbers for which lim,—., 6, =0 we have

(141) lim { Es,vi(%, 020, 8n) — Epyi(%, 020y 82)} = 0.
n=ow

Since

d log f(x, 62n
pi(%, O2n, 62) = J‘éf—;——zz = vi(®, O2r, 8,)

it follows from (141) that

d lo x, O,
lim {Eglnv.-(x, 020y 8,) — Eoy, _%_._L).} =0,
(142) "
. 3 log f(x, 2x)
lim Eolﬂu,’(x, 02,., 5n) - EomT = (.

Using the Taylor expansion we have

a1l 0, 91 01 ; - 921 , B,
og f(x : ) = og f(x - ) + Z (02n - 0in) og f(x" '_‘) ]

(143) : . —
o9 9 ; 39796+

where 8, lies in the interval [61,, 62.]. Since the expectations onl ¢b.i(x, be, 6)|
and Eo,lyb.-,-(x, s, 6)| are bounded functions of 0y, 8, and § in the domain D,

we obtain s
. ;9% log f(x, 6,
tim 5, { 3 01— ol S22 o,
S 0”{ Z:‘ (Ban = 0re) = 30
Hence it follows from (143) and Assumption IV that
0 log f(x, 020) 3 log f(, 61)

144 lim E 1 0.
(144) p—e a6¢ i 30°

We obtain from (142) and (144)

(145) lim Eg, vi(x, 024, 8,) = lim Eg pi(2, 024, 8,) = O.

Denote by ¢%(x, £, 6*) the least upper bound, and by ¥j(x, §, 8*) the great-
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est lower bound of 82 log f*(x, £)/0£'9&7 in the interval £ —8*S £ & 4-6* We

have
9% log f*(x, § _ 203 d* log f(x, 6) a6* d6™
(146) o%ioEi T m a6t96™ aEt of7
d lo x, 0) 029!
> g f(x, 0) v
7 06! o
Since

dlo , 0
Ey (_gfi_l) —o,
a0
we obtain from (146)

a2 log f*(x, & a2 log f(x, 8) 86! 60’"]
147) Bl B A B| 2022 2,
(147 T R ’[ o616 OE oF

Hence the determinant

32 log f*(x, &) ‘ _
oigLi B

(148) E;

E, a2 log f(x, 6) | (a(gl, ce, 0k))2.

96i007 g, - -+, &Y
Since the determinant l — E,02 log f(x, 6) /80‘80"[ has a positive lower bound,
it follows from (148) and Assumption VI that

(149) |— E? log f*(x, £)/08°9%|

has a positive lower bound.

For any positive §* let 6(6%) be the smallest positive number such that
for any two points & and £ for which |£1—£z| < &6* we have l01—02| =6(6%)
where 6; and 0; are the image points of £ and & by transformation (136).
From (146) we obtain

: . 90t 9o™
:'" s S 6* = ) m y 01 ] * .
¢1(x £ ) = z‘: Zm:tﬁz [x (6 )] ot afi
- 9%9?
+ 3 il 0, 56" ——
! d%*0¢7
(150) .
L 68N 2 S X il 0,009 o
‘lbﬂ Sy = - ~ im y Yy 65' 657
_ .., 0%}
+ lem[x, 8,8(5)] prove

where 0 is the image point of ¢ by transformation (136), and the derivatives
891/, 320'/3%°0¢ are taken at some points in the interval [£— 6%, £408%],
and the functions $im(x, 0, 8), Ym(x, 0, 8), pu(x, 0, 8) and vi(x, 0, 8) satisfy the
inequalities
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Vin(%, 6, 8) = din(x, 0, 8) = duin(x, 6, 8);
Vin(% 6, 8) = Pin(#, 6, 8) = b1n(%, 6, );
wilzx, 0,8) < v.(x, 0,8 < v(x,8,9d);
wiz, 0,08) = mix, 0,08 = nlx,6,39).

Let {£.} and {£.} be two sequences of parameter points such that
lim &.=lim &,=¢. Let 61, be the image point of £, 02, the image point
of £;,, and 0 the image point of £ (by transformation (136)). Let furthermore
{8} be a sequence of positive numbers such that lim 8,=0. Then we ob-
viously have lim 8(3.*) =0 and therefore using (145) and Assumption III we
obtain

lim Es, ¢ 1m|%, 020y 5(60) ] = Esd? log f(x, 6)/86'30™,

lim Ep, W im[#, Oon, 8(6%) | = Eod? log f(x, 6)/06%6™,

151
( ) lim Eol”Vl [x| 021" 6(6:)] = O’
lim Eo 1 [%, 0o 8650)] = 0

uniformly in 8. From (150) and (151) and the uniform continuity of the deriv-
atives 00'/9£¢ and 920'/9£:9¢7 we obtain

82 lo x,
(152)  lim Eg,¢:;(% £ 6a) = lim Eg,03i(%, £an, 8,) = RS
n=w

agaL

uniformly in £.
Because of (150) we have both
I d;:i(x! E, 6*) | and I ‘x"ti(x» E) 6*) |
=2 Z{[l Vim[2, 6, (%] |
I m
a0t a9~ 1M

153 nlx, 0, 8(6* Lub, | — —
(159 +] gunt, 0,061 1 Lub. | 22 22 L

N ;{[l vl 0,86%]| + ]| wilz, 6, 5(%)] H[I.u.b.l i H}

¢ | otiotd

where the least upper bound with respect to £ is to be taken over the interval
[£—5% £+8*].
We shall show that Ey, [vi(x, 03, 8) |2 and Es, [u:(x, 82, 8) ]? are bounded func-
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tions of 6, 8; and & in the domain D, for sufficiently small e. Our statement is
proved if we show that E, [8log f(x, 61)/867]?, Es, [vi(x, 62, 8) —dlog f(x, 6:) /06]?
and E, [ui(x, 02, 8) —9 log f(x, 6,)/360]? are bounded in D.. The first of these
expressions is bounded because of Assumption V. From (138) it follows that

d log f(x, 61)

Vi(x, 02, 5) - T = 25’2 [l ¢>.~,~(x, 02, 5') | + I 1[/.-,~(x, 02, 5’) I]
and
al , 61)
ni(x, 02, 8) — m()égc——l <2830 [| duil=, 02, 8) | + | is(s, 02, 8) |]

where 8’=8+2.;|6]—03|. From the above inequalities and the fact that
Eo, [#ii(x, 02, 8) ]2 and E,, [yii(x, 02, 8)]? are bounded in D, it follows that for
sufficiently small € the expressions Eg, [vi(x, 02, 8)—3 log f(x, 61)/80¢]% and
Eo, [ui(x, 05, 8) —0 log f(x, 0:)/307]% are bounded in D.. Hence our statement
is proved.

Since the derivatives 30!/3£* and 926!/3£:0£7 are bounded functions of §,
and since Ey, [¢:;(x, 02, 8)]% and E, [Y:i(x, 02, 8)]? are bounded functions of
61, 02 and 6 in the domain D, it follows from (153) that there exists a positive
e*such that E;, [p¥(x, £, 6*) ]2 and Ey, [Yf(x, &, 6%)]* are bounded functions
of &, £ and 6* in the domain defined by | ‘g’l—le Ze*and I 6*| =e*. Assump-
tion I11* follows from the latter statement and the relations (152) and (149).

Assumption [V* is an immediate consequence of Assumption IV.

We have

7
(154) M = Z M io__ .
ot ; 07 ot

For any points ¥ and 6 denote the maximum of the % expressions
|0 log f(x, 6)/06], - - -, |9 log f(x, 8)/36%| by p(x, 6). From Assumption V
it follows easily that

(155) Es[p(x, 6) >+

is a bounded function of 8. Since the derivatives d07/3¢¢ are bounded func-
tions of & Assumption V* follows from (154) and (155).
Denote by ¢;j(8) the function of § we obtain from — E;3? log f*(x, £)/9&9¢7
by substituting £(6) for £ Then we obtain from (147)
* a0t 60"‘
156 15(6 w(0) — —
(156) 40 = DT em® o o

Denote by 4 the matrix l|60‘/6£il| (4, 7=1, - - -, k) and let 4 be the trans-
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posed of 4. Then equation (156) can be written as
(157) lez;@)] = 4lle:i@)] 4.

Let [|o%(6)|| be the inverse of the matrix ||c}(0)||. Futhermore let B be the
matrix HG?/GO'H (i, j=1, - - -, k) and denote by B the transposed of B.
Since B=A"!, we obtain from (157)

(158) lozi@)ll = Bllo:@)|B,
where l|a'.-,~(0)“ =Hc;,-(0)“"1. Equation (158) can be written as
* ot o7
(159) 0:i(6) = ; ; Py %azm((’)o
Let
(160) 1| = [l73e®)]| (prg=1,+-,7,
Denote by W.* the critical region defined by the inequality
(161) n3 2 0000 2 d,
g=1 p=1

where the constant d, is chosen so that

Lub. P(W*|6) = a.
0

The point 8 is restricted to points of the set w defined by equations (134).
For each positive ¢ and for each point 8 of w we define the surface S.(8) by
the equations
33 E(0)E6)Cr®) = ¢,
q==1 p=1
(162) . .
Y va®)EO) = 2 vu@)5O)  ¢=r41,---, k),
i=1 i=1
where the coefficients 7.;(0) satisfy the following condition: There exists a
matrix HBM(O)H (p, q=1, + + -, r) such that if we form the matrix 4(0) given

in (120) then
(163) 4@)||cH®))4® = 1,

where 4(8) denotes the transposed of 4(8) and I denotes the unit matrix.
Consider the transformation of the parameter space given by

p'r = l3p1(9)-§1(0) + 0 !Spr(\e)gr(o) (P =1,---,7),

(164)
0"t = v, (0)£1(6) + - - - + v(8)£*(6) @G=r+4+1,---,k),
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where 0 denotes the point of w for which 8 lies on S.(8) for some value of ¢.
The matrix ||8,,(6)|| is chosen so that (163) is fulfilled. The transformation
(164) transforms S.(0) into the sphere S/ (8) given by

, k
@M =0c, &= 2 7.,0)50).

p=1 =1
We define a weight function #(f) as follows:

(165) n(6) = lim 4 [« 8, ) ]/A[w(6, p) ],

where the symbols on the right-hand side of (165) are defined as in (109).
Since Assumptions I*-V* are fulfilled if Assumption VI holds, we obtain
from Theorems IV, V and VI the following theorem.

TrEOREM VII. Let W be the region defined in (161) and let S.(8) be the
surface defined in (162). Furthermore let n(0) be the weight function defined in
(165). If Assumption V1 holds, then for testing the hypothesis £(6)= - - -
=§7(0) =0 the sequence { W*}

(a) has asymptotically best average power with respect to the surfaces S.(8)
and the weight function 1(8);

(b) has asymptotically best constant power on the surfaces S.(8);

(c) is an asymptotically most stringent test.

13. Optimum properties of the likelihood ratio test. For testing a com-
posite hypothesis H,, Neyman and Pearson introduced a statistic(®), called
likelihood ratio, defined as follows: The density function in the sample space
is given by J[2.1f(%e, 6). Denote by P(xy, - - -, #,) the maximum of this
function with respect to 6, - - -, 8% and let P,(x1, - - -, x.) be the condi-
tional maximum with respect to 8%, - - -, 6%, subject to the condition that 8
must be a point of w. Then the likelihood ratio for testing the hypothesis H,
is given by Ni(w, En) =P,(x1, - - -, xa)/P(x1, + + -, x,). It is obvious that the
value of N\.(w, E,) always lies between 0 and 1. Neyman and Pearson recom-
mend the use of the left tail as critical region, that is the hypothesis H,, is
rejected if the value of A.(w, E,) is less than a certain constant X,(w). Denote
the region A,(w, E.) <Ax(w) by L.(w). In all that follows we choose the con-
stant A.(w) so that

1.%b. P[L.(w)|0] = a.
‘We shall prove that there exists a finite value B such that —2 log A\.(w) <B

for all #» and for all w. Consider the Taylor expansion

(%) See in this connection J. Neyman and E. S. Pearson, On the use and interpretation of
certain test criteria for purposes of statistical snference, Biometrika vol. 20A (1928).
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Z log f(xﬂr 6) = Z log f(xa: 6.)

1 i LY i 0% log f(%e, 5,‘) 1
- 0, — 0)(6, — —_—
+ 2 2 0. ) Y — e

“where §, lies in the interval [4,, 8]. Since

Z log f(xa: 0,.) - Z lOg f(xar 0) s — log )‘n(w: E,.),
we have

. . N . 2 A
2 log M, E) S — X X nthh — 0@ — o) ~ 35 2108 En B
n o 086307
Since #1Y.0? log f(xa, 8.)/80:307 converges stochastically to —¢,;(8) under
the assumption that 0 is the true parameter point, it follows easily from
Proposition I that for any €>0 there exists a positive value 4 (¢) such that
for any w

. i i i< 07 log f(#a, 8a)
hgls”up{l.ue.b. P[— 3 (0. —0)b, —6 );————W— = A Ie]} Se

and lim..o A(e) = + . Hence
(166) lim sup {Lu.b. P[— 2 log (v, E.) = A(e)| 6]} < e
0.0

This proves the existence of a finite number B with the required property.

For any subsets I' and I'/ of the parameter space we denote by (T, I'’)
the greatest lower bound of the distance between 6 and 6’ where 8 is restricted
to points of T and 6’ is restricted to points of I'’. We shall call §(T', T'’) the
distance of the sets I and I".

Let {6.} be a sequence of parameter points such that lim §(6,, w) =0 and
liM e 71/28(8,, @) = 4+ . We shall prove that there exists a positive ¢ such
that for any constant 4

(167) lim P[ > 10g f(%a, 82) — 2 log f(2., 8%) > A | o,,] =1,

n=o

where 8* denotes a point of w for which |8*—0,| <, and 3. log f(x.; 6%)
=, log f(x., 8) for all 8 in the domain IO—O,.I Zv,. Consider the Taylor
expansion

> log f(%a, 8%) — 2 log f(%a, 6.)
(168) ¢

”n i *io i xi 1 82 log f(%a, )
= — 6, —6 )@, —06 )— >, ———",
T -0ty - ot L e
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where 8, lies in the interval [4,, 6*]. Because of conditions (a) and (b) of
Assumption III for any e>0 the positive number »o can be chosen so that

32 log f(%a, 8,)
001967

(169) lim P[ <l o,,] =1,

n=co

1
cii(0%) + — 2
n e

Since Hc,—,-(ﬂ)” is positive definite and the determinant |c,~,-(0)| has a positive
lower bound, we obtain from Proposition I, (168) and (169) that for some
positive, vg, (167) holds. Hence our statement is proved.

We say that the likelihood ratio test is uniformly consistent if for any

positive »
lim P[L.(w)| 6] = 1

uniformly in w and 6 over the domain §(8, w) Z». We postulate the following
assumption.

AssuMpTION VII. T'he likelihood ratio test is uniformly consistent.

This assumption together with the uniform consistency of the maximum
likelihood estimate 6, will be proved in a forthcoming paper on the basis
of some weak assumptions on the density function f(x, §).

Let w,(0) be the intersection of w with the set of all points 6’ for which

f=1| 0"—0"’[ Zv. From Assumption VII it follows that for any positive »

(170) lim P{— 2 log M[w,(8), E.] = — 2log R.[w,(0)]] 6} =1

n=ow

uniformly in 6.

Let {0.} be a sequence of parameter points such that lim,—, §(6,, w)=0
and lim,., #Y/26(0., w) =+ «. Denote by w, the set of all points 8 for which
|86—0.| <. Since —2 log &, [w,(8) ] has a finite upper bound it follows from
(167) that for a sufficiently small v,

(171) lim P{— 2 log M[wn, Ex] 2 — 2 log X, [w,e(6.)]] 0.} = 1.

Obviously

— 2 log M{(w, E,) = minimum {— 2 log M fwiy(64), En], — 2 log Na(wn, E,,)}
From (170) and (171) we obtain
(172) tim P{— 2log M(w, Ex) = — 2 log Ra[wyo(8a)}] 0} = 1.
Since —2 log A, [w,e(0.), En]= —2 log M\a(w, E.), we have —2 log X, [w,,(8,) ]
= —2log A.(w). Hence from (172) we obtain
(173) lim P[L. ()] 8.] = 1.
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From Assumption VII it follows that (173) holds for any sequence {6,} for
which lim #Y2§(6,, w)=+ .

Now let us consider the case where  is the set given by 10=10,. Let {0.}
be a sequence of parameter points for which the sequence #1/25(f,, w) is
bounded. Denote by §,(w) the parameter point in w for which

TI f1%er 0a(e)] = Pu(zn, - - , 2.

a=1

Let 0, be the point for which §(8,, w) =§(6,, 0,). Denote by T,.(») the region
given by the inequalities

b — 0,| <,
(174) | | <
‘ on(w) - onl < V.
We shall prove that

(175) lim P[T.() | 6.) = 1 for any » > 0.

Consider the Taylor expansion
2 10g f(%a 00) = X log (e 6)
(176) ° « 1 -
n 3 i 4 i og f(xa, 0n
- 0, — 0, —0,) — >, ——— 1 .
REREN ) ) ‘? 96°307

Since [#13 0% log f(xa, 0.)/8070074-c;;(8,) ] converges stochastically to zero,
and since #n'/?| 0}, —0}| is bounded, we easily obtain from Proposition I that
for any €>0 there exists a constant B, such that

lim sup P[ Y log f(%a, 6,) — 3 log f(%a, 6,) = B.| 0.] =.e

Since —2 log A(w, E,) 22 10g f(%a, 6.) —2_, log f(xa, 8,) we have

177) lim sup P[— 2 log M\u(w, E) = 2B.| 6,] < e

n=w

Denote by w, the subset of w in which |8—8,| Z». From Assumption VII
it follows that

(178) lim P[— 2 log Nn(wn, En) = — 2 log Xy(wn) | 6] = 1.
fn=o

Since —2 log A, (w) = —2 log As(w,) we have
(179) lim P[— 2 log Nu(wn, En) = — 2 log X.(e) | 0.] = 1.

For any given constant B there exists a positive @ <1 such that —2 log X,(w)
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2 Bif Lu.b.e P[L.(w)|6]=ec. Hence from (179) we obtain
(180) lim P[— 2 log Nu(wn, E,) = B|6,] = 1

n=00

for any constant B. From (180) it follows that

(181) lim {P[— 2log (e, E.) = B|6,] — P[] 6.(w) —0,| 2 »|6.]} = 0

for arbitrary values of B. From (181) and (177) we obtain
lim P[| 6u(w) — 0.| = »| 6,] = 0.

Hence (175) is proved.
Consider the Taylor expansion

Z log f(%a, 8,) = Z log f[xar 0n(°’)]

(182) ° - )
n k& i ; i i 1 a2 log f(xay 0,.)
— 0.(w) — 0, ][8.() — 0,] — _
g 2 2w - o]l —el) — 3 220

where 4, lies in the interval [8,, 6.(w)]. In the following arguments we shall
use the following lemma: Let |Nij| (G, 5=1, - - -, k) be a definite matrix and
Sor each integer s let N, be a real number such that lim,_, Ny=X\;j. Then

lim (30 X vadi/ 2 X vinip) =1

§a= 00

uniformly in vy, - « -, . From (175), the Taylor expansions (176) and (182),
and the above lemma it follows that for any ¢>0

lim P[(1 4 &g — (1 — €d, = — 2 log M(w, E,)

183) "
( ) = (l_e)qn_ (1+e)gﬂl0ﬂ]= 1,
where

LA i i .0 i
(184) gn = 2, D By — 0,)(6n — 0,)c:;6,)

1 1
and

& i fyrad i
(185) Gn = 2 2 n[ba(w) — 0,][62(w) — 0,]ci5(0.).
r+1 r41

Since —2 log M\.(w, E,) 20, we obtain from (183)
(186) lim P[(1 + €)gn — (1 — &ga = 0] 6.] = 1.

=0
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Since the sequence {#Y/25(6,, 0,)} is bounded,. the expression g, is bounded
in the probability sense, that is for each positive p there exists a positive
value 4, such that

lim P(g. > 4,|6,) < ».
From (186) it follows that ¢, is also bounded in the probability sense. Hence
because of (183) we have

(187) lm Plgs — g+ €2 — 2log M0, Ex) Z ¢n — o — €| 0,] = 1

fn==x 0

for any €>0. From the Taylor expansions

{ 9 log (xou n)
o) = — Z —io-——
(188) 9% log f(x 6*)
1/2 ay Un
= — 0 —0,) — _—_— i=1.--
E @ — 0) Z e (i=1,---, &
and
i 2 ek
(189)  5i0) = — 3 nl i) —of) Ly L1080
i1 n g a0:967
. (1:=f+1,'°',k)
we obtain
3 . i
(190) @) = + > 001 — 0)[cei(0,) + erin(En) ],
i=1
k . 1
(191) nm( en) = Z [a'ii(on) + ﬂiin(En)]y:&(en) (1' = 1) Tty k)l
i=1
and

(192) 7" [6a(@) — 02] = X [5:0) + Ciin(E)Iya®) G=r41,---, B),

j=r41
where
Haii(en)n = HC,','(G,,)“"‘ (7'v.7 =1,.-., k)v
l[3::0|| = lle:s@l| Gj=r+1,--:,0),

and for any positive » we have

lim P[] eim(Ea) | < v 0a)

n=ow

lim P[| nim(En) | < v)84]
lim Pl| tiin(ED) | < v 8a] =

Hence
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Ek

3 3 nlbaw) — 0a][82w) — 021c:;(0,)

r+1 r+1

M=

k
3 [6600)5:2(8.)7 im(82) + piitma(En) 1ya(82) 3 (0)
1 r41

+

[3:100) + piin(En) 172(8,) 72(0,)

k k
DY
r+1 r41 r

k k
DD
r+1 r+1

= 3 T T 60t cin(0n) + plimin(En) 1n(6r — 0,) (6 — 01),

Feer4l d=r4l me=l l=l
where

lim P[I P:;mln(En)l < VI 07‘] =1
7=

for any positive ». If at least one of the integers ! and m is greater than r,
we have

>3 7iBa)ci8n)cin(0.) = cmi(®.).

j=r+1 {=r4l1

Hence

k k k k k k

Z Z ‘Umszzm(o,,) - Z E Z &;,-(0,.)6;,,.(0,,)c,-,,.(o,.)vw,,.

m=l l=1 J=r+41 g=r4l1 I=1m=1

r r k k
= 23 o[ an@0) = T T sul0dcn®entdr) |
m=] l=1 F=r41 g=r41

The coefficient

An(©0:) = cim(02) — 22 2 54i(04)Cim(04)c2(0,)

r+1 r+1
can be written as the following ratio:

Clm(on) Ci r+l(0n) cr Clk(en)

Cm r4102)  Crp1 r+1(80) - ¢ ¢ Crp1 1(0,)
193 cmi(0,) cr r11002) - - - crr(0,)
(193) A0 = k{ Bl Kk
Cri1 r+1(02) - - - Cry1 1(02)

Cr r+1<0n) s Ckk(on)

It is known that if 4’ is the adjoint of any determinant 4, and M and M’
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are corresponding m-rowed minors of 4 and 4’ respectively, then M’ is equal
to the product of 4™~! by the algebraic complement of M.

Let A be the k-rowed determinant Icr.-;(e,,)[ (¢,j=1,---,k) and let M
be the (k—7+1)-rowed minors

a'lm(en) ("} r+l(0n) R (le(en)
(194) M = Ort1 m(on) Or41 r+1(0n) St Orgl k(en)
akm(05) ok r1(0,) - - - or(0,)
Then we have
Clm(on) (2] r+1(0n) e Clk(en)
m r 0n T r on MR 72 0n —
(195) M = 4r—rh1 Cmr+1(0)  Cri1 r41(05) +1 £(02) — AT,
Cmi(02) Cort1(02) ¢ - - cra(05)
where M denotes the algebraic complement of M. Let M, be the (£ —7)-rowed
minor [a';,-(e)l (¢, j=r+1, - - -, k). Then we obtain
Cri1 r41(00) © - - Crp1 1(85)
(196) M{ = AFr . .. . = Ab-r-131,,
Ck r41(02) - - o cri(0n)

where 3, denotes the algebraic complement of M;.
From (193), (195) and (196) we obtain

A;,,.(o,.) = H/Hl = C-zm(on) (l, m = 1, e, 1’),
where [|c‘,,,.(o,,)|[=[|a,,,,(0,.)“"1 (I, m=1, - - ., r). Hence
In — Gn = nz Z (0: - 0:)(03 - 05) [5pq(0n) + ﬂpqn(En)] + Pn(En)x
g=1 p=1
where for any positive »

lim P[| npon(En) | < »[0a] = lim P[| pu(E) | < v[0.] = 1.

From (187) it follows that for any positive €

n=o

lim P{—— 2 log \olw, E,) — e £ i i n(by — 02) (6 — 05)
(197) vl
. [C_pq(on) + ﬂpqn(En)] <~ 2log )\,.(w, En) + él 0n} = 1.
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Since 05=05 (p=1, - - -, ) from (197) we obtain because of the boundedness
of the sequence {n”’((),.—e,,)}

lim P[— 2 log M(w, Ex) — € £ 30 3 06y — 65) (6% — 05)C,4(02)

n=o

iiA

— 210g Ma(w, Ea) + €| 8,] = 1.
The above equation remains valid if we substitute 4, for 8,, that is
lim P[— 2log M(w, Ex) —e < my, >, (O — 60) (85 — 60)Zpg(6n)

n=w

(198)

A

— 210g (e, Ea) + €| 8.] = 1.

Let W.* be the critical region defined in (115). Since (173) holds for any
sequence {0,.} for which lim #1/28(0,, @) = «, we obtain from (198)

(199) lim {P(Wx|6) — P[La(w)| 6]} =0

uniformly in 6,
Now we consider the geheral case where w is given by r equations

g =---=¢0)=0
such that Assumption VI is satisfied. As we have seen in §12, the whole the-
ory remains valid if we replace the parameters 8!, - - -, 6% by the new pa-

rameters
El = El(e)r tt Ek = Ek(e)v
where the functions £1(6), - - ., £(0) satisfy Assumption VI. Hence from
(199) it follows that
(200) lim {P(Wa|0) — P[La(w)| 8]} =0

uniformly in 6, where W.* denotes the region defined in (161).
From (200) and Theorem VII we obtain the following theorem.

THEOREM VIII. Let S.(08) be the surface defined in (162) and n(0) be the
weight function defined in (165). If Assumption V1 holds, then for testing the
hypothesis £1(0) = - - - = §£7(0) =0 the likelihood ratio test

(a) has asymptotically best average power with respect to the surfaces S.(0)
and weight function n(0);

(b) has asymptotically best constant power on the surfaces S.(0);

(c) is an asymptotically most stringent test.

14. Large sample distribution of the likelihood ratio. S. S. Wilks(?) has
derived the large sample distribution of the likelihood ratio A.(w, E.) if w is

(®) S. S. Wilks, Distribution of the likelihood ratio in large samples, Ann. Math. Statist. 1938,
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a linear subspace of the parameter space and if the hypothesis to be tested is
true. Here we derive the large sample distribution of \,(w, E.) for any set w
satisfying Assumption VI in both cases, when the hypothesis to be tested is
true, and when it is not true.

Let %y, « - -, u, be r independently and normally distributed variates with
unit variances. Denote the expected value of #, by u,. The distribution of
the statistic

U'=wm+: - +u

is known(”). The only parameter involved in this distribution is A?= [T SRR
+u2. Let us denote the cumulative distribution of U? by F,(A2, £), that is,

(201) Pl < ] =R, 0 O =t o).

Obviously F.(0, ¢) is the x2-distribution with 7 degrees of freedom.

Let v, -+ +, 9, be 7 variates which have a joint normal distribution. Denote
by p, the mean value of v, and by ¢,, the covariance between v, and v,.
Consider the statistic

(202) Vi= Z Z Apq¥s0a,
q=1 p=1
where ||Npq| =|lopdl| 2 It is easy to verify that the distribution of V?is given
by
(203) P(V? < 8) = F.(\, 0),
where
(204) A = Z Z)‘pq#pﬂq-

We will now derive the limit distribution of the expression on the left-
hand side of (161), that is of the statistic

(205) 0w = 12 3 £2(0.)52(0.)c5u(00).

q=1 p=1
The joint distribution of the variates n'/2[£(8,)—£(0)], - - -, nV2[£7(6,)
—£7(0) ] converges with #— o uniformly towards the cumulative normal dis-
tribution with zero means and covariance matrix ||o%(0)|| =]| &%(8)|| . Since

6, is a uniformly consistent estimate of 8 and since c;;(f) is a uniformly con-
tinuous function of 8, the statistic

(206) On = 23 3 £2(80)59(8,)E e 0)

(") See for instance P. C. Tang, The power function of the analysis of variance tests, Statistical
Research Memoirs vol. 2 (1938).
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has the same limit distribution as Q,, that is,
(207) lim {P[Q. < ¢| 6] — P[Q. < t]6]} =0
uniformly in 6 and ¢&.

It is easy to see that

(208) lim { P[0, < ¢] 8] — F,[na(6), £] = 0

n=ow

uniformly in 6 and ¢, where

(209) MO = 1Y 3 EOF (0)ch6).
Hence, because of (207) we have
(210) lim {P[Q. < ¢] 6] — F,[na(6), ¢]} = 0

uniformly in 6 and &.
Let {6.} (n=1, 2, .-+, ad inf.) be a sequence of parameter points for
which #/25(6,, w) is bounded. Then we obtain from (198)

(211)  lim P[— 2 log M(w, E,) — ¢ £ Qr < — 2log M(w, E,) + €] 0.] =1

n=o

for any positive e. From (210) and (211) it follows that

(212) lim {P[— 2 log Ma(w, Ex) < t]6,] — Fo[\(8), ¢]} = 0
uniformly in £. Since (173) holds for any sequence {6, } for which lim #Y/2§(6,, w)
= 4 o, we obtain from (212)

(213) lim {P[— 2 log (e, E.) < ¢] 8] — F.[\(8), 6]} =0

n=o
uniformly in @ and ¢. Hence we have proved the following theorem.

TaEOREM IX. Let F,(\2, t) be the distribution function defined in (201)
and let N.(w, E,) be the likelihood ratio statistic for testing the hypothesis
£10) = - - - =§7(6)=0. Let furthermore N2(0) be the expression defined in (209).
Then, if Assumption V1 holds, we have

lim {P[— 2 log M(w, E) < t]8] — F.[n(0), t]} = 0
uniformly in t and 0. If the hypothesis to be tested is true, that is if 0 is a point
of w, N2(0) =0 and therefore the limit distribution of —2 log Na(w, E,) is the
x2-distribution with r degrees of freedom.
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15. Summary. Let f(xt, - - -, x™, 6!, ---, 6%) be the joint probability
density function of the variates x!, - - -, x™ involving # unknown parameters
61, - - -, 6% Any set of values 0, - - -, 0% can be represented by a point
of the k-dimensional Cartesian space with the coordinates 6!, - - -, 0% Let w
be the subset of the parameter space defined by the equations

gO) =0 =---=£0)=0 (r= k),

that is, w is the set of all points 8 for which the above equations are fulfilled.
Denote by H, the hypothesis that the true parameter point 8 is an element
of w. In this paper the question of an appropriate test of the hypothesis H,
is discussed when the number of observations is large.

The following notations have been introduced. The point 6, denotes the
point with the coordinates 6, - - -+, 6 where 6, is the maximum likelihood
estimate of 8% based on » independent observations on «?, - - -+, x™ The ex-
pected value of —02 log f(x!, « « -, x™, 8%, - + -, 0¥)30i307 is denoted by ¢;;(6)
and ||o:;(0)]| =|lcii(6)|| 7% Furthermore > F.,> k.,(8£7/06%)(9£9/06™)01m(6)
(p, g=1, - - -, r) is denoted by o} (6) and

1850 = lloza@]|~* (prg=1,--,7.
The region W,* denotes the critical region defined by the inequality

10 30 £ (0)8(0.)50(0,) Z da,
g=1 p==1
where % is the number of independent observations on %!, - - -, ™, and the
constant d, is chosen so that the least upper bound of the probability that
the sample point falls within W,*, calculated under the restriction that the
true parameter point lies in w, is equal to a given positive e <1.

Let A, be the likelihood ratio statistic for testing H,, and let L, be the criti-
cal region defined by the inequality

M S A,
where the constant A, is chosen so that the least upper bound of the probabil-
ity that the sample point falls within L,, calculated under the restriction that
the true parameter point lies in w, is equal to a.

Under certain assumptions on f(x!, - - -, x™, ', -+ -, 6%) and the func-
tions £4(8), - - -, £7(0) the following results have been obtained:

I. For testing the hypothesis H, the critical regions W,* and L. both:
(1) have asymptotically best average power over a family of surfaces defined
in (162); (2) have asymptotically best constant power along the surfaces de-
fined in (162); (3) are asymptotically most stringent tests. The exact defini-
tions of these notions are given in Definitions VIII, X and XII, respectively.

II. The statistics —2 log N, and # > -, > o1 £7(8.)£9(8,) ¢y (6,) have the
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same limit distribution. The limit distribution of —2 log X, is the x-distribu-
tion with 7 degrees of freedom if the hypothesis to be tested is true. If the
true parameter point 8, is not an element of w, the distribution of —2 log A,
approaches the distribution of a sum of non-central squares

U'=ui+- - +u,

where the variates %y, - - -, %, are independently and normally distributed
with unit variances and

i (Eup)? = 13 3 £2(0,)E8(0,)pa(6:)-

p=1

CorLumBIA UNIVERSITY,
New Yorg, N. Y.,
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