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Abstract We compare four sunspot-number data sequences against geomagnetic and terres-

trial auroral observations. The comparisons are made for the original Solar Influences Data

Center (SIDC) composite of Wolf/Zürich/International sunspot number [RISNv1], the group

sunspot number [RG] by Hoyt and Schatten (Solar Phys. 181, 491, 1998), the new “back-

bone” group sunspot number [RBB] by Svalgaard and Schatten (Solar Phys., DOI, 2016),

and the “corrected” sunspot number [RC] by Lockwood, Owens, and Barnard (J. Geophys.

Res. 119, 5172, 2014a). Each sunspot number is fitted with terrestrial observations, or pa-

rameters derived from terrestrial observations to be linearly proportional to sunspot number,

over a 30-year calibration interval of 1982 – 2012. The fits are then used to compute test

sequences, which extend further back in time and which are compared to RISNv1, RG, RBB,

and RC. To study the long-term trends, comparisons are made using averages over whole

solar cycles (minimum-to-minimum). The test variations are generated in four ways: i) us-

ing the IDV(1d) and IDV geomagnetic indices (for 1845 – 2013) fitted over the calibration

interval using the various sunspot numbers and the phase of the solar cycle; ii) from the

open solar flux (OSF) generated for 1845 – 2013 from four pairings of geomagnetic indices

by Lockwood et al. (Ann. Geophys. 32, 383, 2014a) and analysed using the OSF continuity

model of Solanki, Schüssler, and Fligge (Nature, 408, 445, 2000), which employs a constant

fractional OSF loss rate; iii) the same OSF data analysed using the OSF continuity model of

Owens and Lockwood (J. Geophys. Res. 117, A04102, 2012), in which the fractional loss

rate varies with the tilt of the heliospheric current sheet and hence with the phase of the solar

cycle; iv) the occurrence frequency of low-latitude aurora for 1780 – 1980 from the survey

of Legrand and Simon (Ann. Geophys. 5, 161, 1987). For all cases, RBB exceeds the test

terrestrial series by an amount that increases as one goes back in time.
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1. Introduction

The article by Svalgaard and Schatten (2016) contains a new sunspot-group number com-

posite. The method used to compile this data series involves combining data from available

observers into segments that the authors call “backbones”, which are then joined together by

linear regressions. We here call this the “backbone” sunspot-group number [RBB] to distin-

guish it from other estimates of the sunspot-group number. What is different about the RBB

composite is that instead of the recent grand maximum being the first since the Maunder

minimum (circa 1650 – 1710), as it is in other sunspot data series, it is the third; there be-

ing one maximum of approximately the same magnitude in each century since the Maunder

minimum. In itself, this is not such a fundamental change as it arises only from early val-

ues of RBB being somewhat higher than for the previous sunspot number or sunspot-group

number records. However, the new series does suggest a flipping between two states rather

than a more sustained rise from the Maunder minimum to the recent grand maximum, with

implications for solar-dynamo theory and for reconstructed parameters, such as total and

UV solar irradiances. We note the RBB data composite is quite similar to the second version

of the composite of Wolf/Zürich/International sunspot number [RISNv2], recently generated

by the Solar Influences Data Centre (SIDC) of the Solar Physics Research department of the

Royal Observatory of Belgium. Specifically, annual RISNv2 values also show three longer-

term maxima since the Maunder minimum that are more equal in magnitude than for earlier

series such as RG, RC, and RISNv1, but not as equal as they are for RBB and, unlike RBB, the

most recent of those three maxima remains the largest in RISNv2. RBB is extreme in that it is

the only sequence for which the highest solar-cycle means are not for Cycle 19 (uniquely,

being larger for Solar Cycles 0 and 3 than for Cycle 19), whereas the highest annual value

is during Cycle 19 for all data series, including RBB.

The standard approach to calibrating historic sunspot data is “daisy-chaining”, whereby

the calibration is passed from one data series (be it a backbone or the data from an indi-

vidual observer) to an adjacent one, usually using linear regression over a period of overlap

between the two. Svalgaard and Schatten (2016) claim that daisy-chaining was not used in

compiling RBB, positing that the backbone method is an alternative method to daisy-chaining

rather than a different form of it. However, avoiding daisy-chaining requires deployment of

a method to calibrate early sunspot data, relative to modern data, without comparing both

to data taken in the interim: because no such method is presented in the description of the

compilation of RBB, it is evident that daisy-chaining was employed. Another new sunspot-

group number data series has recently been published by Usoskin et al. (2016): these authors

describe and employ a method that genuinely does avoid daisy-chaining because all data are

calibrated by direct comparison with a single reference data set, independent of the calibra-

tion of any other data.

As discussed in Article 3 (Lockwood et al., 2016b), there are major concerns about the

use of daisy-chaining. Firstly, rigorous testing of all regressions used is essential, and Lock-

wood et al. (2016b) show that the assumptions about linearity and proportionality of data

series made by Svalgaard and Schatten (2016) when compiling RBB cause both random and

systematic errors. The use of daisy-chaining means that these errors accumulate over the du-

ration of the data series. Another problem has been addressed by Usoskin et al. (2016) and

Willis, Wild, and Warburton (2016), namely that the day-to-day variability of sunspot-group

data make it vital only to compare data from two observers that were taken on the same day.
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Hence the use of annual means by Svalgaard and Schatten (2016) is another potential source

of error.

Other sunspot-data composites are also compiled using daisy-chaining, such as the orig-

inal sunspot-group number [RG] generated by Hoyt, Schatten, and Nesme-Ribes (1994) and

Hoyt and Schatten (1998); versions 1 and 2 of the composite of the Wolf/Zürich/International

sunspot number [RISNv1 and RISNv2], and the corrected RISNv1 series [RC], proposed by

Lockwood, Owens, and Barnard (2014a, 2014b). Some of these series also employ linear

regressions of annual data. Hence these data series, like RBB, have not been compiled with

the optimum and most rigorous procedures and so also require critical evaluation. We note

that, as for RBB, there are specific concerns about RG and RC that have been expressed in

the literature and which, as for RBB, arise for the use of daisy-chaining. For example, Cliver

and Ling (2016) find an error in the earliest RGO data, and the daisy-chaining construction

of RG means that all values of RG before 1874 would be too low. Similarly, the intercali-

bration of the datasets of Schwabe and Wolf that was used in the construction RC has been

questioned (e.g., Clette and Lefèvre, 2016), and with daisy-chaining this would mean that

all values of RC before 1850 would be too low.

These problems give the potential for calibration drifts and systematic errors, which

means that uncertainties (relative to modern values) necessarily increase in magnitude as

one goes back in time. By comparing with early ionospheric data, Article 1 (Lockwood

et al., 2016a) finds evidence that such calibration drift is present in RBB as late as Solar

Cycle 17, raising concerns that there are even larger drifts at earlier times.

It is undesirable to calibrate sunspot data using other correlated solar-terrestrial parame-

ters because the regression may well vary due to a factor, or factors, that were not detected

above the noise in the study that determined the regression. Such factors could introduce

spurious long-term drift into the sunspot calibration. In addition, the independence of the

two data series is lost in any such calibration, which takes away the validity of a variety of

studies that assume (explicitly or implicitly) that the two datasets are independent. Article 1

(Lockwood et al., 2016a) discusses this point further and presents some examples. On the

other hand, sunspots are useful primarily because they are proxy indicators of the correlated

solar-terrestrial parameters and phenomena. Hence if the centennial-scale drift in any one

sunspot number does not match that in a basket of solar-terrestrial activity indicators, this

would mean that either i) there is calibration drift in the sunspot-number data or ii) sunspot

numbers are not a good metric of solar-terrestrial influence on centennial timescales. From

the above, we do not advocate using ionospheric, geomagnetic, auroral, and cosmogenic iso-

tope data to calibrate sunspot data but note that a sequence is most successful, as a way of

parameterising and predicting the terrestrial parameters, if it does reproduce their long-term

drift. In this article we study the consistency of four sunspot-number sequences with geo-

magnetic and auroral data. The sunspot data sequences used here are i) the original compos-

ite of Wolf/Zürich/International sunspot number generated by SIDC [RISNv1]; ii) the group

sunspot number [RG] of Hoyt, Schatten, and Nesme-Ribes (1994) and Hoyt and Schat-

ten (1998); iii) the new “backbone” sunspot-group number [RBB] proposed by Svalgaard

and Schatten (2016); and iv) the “corrected” sunspot number [RC] proposed by Lockwood,

Owens, and Barnard (2014a). Figure 1 shows annual means of these data: it also shows

(in black) the variation of the new version of the composite of Wolf/Zürich/International

sunspot number recently issued by SIDC [RISNv2], which uses some, but not all, of the

re-calibrations of the original data that were derived to generate RBB. We note that to aid

comparison, RBB is here scaled by a constant factor of αBB = 12.6, which makes the mean

values of αBBRBB and RISNv1 (and hence by its definition RC) the same over the calibration

interval of 1982 – 2012 that is used here. The designated factor of 0.6 is used in the case of

RISNv2.
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Figure 1 Sunspot number series used in this article. (Orange) the original SIDC composite of

Wolf/Zürich/International sunspot number [RISNv1]; (blue) the “corrected” sunspot number [RC] proposed

by Lockwood, Owens, and Barnard (2014a); (green) the sunspot-group number [RG]; (mauve) the new

“backbone” sunspot-group number [RBB] proposed by Svalgaard and Schatten (2016), here multiplied by

a normalising factor of αBB = 12.6 that makes the averages of αBBRBB and RISNv1 (and hence RC) the

same over the calibration interval adopted here (1982 – 2014); (black) the new (version 2) SIDC composite

of Wolf/Zürich/International sunspot number [RISNv2], here multiplied by the designated 0.6 scaling factor.

Background white and grey bands denote even and odd sunspot cycles (minimum to minimum), respectively,

which are numbered near the top of the plot. The light-cyan band marks the Maunder minimum.

There are two major concerns in relation to the different behaviour of RBB evident in Fig-

ure 1. The first is the stability of the calibration of each backbone over the interval it covers,

and the second is the regression fits used to daisy-chain the backbones. Even for very highly

correlated data segments, the best-fit regression can depend on the regression procedure

used (see Article 3; Lockwood et al., 2016b), and it is vital to ensure that the most appro-

priate procedure is employed (Ryan, 2008). Options include median least squares, Bayesian

least squares, minimum-distance estimation, non-linear fits, and the ordinary least squares

(OLS) that was used to generate RBB. Even the OLS fits can be carried out in different ways

in that they can either minimise the sum of the squares of the verticals (appropriate when

the x-parameter is fixed or of small uncertainty such that the dominant uncertainty is in the

y-parameter) or they can minimise the sum of the squares of the perpendiculars (usually

more appropriate when there are uncertainties of comparable magnitude in both x and y).

It is very important to test that fits are robust and the data do not violate the assumptions

of OLS least-squares fitting procedure: Q–Q plots can be used to check the residuals are

normally distributed, the Cook-D leverage parameter can test for data points that are having

undue influence on the overall fit, and the fit residuals can be checked to ensure they are “ho-

moscedastic” (i.e. that the dependent variable exhibits similar variance across the range of

values for the other variable). All of these can invalidate a fit because the data are violating

one or more of the assumptions of the regression technique used (Lockwood et al., 2006).

Any daisy-chaining used to generate a long-term sunspot number sequence is of particular

concern because if the random fractional uncertainty of the ith intercalibration is δi, then

the total fractional uncertainty will be (�n
i=1δ

2
i )

1/2, where n is the number of intercalibra-

tions (provided the uncertainties δi , are uncorrelated). Even more significantly, systematic

fractional errors at each intercalibration εi will lead to a total systematic fractional error of

�n
i=1εi. Both will inevitably grow larger as one goes back in time. Hence considerable un-
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certainties and systemic deviations are both possible for the earliest data compared to the

modern data for any sunspot-number sequence compiled by daisy-chaining. The ability for

these uncertainties to become amplified as one goes back in time makes it vital to check

that the regressions are not influenced by an inappropriate fit procedure. None of the com-

pilers of daisy-chained data series have investigated these potential effects, for example by

using a variety of regression procedures, and instead implicitly trust the one procedure that

they adopt. In the absence of tests against other procedures, comparison with other solar-

terrestrial parameters becomes important as a check that the daisy-chained calibrations have

not led to a false drift in the sunspot calibration.

2. Analysis

In this article, we compare the long-term drifts inherent in sunspot-data series with indices

derived from terrestrial measurements that have been devised to vary in a manner that is

as close to linear as possible with sunspot numbers over a 30-year “training” interval of

1982 – 2012. Linearity between the test metric and sunspot number is important because

non-linearity would generate a difference in their long-term trends, especially for periods

such as the Dalton and Maunder minima when values are outside the range seen during the

training interval. Because of the concerns about the compounding effect of uncertainties

in daisy-chained regressions and the potential differences between the results of different

regression techniques, we here try to avoid using regression in making this comparison.

Where regression techniques have to be used, they are used only in the training interval

and the coefficients derived are then applied uniformly to the whole interval (1845 – 2013),

such that 1845 – 1982 forms a fully independent test period. A probability p-value for every

combination of fitted values is quantified and used in uncertainty analysis.

Because we are interested in long-term drifts, we here average all data series over full

solar cycles (from minimum for minimum), ensuring successive data points are fully inde-

pendent. To normalise the data we then divided these means by the value for Cycle 19. This

cycle was chosen because it is the largest in the series and because much of the interest in

the new sunspot series [RBB and RISNv2] is in the relative sizes of the peaks in the secular

variation and, in particular, the relationship of earlier peaks to Cycle 19. Figure 2 shows the

results for RISNv1, RC, RG, RBB, and RISNv2. It can be seen that as we move to earlier times,

from Cycle 19 back to Cycle 14, RISNv1 decreases most rapidly whereas RG and RBB de-

crease the least rapidly. It is noticeable that RG and RBB are both group numbers and so the

definitions may have something to do with the difference in behaviour. This interval (Cy-

cles 14 – 18) includes the Waldmeier discontinuity (see Articles 1 and 4), which influences

both Wolf numbers and group numbers generated in Zürich, but not necessarily in the same

way. It is an allowance for this discontinuity that gives the difference in behaviour between

RISNv1 and RC. Moving to yet earlier times, the difference between RBB or RISNv2 and the

other estimates (with the exception of RG) remains roughly the same over Cycles 13, 12,

and 11, but grows considerably over Cycle 10. Obviously, the choice of which solar cycle to

normalise with will influence the appearance of Figure 2 and of subsequent corresponding

figures. It has no effect on the waveform of the long-term variation of each series, however,

which is what should be compared. Because of the normalisation (which is necessary to

compare sunspot numbers and sunspot-group numbers), the values of 〈R〉Cn/〈R〉19 are not

absolute values, and we are therefore not concerned about the differences between different

series for any one solar cycle, but how those differences change with time.
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Figure 2 Example of the comparison method adopted in this article. Solar-cycle averages (minimum-to-min-

imum) of the various sunspot sequences are shown. To facilitate comparison, each has been normalised to its

value for Solar Cycle 19 (i.e. 〈R〉Cn/〈R〉19 is shown, where 〈R〉Cn is the mean of cycle number Cn), which

has the advantage that scale factors (such as the 0.6 for RISNv2 and αBB for RBB) cancel out. Background

white and grey bands denote even- and odd-numbered sunspot cycles (minimum to minimum), respectively,

which are numbered near the top of the plot.

In this article, we apply the same analysis as in Figure 2 to indices derived from terres-

trial measurements that have been designed, or found, to vary monotonically, and as closely

as possible to linearly, with sunspot numbers. This enables us to compare like-with-like

when we assess the long-term variations. We used the IDV (Svalgaard and Cliver, 2005)

and IDV(1d) (Lockwood et al., 2013a, 2013b; 2014a, 2014b) geomagnetic indices. One ap-

plication of these geomagnetic indices exploited here is an empirical, statistical property

(one that varies with the phase of the solar cycle, therefore allowance must be made for

that factor) (Lockwood, Owens, and Barnard, 2014b). More satisfactory are comparisons

that employ the open solar flux (OSF) reconstruction of Lockwood et al. (2014b) (derived

from the combination of four different pairings of geomagnetic indices) using two different

theoretical formulations of the physical OSF continuity equation to relate OSF to sunspot

numbers. A recent graphic demonstration of why these reconstructions of sunspot num-

bers from geomagnetic activity are valid and valuable has been presented by Owens et al.

(2016). These authors showed that both the statistical and theoretical relationships between

the geomagnetic-activity indices and sunspot numbers mean that the sunspot numbers and

the geomagnetic-activity indices, including both IDV and IDV(1d), give reconstructions of

the near-Earth interplanetary magnetic field that are almost identical. Lastly, we look at the

annual occurrence of low-latitude aurorae [NA] compiled by Legrand and Simon (1987). In

this case we have no quantitative theoretical relationship to exploit, although we do have

a good qualitative understanding (Lockwood and Barnard, 2015), and simply compare the

variations in the normalised averages of NA and sunspot numbers.

2.1. Tests Using the IDV(1d) and IDV Geomagnetic Indices

The IDV and IDV(1d) indices are both based on Bartels’ u-index (Bartels, 1932), which em-

ploys the difference between successive daily values of the horizontal or vertical component

of the geomagnetic field (whichever yields the higher value). There are differences in the

construction of these two indices. IDV employs the hourly means (or spot values) that are
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closest to local midnight for the station in question and uses as many stations as are available

(the number of which therefore declines as one goes back in time) (Svalgaard and Cliver,

2005). The IDV(1d) index uses the u-values as defined by Bartels (i.e. the differences in

daily means) from just one station at any one time. Only three specified and intercalibrated

stations are used with allowance for the effect of the secular drift in their geomagnetic lat-

itude on the u-values (Lockwood, 2013; Lockwood, Owens, and Barnard 2014a, 2014b).

The stations were selected to make the IDV(1d) composite as long and as homogeneous as

possible, but with the minimum number of intercalibrations, and each gave the smallest root-

mean-square deviation from the data from all other available sub-auroral stations. To cover

the full time interval, three different stations are required, but the calibration of these is not

done by daisy-chained regressions. Instead the values are all normalised to the Eskdalemuir

station in the year 2000 using the results of a survey of the dependence of u on geomagnetic

latitude along with paleomagnetic and empirical model predictions of the variation of each

station’s geomagnetic latitude (Lockwood, 2013). Eskdalemuir was chosen because it pro-

vided the most stable long-term data (giving the lowest fit residuals with the data from the

other 49 available sub-auroral stations) and the year 2000 as a convenient and memorable

date in modern times. Regressions are used to then check the intercalibrations, but were not

used to derive them. Because it is homogeneous in its construction and does not depend on

daisy-chained calibrations, we here show results for IDV(1d), but results were very similar

indeed if IDV was used.

Lockwood, Owens, and Barnard (2014b) analysed the known correlations between the

IDV and IDV(1d) geomagnetic indices and the square root of the sunspot number [R]. This

arises from the approximate correlation between the near-Earth IMF, B , and R1/2, when

averaged over the solar cycle that was noted by Wang, Lean, and Sheeley (2005). Be-

cause the IDV and IDV(1d) indices depend primarily on B (Svalgaard and Cliver, 2005;

Lockwood, 2013; Lockwood, Owens, and Barnard, 2014b), correlations over a solar cycle

with Rn (with n ≈ 0.5) are also expected. This correlation is found in annual-mean data, but

Lockwood, Owens, and Barnard (2014b) have shown that this relationship is more complex

than it first appears because it depends on the phase of the solar cycle. A different manifes-

tation of the same property was found by Owens et al. (2016), who showed that the best fit

over the solar cycle is different from that on centennial timescales. Lockwood, Owens, and

Barnard (2014b) showed that the scatter in the relationship between IDV(1d)1/n and sunspot

number (they used RC) is much larger than that in a plot of IDV(1d)1/n against RC/F (�),

where F(�) is the function derived numerically (see their Figure 2) and � is the phase of

the solar cycle (defined linearly from � = 0 and � = 2π at successive minima in five-point

running means of monthly sunspot numbers). From the linear regression coefficients [slope

s and intercept c], an estimate of the sunspot number from IDV(1d), RRIDV(1d), can be made

using

RIDV(1d) = F(�)[s IDV(1d)1/n + c]. (1)

RIDV(1d) has been designed to vary linearly with sunspot number, and so its long-term vari-

ation can be compared to that in sunspot number. Lockwood, Owens, and Barnard (2014b)

used all of the data in the IDV(1d) data series (since 1845) to derive the required coefficients

s, c, and n and the function F(�). This is repeated in the present article, but using only

a 30-year “training” interval of 1982 – 2012. The coefficients obtained are then applied to

the whole IDV(1d) data sequence to derive RIDV(1d). The “training” is the evaluation of s,

c, and n and F(�), and this is here done separately using the sunspot numbers RC, RISNv2,

RG, and RBB (note that RC and RISNv1 are, by the definition of RC, identical over the train-

ing interval used). Figure 3 corresponds to Figure 3 of Lockwood, Owens, and Barnard
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Figure 3 The derivation of the estimate of sunspot numbers from the IDV(1d) index, using the algorithm

trained using RBB [RIDV(1d),BB]. (a) The scatter plot of annual αBBRBB/F (�) as a function of IDV(1d)1/n

for the training interval (1982 – 2012) using the best-fit n of 0.69 and F(�), the function of solar-cycle phase

�, used by Lockwood, Owens, and Barnard (2014b). Points are coloured by the phase of the solar cycle

according to the colour scale at the top of the figure. From the slope s = 0.9925 and intercept c = −3.9732

of this plot, Equation (1) is used to compute RIDV(1d),BB . (b) The normalised backbone sunspot number

[αBBRBB] as a function of RIDV(1d),BB for the same interval, with points again coloured by the phase of the

solar cycle according to the colour scale at the top of the figure. The correlation coefficient between RBB and

RIDV(1d),BB is r = 0.979. The black line shows the best-fit linear regression that minimises the mean square

of the perpendicular deviations of the points from the line [〈d2
⊥

〉]. The grey area shows the range of fits for

which 〈d2
⊥

〉 is larger than this minimum value by an amount smaller than the one-σ level, as determined using

the Student’s t -test.

(2014b) but is for 1982 – 2012 only: panel (a) shows IDV(1d)1/n against αBBRBB/F (�) for

the training interval, with data points coloured by the phase of the solar cycle. This fit yields

n = 0.69, s = 0.9925, and c = −3.9732 for the same function F(�) as shown in Figure 2

of Lockwood, Owens, and Barnard (2014b). (These values are very close to the values of

n = 0.69, s = 1.000, and c = −3.966 obtained by Lockwood, Owens, and Barnard (2014b)

for 1845 − 2012 and using RC). We note that the method is here demonstrated using the

new index RBB, but almost identical plots are obtained using RC, RG, and RISNv2. (Note that

RISNv1 is identical to RC over the training interval). Figure 3b shows the values of RIDV(1d)

derived from IDV(1d) using Equation (1) with the above coefficients derived from Fig-

ure 3a. The black line shows the best-fit linear regression that minimises the mean square

of the perpendicular deviations of the points from the line [〈d2
⊥〉]. Fits were made for the

range of slopes s between 0.50 and 2.00 in steps of 0.01 and the range of intercepts c be-

tween −20 and +20 in steps of 0.1. For each fit the, 〈d2
⊥〉 was evaluated and a probability

p-value computed using Student’s t -test. The grey area shows the range of fits for which

〈d2
⊥〉 is larger than this minimum value by an amount smaller than the one-σ level. For each

fit (of known p-value), a full sequence of RIDV(1d) over the full interval of the IDV(1d) index

(1845 – 2013) was generated.

The above procedure for training the algorithm to generate RIDV(1d) using RBB over the

interval 1982 – 2012 was repeated using RISNv2, RG, and RBB (not RISNv1 because RC and

RISNv1 are the same over the training interval used). Figure 4 shows that the results are
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Figure 4 Sunspot series derived from the IDV(1d) geomagnetic index using Equation (1) with the coeffi-

cients n, s, and c derived from the calibration interval using: RBB (gives RIDV(1d),BB shown by the mauve

line); RG (gives RIDV(1d),G shown by the green line); RC (gives RIDV(1d),C shown by the blue line) and

RISNv2 (gives RIDV(1d),ISNv2 shown by the black line). The grey band shows the ±2σ band for the combi-

nation of these four records and allows for the uncertainties in the fitted n, s, and c in each case. Note that for

most years the series agree to within less than a line width, and so only the line plotted last (the mauve one)

can be seen.

Table 1 Correlation coefficients [r] between sunspot numbers inferred from geomagnetic activity and the

various sunspot-number sequences [RISNv1, RC , RG , RBB , and RISNv2] over the training period of 1982 –

2012. (a) RIDV(1d) , (b) ROSF1 , and (c) ROSF2 are generated (a) from the IDV(1d) index, (b) using the Solanki,

Schüssler, and Fligge (2000) OSF model with the geomagnetic OSF reconstruction of Lockwood, Owens, and

Barnard (2014b), and (c) by the Owens and Lockwood (2012) OSF model using the same OSF reconstruction.

Training of the algorithms employs the same sunspot-number sequence with which the RIDV(1d) , ROSF1 , and

ROSF2 sequences are then correlated. The significance level of each correlation evaluated against the AR1

red noise model [S], is given in brackets in each case. Note that RG is only available up to 1995 and the

training period therefore is 1982 – 1995 (resulting in lower S-values) and that RISNv1 and RC are identical

over the training interval.

RIDV(1d) ROSF1 ROSF2

RISNv1 & RC 0.976 (93.5%) 0.955 (97.4%) 0.966 (92.8%)

RG 0.982 (87.0%) 0.975 (92.5%) 0.976 (99.6%)

RBB 0.979 (97.6%) 0.907 (97.4%) 0.952 (91.1%)

RISNv2 0.979 (96.1%) 0.937 (97.6%) 0.977 (99.4%)

almost independent of the sunspot-number series used to train the algorithm and hence the

variation depends almost exclusively on the IDV(1d) data and not on the training procedure.

The difference between the various lines in Figure 4 is usually smaller than the plot line

width, and the mauve line is the most visible because it was plotted last (and so is on top

of the others). The correlation coefficients [r] (and their significance levels [S] evaluated

against the autoregressive AR1 red-noise model) are given in the first column of Table 1. The

correlation using RC is very slightly lower than the others, and Figure 4 shows that RIDV(1d),C

(the notation used means that this is sunspot number derived from IDV(1d) using RC during

the training interval) tends to very slightly overestimate the values at each sunspot minimum.

This is almost certainly due to the fact that RC has not been corrected for the effects of the

recently revealed calibration drift in the Locarno sunspot data (Clette et al., 2016): After
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1981, the international sunspot number was compiled using data from the Specola Solare

Ticinese Observatory in Locarno, which took over from Zürich in 1981 as the main reference

station. The calibration drift is between −15 % and +15% in modern-day RISNv1-values and

has been corrected for in RBB and RISNv2 but not in RC and is not relevant to RG (which is

based on different data and only extends to 1979). The best evidence for this drift is the large

number of observing stations that show the same variation relative to the Locarno station,

but we note that Article 1 (Lockwood et al., 2016a) provides independent support for this

correction as the ionosonde data agree better with RBB than RC over the training interval. It

can be seen from Table 1 that the correlations are all high and comparable, and we assign the

four sets of fits equal weight. The same procedure as was used by Lockwood, Owens, and

Barnard (2014b) was then employed to combine these four sets of results into an optimum

RIDV(1d) reconstruction with two-σ uncertainties. Specifically, the p-value distributions were

generated from each of the four estimates of R in any one year. From the correlation of the

proxy used with R, we can evaluate the p-value distribution of the R-values derived from an

annual mean of that proxy. This was repeated for all four sunspot number estimates (RBB,

RC, RG, and RISNv2) and, making the simplest assumption that the resulting four p-value

distributions are independent, this allows them to be combined into a single distribution by

multiplying them together. The optimum value is the peak of this combined distribution and

the error limits are taken to be the ±2σ points. The ±2σ uncertainty values determined this

way delineate the grey area shown in Figure 4.

The black line in Figure 5a shows the cycle means of the optimum values of RIDV(1d),

normalised to the value for Cycle 19 as in Figure 2, as a function of the cycle number. The

grey area is bounded by the same variations for the maximum RIDV(1d) (at the +1σ level) and

the minimum RIDV(1d) (at the −1σ level). Also shown in Figure 5(a) are the corresponding

variations for RISNv1, RC, RG, and RBB, as in Figure 2. A comparison of these variations is

described and discussed below.

We need to present a very important caveat about this test. It is based on a purely em-

pirical relationship between IDV(1d), sunspot number, and the phase of the solar cycle. The

relationship appears to work well for the interval for which we have IDV(1d) data (1845 –

present) and over which we here apply the test. However, because it is a purely empirical

relationship, this does not mean that it would necessarily work well for other intervals (and

the Maunder minimum in particular). The same is equally true for any application of the

purely empirical relationships between the IMF B and Rn and the IDV index and Rn. We

note that the test presented here was also carried out using the IDV index (not shown), and

the results were the same on all important points.

2.2. Test Using OSF Derived from Geomagnetic Indices and a Continuity Model

The open solar flux (OSF) [FS] is the total “signed” flux (i.e. we here define it as of one to-

ward/away magnetic polarity) threading a nominal source surface in the solar corona. It was

first reconstructed from historic geomagnetic activity data by Lockwood, Stamper, and Wild

(1999). OSF is a much more satisfactory parameter on which to base a comparison with

sunspot numbers because it is, like the sunspot number, a global property of the Sun rather

than a local parameter specific to near-Earth space (such as the near-Earth IMF or near-Earth

solar-wind speed or geomagnetic indices, including IDV(1d), which depend on these near-

Earth interplanetary conditions). OSF has been reconstructed for 1845 – 2014 by Lockwood,

Owens, and Barnard (2014b) using four pairings of geomagnetic indices: aaC and IDV, aaC

and IDV(1d), IHV and IDV, and IHV and IDV(1d), where aaC is a version of the aa-index

that has been corrected using the Ap-index (and extended back to 1845 using comparable
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Figure 5 Solar-cycle means

(minimum-to-minimum) of

various sunspot-number

estimates [R] as a function of the

cycle number, [Cn] normalised to

the value for Solar Cycle 19

[〈R〉Cn/〈R〉19]. In each panel the

orange, blue, green, and mauve

lines are for R of RISNv1 , RC,

RG , and RBB , respectively. The

black lines are the optimum

(highest p-value) values of (a)

RIDV(1d) , (b) ROSF1 , (c) ROSF2
from a combination of four fits

made using RC , RISNv2 , RG , and

RBB over the training interval

1982 – 2012, and (d) NA , the

annual number of low-latitude

aurorae in the catalogue of

Legrand and Simon (1987). The

grey areas indicate the variations

for the optimum values ±1σ

uncertainties. (See text for

details).

range data from the Helsinki observatory) (Lockwood, Owens, and Barnard, 2014b) and IHV

is the Inter-Hour Variability index introduced by Svalgaard, Cliver, and Le Sager (2004) and

developed by Svalgaard and Cliver (2007). The IDV and IDV(1d) indices were discussed

in the last section. We note that recently Holappa and Mursula (2015) have suggested that

errors in the geomagnetic data make the Lockwood, Owens, and Barnard (2014b) recon-

structions greatly in error. However, Lockwood, Owens, and Barnard (2016) point out that

Holappa and Mursula introduced errors by calibration against unreliable data, which they

then exacerbated by using a less sophisticated and robust reconstruction procedure than that

used by Lockwood et al. To relate OSF to sunspot numbers, in this section we use the model

of Solanki, Schüssler, and Fligge (2000), based on the continuity equation for OSF:

dFS/dt = S − L, (2)

where S is the global OSF source rate and L is its global loss rate. In the first application of

this model by Solanki, Schüssler, and Fligge (2000), the loss rate was assumed to be linear

so that L = FS/τ , where τ is the loss time constant. From Equation (2),

SS = dFS/dt + FS/τ, (3)

where SS is the OSF source term derived using the Solanki, Schüssler, and Fligge (2000)

formulation of L. SS can be estimated using Equation (3) for 1845 – 2014 using an OSF

reconstruction from geomagnetic activity. We here use the most accurate and robust recon-

struction, which is by Lockwood et al. (2014b). In the Solanki et al. formulation, the OSF
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Figure 6 Scatter plots of αBBRBB as a function of (a) ROSF1,BB and (b) ROSF2,BB, the estimates of R from

the OSF reconstruction of Lockwood et al. (2014b) using OSF continuity and the OSF loss-rate formulations

of Solanki, Schüssler, and Fligge (2000), and Owens and Lockwood (2012), respectively. The points are

for the training interval and are coloured by the phase of the solar cycle according to the colour scale at

the top of the figure. The black line shows the best-fit linear regression that minimises the mean square of

the perpendicular deviations of the points from the line [〈d2
⊥

〉]. The grey area shows the range of fits for

which 〈d2
⊥

〉 is larger that this minimum values by an amount smaller than the one-σ level, determined by the

Student’s t -test.

production rate [SS] is related to sunspot number [R] by

SS/c = (1 + Af/As)R = 22R + 24.35 − 0.061R2, (4)

where Af and As are the areas of faculae and sunspots on the solar surface, the ratio of which

is given by a polynomial in R (their Equation 3), which is incorporated into Equation (4)

above. The constants τ and c are here evaluated using each of the sunspot number series

for the training period (1982 – 2012) giving the time series SS/c from the OSF geomagnetic

reconstruction. Solving the quadratic Equation (4) for each year gives a sunspot-number es-

timate based on the OSF reconstruction and the Solanki, Schüssler, and Fligge (2000) model

[ROSF1]. Figure 6a shows a scatter plot of ROSF1,BB against αBBRBB in the same format as

Figure 3. A p-value for each combination of τ and c is computed from the mean-square

deviation, and the results from the four different training sunspot series [RC, RISNv2, RG,

and RBB] are then combined in the same way as for RIDV(1d) in the previous section.

The black line in Figure 5b gives the optimum value of normalised cycle averages of

ROSF1 and the grey area around it the ±1σ uncertainty band, in the same format and derived

in the same way as for RIDV(1d) in the previous section.

2.3. Test Using OSF Derived from Geomagnetic Indices and a Second Continuity

Model

The correlation between RBB and ROSF1,BB [ROSF1 derived from the training using RBB]

shown in Figure 6a is 0.907. The method employed means that a regression fit in Figure 6a

is never used; however, it is not ideal that the scatter is not homoscedastic and larger at
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higher values. There is also a suggestion of some non-linearity in the dependence. Hence

in this section we investigate a second version of the OSF continuity model by Owens and

Lockwood (2012). This model is also based on the continuity Equation (2), but uses differ-

ent formulations of the production and loss terms. A key element of this model is that the

fractional loss rate is a function of the warping of the heliospheric current sheet and hence

of the phase of the solar cycle, as predicted theoretically by Owens, Crooker, and Lockwood

(2011),

SOL = dFS/dt + FSk1IHCS = dFS/dt + FSk2f (�), (5)

where IHCS is the current-sheet tilt index, the fraction of longitudinally adjacent pixels of

opposite-field polarity on the coronal source surface (defined from magnetograph obser-

vations mapped up to the coronal source surface using the potential-field source surface

method). IHCS has regular variation with solar-cycle phase [�] and f (�) is the best-fit

function to IHCS: k1 and k2 are constants. Owens and Lockwood (2012) showed that this

loss rate gave good fits to reconstructed OSF for a simple linear relationship between SOL

and sunspot number, but optimum fits were obtained by Lockwood and Owens (2014) using

the more complex form given by their Equation (8). This was originally based on the idea

that much OSF emerges through the source surface as a result of CME eruptions and F

was the estimated from the average OSF enhancement associated with each event. However,

Wang, Lean, and Sheeley (2015) have recently pointed out that the rapid rise in OSF in the

second half of 2014 does not appear to have been accompanied by a corresponding rise in

CME occurrence (although the possibility of a smaller number of CMEs each causing un-

usually large emergence cannot be discounted). The requirement here is to equate the OSF

emergence rate to sunspot numbers, and the 2014 rise in OSF did indeed follow a rise in

sunspot numbers. A readily invertible equation for SOL that gives higher correlations with

observed annual OSF data (including 2014) is

SOL = F [0.234(R + 2.67)0.540 − 0.00153], (6)

where F = 2.1 × 1014 Wb. Inverting Equation (6) yields a sunspot-number estimate that we

here call ROSF2. This is then processed in exactly the same way as was ROSF1 in the previous

section. Figure 6b shows the scatter plot of ROSF2, derived using RBB for the training interval,

as a function of RBB, and Figure 5c shows the variation of cycle averages derived using all

four independent sunspot data series (RC, RISNv2, RG, and RBB) in the same way as was done

for RIDV(1d) and ROSF1. We note that the difference between the results using the different

training sunspot number series is always smaller than the one-σ uncertainties that are set by

the procedure used to extrapolate to times before the training interval. This is true for both

ROSF1 and ROSF2 as well as for RIDV(1d) (see Figure 4).

2.4. Tests using Occurrence Frequency of Low-Latitude Aurora

The last comparison made here is much simpler. The long-term variation of the occurrence

frequency of low-latitude aurora has been studied by many authors using many sources

(see reviews by Silverman, 1992; Lockwood and Barnard, 2015; and Vázquez et al., 2016).

The number of auroral nights at low geomagnetic latitudes [NA] has long been known to

vary with sunspot number, but the correlation in annual means is not high. This is largely

because low-latitude aurorae can be generated after the Earth intersects both coronal mass

ejections (CMEs) and co-rotating interaction regions (CIRs), and so NA peaks at sunspot

maximum because of the effects of CMEs, but can be almost as high during the declining
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Table 2 Correlation coefficients [r] between low-latitude auroral activity, quantified by the number of au-

roral nights per year at geomagnetic latitudes below 55° [NA] and the various sunspot-number sequences

[RISNv1 , RC , RG , RBB, and RISNv2] over the whole interval of the auroral data (1770 – 1980). The signifi-

cance level of each correlation evaluated against the AR1 noise model [S] is given in brackets. The columns

are for different data subsets determined by the phase of the solar cycle [�]: all the data [0 ≤ � < 2π ], the

half of the cycle around solar maximum [π/2 ≤ � < 3π/2], and the half of the cycle around solar minimum

[� < π/2 or � ≥ 3π/2]. (a) is for annual means, (b) is for solar-cycle averages. Note that there are only 18

data points for the cycle means (panel b), which is too few to compute meaningful significance levels.

All cycle

0 ≤ � < 2π

Solar maximum

π/2 ≤ � < 3π/2

Solar minimum

� < π/2 & � ≥ 3π/2

(a) Annual averages

RC 0.672 (80.6%) 0.666 (74.5%) 0.718 (79.6%)

RG 0.663 (64.7%) 0.618 (73.4%) 0.665 (60.3%)

RBB 0.645 (93.8%) 0.568 (90.7%) 0.685 (36.2%)

RISNv1 0.678 (86.9%) 0.677 (83.1%) 0.718 (29.7%)

RISNv2 0.661 (90.2%) 0.593 (84.5%) 0.708 (26.0%)

(b) Solar-cycle averages

RC 0.955 0.906 0.916

RG 0.906 0.881 0.918

RBB 0.882 0.797 0.823

RISNv1 0.956 0.860 0.924

RISNv2 0.919 0.829 0.864

phase because of CIRs, despite the lower sunspot numbers. This solar-cycle variation in the

relationship between NA and sunspot numbers lowers the correlation in annual means but

is averaged out when solar-cycle means are taken. (Table 2, discussed below, shows that

correlations for annual means are in the range 0.64 – 0.68, whereas for solar-cycle means

they are 0.88 – 0.96). In addition, we have no quantitative theory to elucidate the connection

between NA and sunspot number despite our good qualitative understanding of the link (see

Lockwood and Barnard, 2015). We here make use of the variation of NA from the auroral

catalogue by Legrand and Simon (1987). Figure 4d shows the variation of solar-cycle means

of NA (normalised to the value for Cycle 19) and compares them to corresponding variations

for various sunspot-number sequences.

Figure 7 shows a scatter plot of annual values of NA against RC and reveals that although

there is a general trend for NA to increase with RC, there is considerable scatter. The first

column of panel a of Table 2 gives the correlation coefficients (and their statistical signif-

icances) of the various sunspot-number series, evaluated over the entire interval of the NA

record (1780 – 1980). For annual means (Table 2a) they are in the range 0.64 – 0.68, and the

large scatter means that the significances are generally quite low. Certainly no significance

can be attached to the differences between the various correlation coefficients. Figure 7 sep-

arates the two halves of the sunspot cycle by plotting points in red where the phase of the

solar cycle [�] of the mid-point of the year is in the range π/2 ≤ � < 3π/2 (the half of

the cycle containing the sunspot maximum, as � = 0 and � = 2π are defined at successive

minima in five-point running means of monthly sunspot numbers). The blue dots are all data

points not meeting this criterion and so are in the half of the solar cycle that is centred on the

sunspot minimum. It can be seen that the relationship between NA and RC depends on the

phase of the solar cycle. The second and third columns of Table 2 show that dividing the data

into these two phase bins does not, in general, significantly alter the correlation coefficients.
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Figure 7 Scatter plot of the

corrected sunspot number [RC]

as a function of the number of

low-latitude auroral nights per

year [NA]. Points are

colour-coded according to the

phase of the solar cycle [�], with

red dots for the halves of the

cycle around solar maximum

(π/2 ≤ � < 3π/2) and the blue

dots for the halves of the cycle

around solar minimum (� < π/2

or � ≥ 3π/2).

Figure 8 Solar cycle means (minimum-to-minimum) of various sunspot number estimates [R] as a function

of the cycle number [Cn] normalised to the value for Solar Cycle 19 [〈R〉Cn/〈R〉19]. In each panel the orange,

blue, green, and mauve lines are for R of RISNv1, RC, RG , and RBB, respectively This figure is the same

as Figure 5d, comparing the normalised cycle means of the various sunspot-number sequences with those of

the number of low-latitude auroral nights [NA] but (a) is for the halves of the cycle around solar maximum

[π/2 ≤ � < 3π/2] and (b) for the halves of the cycle around solar minimum [� < π/2 or � ≥ 3π/2].

We note that although the scatter in both the red and blue dots in Figure 7 is still large, there

is no suggestion of a non-monotonic relationship, and it is therefore reasonable to compare

the long-term variations of NA and sunspot numbers.

Figure 8 repeats the comparison of Figure 5d for these two halves of the solar cycle

separately. We note that the cycle means of all the sunspot numbers have also been averaged

over the half of the solar cycle around solar maximum and minimum in Figures 8a and 8b,

respectively. Table 2b gives the associated correlation coefficients or the solar-cycle means:

there are just 18 pairs of data points and the autocorrelation function at lag 1 is high (high

data persistence) for both data series, therefore significance levels against the AR1 red-noise

model cannot be computed.
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3. Discussion

Figure 5 shows that RBB becomes increasingly larger than the other sunspot-number esti-

mates as one goes back in time. None of the series derived here from geomagnetic or auroral

activity [RIDV(1d), ROSF1, ROSF2, and NA] reproduce this behaviour. In each case, extrapolat-

ing back in time from the algorithm training period (1982 – 2012) gives a time-series that

lies closest to the variations for RC and RISNv1. In each case, RBB lies above the extrapolation

in almost all years by an amount that exceeds the two-σ uncertainty (the grey bands). This

trend is seen for all series back to the start of the geomagnetic-activity data in 1845 and is

consistent with the findings for Cycle 17 in Article 1 (Lockwood et al., 2016a).

The scatter plots for the training interval indicate that the best proxy sunspot number,

in terms of the correlation coefficient, is RIDV(1d). However, this is a purely empirical rela-

tionship. It is useful to compare with the results from the proxies ROSF1 and ROSF2, which

are based on the physical continuity equation for OSF. ROSF1 and ROSF2, like RIDV(1d), both

depend on empirical fit parameters, but the use of the continuity equations means that the

fits are more constrained than is the case for RIDV(1d). In addition, OSF is more satisfactory

because it is a global solar parameter, like the sunspot number, whereas IDV(1d), and hence

RIDV(1d), are local parameters related to the near-Earth heliosphere.

In addition, whereas using RIDV(1d) means that we have to assume that the IDV(1d)

geomagnetic index depends only on the simultaneous sunspot number, ROSF1 and ROSF2

both allow for the effect of persistence in the data series (see Lockwood et al., 2011;

Lockwood, 2013), whereby the current value also depends upon recent history, to a de-

gree that is defined by the best-fit parameters. For the training period the correlation of all

sunspot numbers with ROSF1 is consistently slightly lower than with ROSF2 (Table 1) and

ROSF2 reveals lower scatter and heteroscedasticity (shown in Figure 6b for the comparison

of ROSF2,BB with RBB, but this is also true for all other series tested). Hence ROSF2 provides

the most satisfactory test, which is shown in Figure 5c. We note that the training procedures

for ROSF2, ROSF1, and RIDV(1d) all employed four sunspot number series [RBB, RC, RG, and

RISNv2] that give almost identical variations. All are here given equal statistical weight.

The auroral data show that the same tendency extends back to 1780, which means that

it covers the Dalton minimum (around Solar Cycle 6) and before. Dividing these data by

solar cycle phase reveals an interesting feature of the data (Figure 8): for both the solar-

maximum and solar-minimum data the long-term variation in NA is closer to those in RC

and RISNv1, while RBB is consistently larger. It is noticeable that the variations for sunspot-

minimum and sunspot maximum have similar forms for RC, RISNv1, RG, and NA. However,

RBB is different. For cycles before the Dalton minimum (Solar Cycles 5 and before) the

sunspot minimum values exceed those seen in modern times (the normalised cycle-average

values frequently exceed unity, whereas the same cycles are giving values near unity for

solar maximum). Thus the drift to higher values in RBB is greater in the solar-minimum

values than it is in the solar-maximum values. This implies that the cause of the drift in

RBB is more than the effect of the calibration observer k-factors as they would influence the

values around solar minimum and around solar maximum to the same fractional extent.

We note that, self-evidently, if we normalised using another cycle, then all values would

be the same for that cycle and values for Cycle 19 would be different. But we recall that the

point of Figure 5 is to evaluate for each tested and test data series how earlier solar cycles

compare in amplitude with Cycle 19, i.e. to study the ratio 〈R〉Cn/〈R〉19, as is shown.

The consistency with which the geomagnetic and auroral data give lower values (nor-

malised to modern values) than RBB and the way that the difference grows as one goes back

in time strongly suggests that there may be calibration drift in the values of RBB. In particu-

lar, this calls for a check on the compilation of RBB. This could be done by repeating it with
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different regression procedures because the necessary daisy-chaining of calibrations means

that both systematic and random errors will be amplified as one goes back in time. Article

3 is this series (Lockwood et al., 2016b) shows that the inflation of RBB as one goes back

in time is consistent with the effect of regressions and the assumptions made by Svalgaard

and Schatten (2016), in particular that the sunspot group counts by different observers are

proportional. This assumption of proportionality was initially made by Wolf (1861) when

he devised sunspot numbers because he envisaged the k-factors as being a constant for

each combination of observer and observing instrument. However, in 1872 he realised that

this was an invalid assumption (Wolf, 1873), and thereafter observer k-factors were com-

puted either quarterly or annually (using daily data) at the Zürich observatory: Wolf also

re-calculated all prior calibrations the same way (see Friedli, 2016). It is also important to

recognise that the common practice of taking ratios of different sunspot numbers or sunspot-

group numbers either to make or to test calibrations of sunspot observers inherently assumes

proportionality and will also give misleading values.
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