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Kolmogorov-Smirnov type for exponential data
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SUMMABY

Let 3, /5+ and 3~ denote Kolmogorov-Smirnov type one-sample statistics to test good-
ness of fit in the presence of unknown nuisance parameters; then the distributions of f), £+

and 3~ depend on the population sampled and the estimator used. Simulation has been the
primary tool for studying these statistics. Recently, Durbin obtained the distributions of
D, D+ and D~ in terms of a Fourier transform for a wide class of underlying populations,
and produced explicit results for the exponential case. In this paper, the distribution func-
tions of D, z/+ and D~ for the exponential case are derived from general results for order
statistics, and computationally efficient approximations to these distribution functions are
obtained. In the course of this derivation, Bonferroni inequalities of Kounias, and Sobel
& Uppuluri are generalized. Certain problems of goodness-of-fit testing in the presence of
nuisance parameters, whose solutions make use of existing tables, are also discussed. These
problems include the Pareto, Rayleigh, power function, and uniform distributions.

Some hey words: Bonferroni inequality; Composite hypothesis; Dirichlet distribution; Distance statistic;
Goodness of fit; Kolrnogorov-Srnirnov testa; Nuisance parameter; Order statistic.

1. INTRODUCTION

A voluminous literature exists for tests of goodness of fit based on the sample distribution
function, but, as Durbin (1973, p. 47) has commented, it is surprising how little theoretical
work has been done on tests based on the sample distribution function when the population
distribution function is postulated only up to a set of nuisance parameters. Few realistic
goodness-of-fit problems involve a fully specified population distribution function; more
typically, the form of the null hypothesis of interest in a goodness-of-fit problem is that, for
6 a vector,

Ho:F(x) = Fo(x;0) (6eQ),

that is, a composite rather than a simple hypothesis.
In this situation, it is tempting to replace the nuisance parameters in Fo (z; 6) by efficient

estimators $, and then to form test statistics based on Fo (x; 0) as if it were a fully specified
distribution function. Thus, one might construct tests for a random sample of size n based
on the maximum deviation between the sample distribution function, say Fn(x), and
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F0(x; d), that is testa of the form: reject H^ if

(i) Dn($) = sup \Fn(x) -Fo(x;0)\> Can,
X

(ii) D+ 0) = supfi^z)-F0(x;0)} > C+n, (1-1)
X

(iii) D-(0) = mv{Fo(x;0)-Fn(x)} > C£n.
X

The test statistics in (1-1) mirror the Kolmogorov (1933) statistic, although the sampling
distributions under Ho are no longer distribution-free when Fo (x; 6) is continuous, but depend
on both F0(x; 6) and the choice of estimator for 6. Nevertheless, the class of tests in (1-1)
retains certain attractive features that commend the Kolmogorov test when no nuisance
parameter is involved. First, it avoids arbitrarily discretizing the hypothesized distribution
function and transforming the sample observations to counts, a process that is troublesome
in small samples, but is required by the natural competitor to Dn (0), the chi-squared good-
ness-of-fit test. Secondly, as Durbin (1975) has shown, the distribution functions of the
statistics in (1-1) can be obtained for certain F0(x; 0) and maximum likelihood estimation
of 6. Thirdly, simulation studies by Lilliefors (1967,1969) and Stephens (1974) support the
thesis that the tests in (1*1) will generally be more sensitive to departures from Ho than is
the chi-squared test. Thus, the class of tests represented in (1 • 1) warrants farther exploration.

To date, research on the behaviour of the tests in (1-1) has proceeded along two lines.
Simulation has been the primary path followed. For example, Lilliefors (1967), via simula-
tion, has produced tables of critical values for test (i) in (1-1) for a normal distribution with
unknown mean and variance, together with estimation of these two nuisance parameters
by the corresponding sample mean and variance. Lilliefors (1969) has also studied via
simulation the case of an exponential distribution with unknown scale parameter estimated
by the sample mean. Both papers include brief power studies. Stephens (1974), also using
simulation, has investigated the cases Lilliefors studied, but under a wider variety of
alternative distributions for F(x). In an analytic direction, Durbin (1975) appears to be
the only author to date who has an exact, albeit complex, numerical method for evaluating
tail-area probabilities of Dn($), Z)+ (/?) and D^ (0) for a wide class of cases; Durbin demon-
strates the computational feasibility of his technique by producing tables of exact critical
values of the statistics in (1-1) for the exponential case.

In this paper, the case of exponentiality is considered in detail. In § 2 this case is formu-
lated explicitly and distribution functions for the statistics in (1*1) are derived analytically
in closed form expressions. In § 3, for purposes of deriving computationally efficient approxi-
mations to these distribution functions, new Bonferroni inequalities are produced. These
new inequalities generalize earlier results of Kounias (1968) and Sobel & Uppuluri (1972).
In § 4, the Bonferroni inequalities of § 3 are used to determine critical values for the statistics
in (1-1); in the process, one obtains new insight into the behaviour of the corresponding
tests. Finally in § 5, attention is turned to a class of distributions Fo (x; 6) for which existing
tables may be employed. These include the Pareto, Rayleigh, power function, and uniform
distributions.
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2. AN EXACT SOLUTION FOB THE EXPONENTIAL CASE

After observing a random sample Xlt...,Xn, one may wish to determine whether these
data are reasonably consistent with an assumption of exponentiality for the sampled
population. Specifically, the hypothesis is:

H0:F0(z;d) = l-e-*l° (d>0,x>0). (2-1)

The alternative hypothesis is that HQ is not tenable. Were a specific alternative in mind, one
presumably would employ a testing procedure tailored to that alternative.

Many tests of fit of the hypothesis in (2-1) exist; Shapiro & Wilk (1972) proposed an
analysis of variance test for exponentiality and also referenced an extensive literature of
other tests of fit for this case. Attention in this paper will focus on the sampling behaviour
of the test statistic (i) in (1-1) for the hypothesis in (2-1) together with $ = (Xx + ...+ Xn)jn,
the maximum likelihood estimate of 6. This test statistic is (Lilliefors, 1969)

Dn($) = BUV\Fn(x)-{l-exp(-nxfZXi)}\. (2-2)
X

If Xft) < ... < X(n) denote the order statistics corresponding to the original sample, then
it can easily be verified that

Dn(6) = max {D+ ($), D~ ( % (2-3)
where

D+ (0) = m a x [ 1 - {1 - e x p ( - n X ( 1 ) / S y X(j))}],

D~{8) = m a x [ { l _ ^ ^ l

LFrom (2-3) and (2-4) it follows that, for 0 < y < 1,

pr{Z)n(0) < y) = J>T{D+0) < y, D~ 0) < y)

= pr{^ - y < 1 -exp(-nZ(1)/S^Zy)) < ̂ ± +y; i = 1, ...,nj (2-5)

where log* (x) = log a; (x > 1), log* (a;) = n (x < 1).
J£Yi = XJI,X} (i = 1, ...,n), then 27^ = 1; from Wilks (1962, p. 179), one learns that

the joint distribution of 7lt ...,7n is Dirichlet Dn(l,..., 1), that is

t ) j , (2-6)

where I(S) is the indicator function for set S.
If ZQJ ^ ... ^ Z(n) denote the order statistics corresponding to the 7lt...,7n, then

and

r W ) = l 0 ( 0 ^ 7 ^ . . . <7M) . (2-7)

Note (David & Johnson, 1948) that the distributions in (2-6) and (2-7) do not depend on 6.
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As a consequence of the constraint on 7$,, . . . .F^ , the following inequalities hold with
probability one:

0 < I t t ) < l / ( n - » + l) (* = l , . . . , n - l ) ; 1/n *S 7(n) < 1.

I t then follows that (2-5) is equivalent to

pr {£„(£) < y) = pr{L(t,n,y) «S 7(<) ̂  U(i,n,y); » = 1, . . . ,n}, (2-8)
where

L{i,n,y) =

i(n,n,y) = max j i . i log^j) , (2-9)

U(i,n,y) = ° ^

This attention to bounds will avoid computational problems later.
In principle, the probability in (2-8) could be obtained directly by integrating the prob-

ability density in (2-7) over the interval in R* defined by the expressions in (2-8) and (2-9);
the integration, however, is best done in a two-stage operation.

First,>define

for all values of (ru . . . ,rn). Then, because 0 < F^ < ... < F(n), it follows that

...,Cn) (2-10)

for Ct = max{0,max(rlt ...,ri)}. Note that 0 < Cj < ... < On.
Secondly, it follows from (2-8) that

pr{Dn((?) < y} =

-[F{U(l,n,y),L(2,n,y),...,L(n,n,y)} + ...

,y),...,U(n,n,y)}. (2-11)

Equation (2-11) is justified by an argument identical to that which justifies expressing the
probability of an n-dimensional interval in terms of an n-dimensional distribution function
(Wilts, 1962, p. 49).

An expression for F(CV ...,Gn) has been obtained by Maurer & Margolin (1976) as a
special case of results for distribution functions of subsets of order statistics, namely

I n+1 )-l

n (0,-0,-1)!
n a,

^ . . . S (
a « _ i — n - 1 O i - l

x fl ( ^ " V " 1 ) ! 1 - S Ci{ai-ai_t)]
nr'1l{i C^-a^) < l), (2-12)

where a0 = 0, on = n.
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The result in (2-12) can be restated more compactly as

{ n \ n / m \-l / m \ n-1 / m \

n(Fw>Ci) = n ! S ( - l ) n - m S r [UrA l - S ^ , I £ Otrt < 1), (2-13)
where S r denotes summation over all positive integers (rv •••,rm) suoh that S irJ = n.

Formula (2-13) can be derived from (2-12) essentially by deleting the terms with combi-
natorial coefficients equal to zero. The proof will be omitted. Durbin (1976) obtained formula
(2-13) via Fourier inversion; he observed that (2-13) yielded the distribution function of
D%(0) for the exponential case if one sets C< = L(i,n,a) (i = 1, ...,n). Upon combining the
expressions in (2-9), (2-10), (2-11) and (2-13), one arrives at a closed analytic expression for
the distribution function of Dn ($).

The statistics i>+ ($) and D~ ($) were first studied by Durbin (1975); he proved that the
two statistics are not identically distributed and tabulated their critical values. I t is worth
noting that if the alternative to (2-1) is one-sided, then Z>+ ($) and D^ {6) are intuitively
appealing test statistics. For alternatives that are one-sided, and for alternative test
procedures, see Hollander & Proschan (1972).

The distribution in (2-6) arises in many other seemingly unrelated contexts (David, 1970,
§5-4). Thus, for example, the statistics in (1-1) may be used to test whether data observed
are consistent with the hypothesis that the observations are distances between successive
points dropped at random in the interval [0,1], as Durbin (1975) has indicated. Similarly,
one is also able to test whether data observed are consistent with the hypothesis that the
Ylt...,Tn are distances between midpoints of successive arcs of equal length that have been
randomly placed on the perimeter of a circle of unit circumference.

In §4 computationally efficient approximations to the distribution function o£Dn($) will
be derived; these approximations are based on new Bonferroni inequalities to be presented
in the next section.

3. IMPBOVBD BONFEBBONI BOUNDS FOB THE PBOBABUJTY OF A UNION

For a finite set of events {Av ...,An] associated with a probability space (D,^",P),
Kounias (1968) has proved that

pr(u ( ^ y , (3-1)
{-1 i <+i

which clearly improves on the simple Bonferroni upper bound of S pr (At). Following Sobel
& Uppuluri (1972), one can define the degree of a bound, such as that in (3-1), as the maxi-
mum number of events in any intersection whose probability is needed to evaluate the
bound; the bound in (3-1) is then of degree two. Sobel & Uppuluri produce upper bounds of
even degree, and lower bounds of odd degree, that are clear improvements over the standard
Bonferroni bounds of degree one less, for degrees at least 2, but their results apply only if
the events are exchangeable. The theorem that follows generalizes their results to non-
exchangeable events.

THEOREM 3-1. Let

Sz= 2
t<j<k
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similarly, for a fixed integer r such that 1 ^ r ^ n, set

i

Then, for any odd degree v (3 < v ^ n),

B ( (3-2)
a-l r \<- l /

and for any even degree v (2 ^ v < n),

pr ( U ^ ) < s N - l J - ^ . - m a x ^ . (3-3)

Proof. Let 24(w) be the indicator random variable of At. Here maxl/j^),...,/„(«)} is
the indicator random variable for Ax u • • • U An.

For a fixed integer r such that 1 ^ r < n, define

a1*M = S

i+r+j

The claim is made that for all we Q and odd v such that 3 < v < n,

/,(<») 7,(4 (3-4)
a - l

To prove (3-4), one must consider three possible cases.
(i) First, if A(w0) = 0 for all i, then both the left-hand side and the right-hand side of

(3-4) are zero.
(ii) Secondly, if Ir(w0) = 0 and exactly n — t—1 other indicator variables are zero for

a) = o>o (t = 1,...,» — 1), then t indicator variables are one for w = (oQ, and the left-hand side
of (3-4) is

' = - x ( - i ) * r . (3-5)
W a-l \a/a - l

(3-6)

which is less than or equal to 1, the right-hand side of (3-4).
(iii) Thirdly, if Ir (a)0) = 1 and exactly t other indicator variables are one for w = wQ

(t = 0,1, ...,n— 1), then n — t — 1 indicator variables are zero, and the left-hand side is

as is the right-hand side.
Thus (3-4) is proved. Taking expectations in (3-4), one proves that

' s ' t - l J - ^ . + SW^prflJ A{). (3-7)
a - l \<- l /

Equation (3-7) clearly implies (3-2), since (3-7) holds for all r (1 «; r < n).
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To prove (3-3), one first establishes the inequality

max{/x(*),...,/,»} < j?(-l)^Ta-Ty (3-8)
a - l

for v even (2 ^ v < n). Again this can be done directly by considering the cases (i)-(iii) above
and using (3-6).

The inequality in (3'8), in turn, proves that

^sVl ) - 1 ^ . -^ . (3-9)
i-l I a-l

Equation (3-9) holds for all r, so that (3-3) is also established.
Four comments concerning Theorem 3-1 are in order.
(I) If v = 2, then (3-3) reduces to Kounias's result in (3-1).
(II) For exchangeable events, (3-2) and (3-3) reduce to the bounds of Sobel & Uppuluri

(1972, equations (1-1), (1-2)).
(HI) Various other inequalities generalizing the results of Sobel & Uppuluri to non-

exchangeable events, and generalizing the results of Kounias beyond v = 3, can be derived
in a fashion similar to Theorem 3-1. Only one will be presented here.

(IV) Sobel & Uppuluri (1972, p. 1558) indicate that the 'simple-minded' replacement of
Pan\/{a!(n — a) 1} in their results by Sa for nonexchangeable events does not follow from their
work. Such replacement would yield an upper bound for v even, and a lower bound for v
odd, of „_!

2 (-l)°-^a + (-l)"-i-S,. (3-10)
a-i n

Because n~1'LT^) — n-^-vS^, it follows by averaging the bounds in either (3-2) or (3-3) that
(3-10) is valid but is weaker than (3-2) and (3-3).

For reasons that will be clearer in § 4, one further generalization of Theorem 3-1 is needed.
Consider any disjoint subsets Jv...,Jm with union (1,...,»), and with m < n; extend the
notation of Theorem 3-1 by letting

<$'*>= Spr (4^), ^ ^ S p r l i ^ i ) , ....
i+rt

for rkeJk(k = l,...,m) the second sum being for i < jeJk, i + rk #=_?. Then the following
theorem can be proved.

THEOBHM 3-2. For any odd degree v (3 < v < n),

' s ( - l ) - i -8f a+ S max^i' < p r (u At), (3-11)

and for any even degree v (2 < v < n),

pr(G A
\ < - l

. p (3-12)
a-l k-lrteJt

Proof. A proof similar to that of Theorem 3-1 is easily constructed and will be omitted.

Note that Theorem 3-1 is the special case of Theorem 3-2 with m = 1. For the case v = 2,
see Kounias (1968). Finally, for exchangeable events, (3-11) and (3-12) are weaker than
(3-2) and (3-3), respectively.

In § 4 these inequalities will be applied to the approximation of the distribution function
ofDn($).
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4. APPROXIMATIONS TO THB DISTBIBTJTION BTJNOnON OF Dn(&)

The key to approximating the distribution function of Dn{6) via the results of § 3 is the
recognition that (2-8) implies that

pr{Z)n ($) > y} = pr [jjJRot Wi, », y), U(i, n, y)]}]. (4-1)
If one defines the events

At = (Y(i)$[L(i,n,y), U(i,n,y)]), B{ = {7U) < L(i,n,y)},

B<+n = P«> > V(i,n,y)} (» = 1 n),
then Ai = Bt U Bi+n, Bt n Bi+n = <}> and (4-1) may be written as

U<) = pr{( U^,) U ( U ^

By the principle of inclusion-exclusion, an alternative expression can be derived for the tail
area probability of Dn($):

i , 4 t ) - . . . . (4-2)
i-l i<i i<i<k

Equation (4-2) together with the results of §3 then gives rise to various inequalities that
may be used to approximate (4-2) to any desired degree of accuracy. Samples of size 3 to 10
were considered. Work was not carried beyond n = 10 because Durbin's (1975) Table 3 had
been verified to be correct in all cases for n ^ 10, and there seemed little point in proceeding
further, given that the feasibility of the approximation approach had been established.

The bounds programmed are specified in the footnote to Table 4-3.
I t is important to note that all the probabilities involved can be expressed simply and

linearly in various terms of the form

where
lL{ij,n,y) (j = 1 a),

*i \U(iitn,y) (j = s + 1,...,«).
The terms in (4-3) may then be evaluated via (2-10) and (2-12), or more easily, via formula
(4-5) of Maurer & Margolin (1976).

I t is instructive to examine in detail a representative example of the computations
involved in these approximations to the distribution function of Dn(d);n = 7andy = 0-309
are chosen for this purpose, the y value being the 0-20 critical value reported by Lilliefors
(1969).

The marginal behaviour of each order statistic is contained in Table 4-1.
Table 4-2 contains the values of the second-degree terms, {pr (i^i^), ^T(BiBn+i),

pr (Bn+tBi), pr (Bn+iBn+i)} that are greater than zero to four decimals; all omitted terms
and terms replaced by a dash are zero to four decimals. Double precision accuracy was

Table 4-1. prf-B,) and pr (Bi+n), n = 7, y = 0-309

Tail probabilities
Tw < L(i, 7, 0-309)}
F ( 0 > U{%, 7, 0-309)}

0-
0-

0000
0628

0
0

•0000
•0666

00196
00373

0-
0-

0295
0060

0
0

•0235
•0000

0
0

•0108
•0000

00000
00000
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T a b l e 4-2 . Second-degree terms, n = 7,y = 0-309

(i,j) pr (BtB,) pi(BtBn+i) pr (Bn+(B,) pr(B.+JB.+j)

1,2
1,3
1,6
2,3
3,4
3,5
3,6
4 ,5
4,6
5,6

Column Bum

—
—
—
—

0-0067
0-0026
0-0006
00081
00017
00035

00232

— — 00213
— — 0-0041
— 00003 —
— — 00105

0-0002 — 0-0002

00003 00004 0-0360

maintained, however, in all later computations, including the column sums. Two points
concerning Table 4-2 are noteworthy. First,

S pr (£«£,+,), S VHB^iB,)
i<«/<7 i<«*<;7

are both negligible; since

pr {D+ (6) > y, Dj ($) > y} < £ {pr (BtB1+i) + pr (B^B,)},

the evente {Df 0) > y}, {Df 0) ^ y} are nearly exclusive. In all cases examined, near
exclusivity was found; this is consistent with the behaviour of the usual Kolmogorov
statistics reported by Vandewiele & Noe" (1967), namely,

pr(Z>+ ^ y,D~ > y) < pr(Z)+ > y)pr(2)» ^ y).

Secondly, for fixed », both pr (BiBk) and pr (B7+iB7+k), for k + », 1 < k < 7 and 1 < t ^ 7,
decrease monotonically either as k takes the values % +1,..., 7, or as A takes the values
t - l , . . . , l .

Third-order terms have not been given to save space. Based on these computations and
others for y = 0-310, one finds the results in Table 4-3. Thus, the tail area probability for
y = 0-310 is closer to 0-20 than is the tail area probability for y = 0-309; to be sure, the
difference is negligible for all intents and purposes, but y = 0-310 is, to three decimals, the
value obtained by Durbin (1975).

When » = 7 and y = 0-310, it was determined that, to three decimal places,

pr{Z)+(0) >y} = 0-137, pr{Z>-(0) > y) = 0-063;

in all cases studied it was observed that pr{D+(#) Ss y} > pr{D~(#) ^ y}. This marked
asymmetry, also evident in Table 4-1, is to be contrasted with the known symmetry in the
behaviour of the usual Kolmogorov statistic. I t is precisely this asymmetry that is exploited
by the bounds in Theorem 3-2.

Table 4-1 also illustrates another feature of the test, namely that

prfTo) < 2,(1,7, 0-309)} = 0, pr{7(7) ^ 17(7, 7,0-309)} = 0.

In Durbin's (1975) Table 3 one sees that y > vr1 for all critical values of interest; this
implies that U(n,n,y) = 1 and L(l,n,y) = 0. Therefore, if y > n"1, then

pr{7(n) > U(n,n,y)} = 0 = p r ^ < Z(l,n,y)}. (4-4)
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Statement (4-4) will be true for this test irrespective of the true model. The test as constructed
should then exhibit insufficient sensitivity to the behaviour of the extreme order statistics
when the alternative hypothesis is true.

Table 4-3. Probability bounds for pr{Z>7(0) ^ y}

7 (i) (ii) (iii) (iv) (v) (vi) (vii)

0-309 0-2562 0-2243 0-2079 0-2030 0-2025 0-2017 0-1963
0-310 0-2514 0-2204 0-2044 0-1996 01992 01984 0-1932

The bounds are: (i) standard Bonferroni upper bound, degree 1; (ii) Theorem 3-1 upper bound,
degree 2; (iii) Theorem 3-2 upper bound, degree 2, m = 2, J1 = {1, .... n}, J , = {n+ 1, .... 2n}; (iv)
standard Bonferroni upper bound, degree 3; (v) Theorem 3-2 lower bound, degree 3, m, Jv Jt as
in (iii); (vi) Theorem 3-1 lower bound, degree 3; (vii) standard Bonferroni lower bound, degree 2.

Certain modifications of the test may counterbalance the insensitivity and asymmetry
noted. A simple modification, for example, is the introduction of a weighting function, in
the same spirit that Renyi (1953) and others have proposed weighting functions for the
standard Kolmogorov statistic. Consider the general class of tests that follows:

Reject the hypothesis of exponentiality if

Wn (8) = max {W+ (8), W~ (8)} > Oan, (4-5)
where

W+ (8) = max (to}\± -{1 - exp ( -
l«<n\ ln

W~(8) =
K«nL

and {wf}, {«T} aie sstfl of specified weights; Durbin (1975) has also briefly discussed this
class of tests.

Tests of the class in (4-5) require evaluation of an expression of the form

pr(a< < r ( i ) <6 < ; t = 1,...,»),

which can be evaluated exactly by the method of Durbin (1975) and can be approximated
by the bounds of the present section. One possible set of weights that will give greater import
to the extreme order statistics is wf = wj = {i(n — i +1)/(« + I)2}"1. A more extreme set of
weights, taking all 10+ and w~ to be zero except for w~ = 1, produces a test equivalent to
Fisher's (1929) maximum harmonic test with critical region F(n) > knA, a test that is not
thought of as a global goodness-of-fit test for exponentiality, but rather as a test for slippage.

5. PROBLEMS FOB WHICH EXISTING TABLES MAY BE EMPLOYED

The tables produced by Durbin (1976) for the exponential goodness-of-fit test under
discussion have wider applicability than has been indicated previously. The following lemma
extends the applicability in one direction.

LEMMA 5-1. IfXv ..., Xn are a random sample from a population whose distribution function
Fx{x;6) has a maximum likelihood estimate 8(X), and ifYt = g(Xi) (i = 1,....«), where g is
a monotonic transformation involving no parameters with inverse g-1, then the value of the
statistic D* {8( Y)} in (1 • 1) based on Ylt..., 7n together with maximum likelihood estimation for
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0 has the same value as Dn{0(X)} in (1-1) based on Xx, ...,Xn. Therefore, the two statistics have
the same distribution.

Proof. We have

D*{$(7)} = max

I t suffices then and is easy to show that for all i, FY(Y(i), 6) equals Fx (X^y, 6) if g is mono-
tone increasing, and equals 1 — Fx(X^n_i+^;6) if g is monotone decreasing. This, together
with the fact that $( Y) = B(X) under the conditions of the theorem, yields the desired
result.

The invariance in Lemma 5-1 extends to many statistics based on FX{X({),8(X)}, suoh
as the various goodness-of-fit test statistics considered by Stephens (1974).

Some examples of the use of Lemma 5-1 to extend the applicability of Durbin's table
(1975) follow; all involve testing for goodness of fit via (1-1) together with maximum likeli-
hood estimation for 6:

(i) Power function distribution, 6 > O:fr(y) = 0 -y i -W for 0 < y ^ 1. Here X = g~x{Y)
= —log Y has the distribution function in (2-1).

(ii) Pareto distribution, 0>O:fr(y) = 0-iy-w+ui<> f o r p l . Here, X = gr^Y) = log Y
has the distribution function in (2-1).

(iii) Rayleigh distribution, 6 > O:fY(y) = 2yd-1e^l'la for 0 < y. Here, X = g~HY) = Y1

has the distribution function in (2-1).
Similarly, a table of the distribution of the test statistic in (1-1) for the two-parameter

normal model together with maximum likelihood estimation (Lilliefors, 1967) may be used
for the two-parameter log normal model with maximum likelihood estimation.

An extension of the usefulness of existing tables in another direction is indicated by the
following lemma, which is stated without proof:

LEMMA 5-2. Let M(x) be a Borel-measurable function on the real line such that the integral

exists for — ao<dx<62<co. The null hypothesis of interest is

(0 (x < 0X),

' {M(x)IN(0x,0i)}dx (dx^x^d2), (5-1)

(x > e2).

Consider a goodness-of-fit statistic to test (5-1) based on a random sample Xx,...,Xn (n > 3)
of the form:

2 < « n - l

where (6X, £2) are maximum likelihood estimates. Then under Ho, the distribution of @n{Qx, $2)
is identical to the distribution of Dn_z, the standard Eolmogorov statistic based on a sample of
size n — 2 from a population with fully specified distribution function.
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As an example, one could employ this result in testing goodness of fit of the uniform
distribution U[dv 0J. Note also that for the case of only one truncation point, the statistic
in (5-2) would be altered in an obvious way; @n(Q) would then be distributed as Dn_±.

Finally, although §5 has focused on extending the applicability of the table for Dn($),
analogous results could have been stated for the one-sided statistics £>+ (d) and Dn ($).

The work was supported by U.S. Army, Navy, Air Force and N.A.S.A. under a contract
administered by the Office of Naval Research, and by the Swiss National Foundation.
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