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In a three-path mediational model, two mediators intervene in a series between an indepen-

dent and a dependent variable. Methods of testing for mediation in such a model are general-

ized from the more often used single-mediator model. Six such methods are introduced and

compared in a Monte Carlo study in terms of their Type I error, power, and coverage. Based

on its results, the joint significance test is preferred when only a hypothesis test is of interest.

The percentile bootstrap and bias-corrected bootstrap are preferred when a confidence inter-

val on the mediated effect is desired, with the latter having more power but also slightly

inflated Type I error in some conditions.
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Mediational effects are commonly studied in organizational behavior research. For

example, Stewart and Barrick (2000) studied the relation between self-rated inter-

dependence in production teams and the teams’ supervisor-rated performance. They found

that a set of intrateam process variables—communication, conflict, shirking, and flexibility—

mediated the relation between the teams’ interdependence and performance. In another

study, employees’ perceived control of their time was found to partially mediate the rela-

tions between the independent variables of workload, job autonomy, and planning beha-

vior and the dependent variables of work strain, job satisfaction, and job performance

(Claessens, Van Eerde, Rutte, & Roe, 2004). Among other effects, workload reduced per-

ceived control of time and perceived control of time improved job satisfaction.

Mediational models are also common in other social sciences. A well-known example

of mediation in psychology is that intentions mediate the effect of attitude on behavior

(Ajzen & Fishbein, 1980). In sociology, son’s educational achievement is thought to medi-

ate the effect of father’s socioeconomic status on son’s socioeconomic status (Duncan,

Featherman, & Duncan, 1972). In experimental prevention research, a prevention program

is designed to change social norms regarding smoking, which are assumed to be causally

related to smoking (e.g., MacKinnon & Dwyer, 1993).

In all of the above examples, one mediator transmits the influence of an independent

variable to a dependent variable. Some theories are based on a long mediation chain even

though analyses often focus on single mediators. Cook and Campbell (1979) called this

chain of effects the micromediational chain. Analyses of micromediational chains longer

than two paths (one mediator) are also becoming common. For example, Tekleab, Bartol,
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and Liu (2005) found support for a model in which the effect of pay on turnover was

mediated by two variables acting in turn, perceived distributive justice (fairness of allo-

cation) and pay raise satisfaction. Employees who were paid more perceived higher levels

of distributive justice, which led to higher reported levels of satisfaction with pay raises,

which in turn reduced the probability they would voluntarily leave the company. In another

study of employee turnover, Allen and Griffeth (2001) found that job performance posi-

tively affected employees’ perceived employment alternatives, which positively affected

their intention to leave (turnover intention), which in turn affected actual turnover.

Such longer chain mediational models can also be found in other social sciences. For

example, a study of divorced mothers tested the hypothesis that the effect of negative life

events on parenting behaviors would be mediated by two variables in turn: psychological

distress and avoidant coping (Tein, Sandler, & Zautra, 2000). In another study of an inter-

vention designed to increase mammography screening, the effect was mediated by per-

ceived susceptibility to breast cancer and perceived benefits of screening (Aiken, Gerend, &

Jackson, 2001). Going beyond two mediator series, McGuire (1980, pp. 102-103) proposed

a model in which a series of seven variables mediates the effects of exposure to health

communication on behavior.

Although McGuire’s (1980) model is an extreme example, there are clearly models

being proposed that include more than a single mediator in the causal chain between inde-

pendent and dependent variables. The single-mediator case has been extensively studied. A

number of methods of testing for mediation in this context have been proposed (e.g., Baron

& Kenny, 1986; MacKinnon, Fritz, Williams, & Lockwood, in press; Sobel, 1982), and

their performance has been discussed and compared (MacKinnon, Lockwood, Hoffman,

West, & Sheets, 2002; MacKinnon, Lockwood, & Williams, 2004; Shrout & Bolger,

2002). Methods of testing for single-mediator effects have not yet been generalized to test-

ing for longer mediational chains, though. The purpose of this article is to extend several

methods used in the two-path (single-mediator) context to the three-path (two mediators in

series) context, with the ultimate aim of concluding which methods might perform best in

testing mediational chains of any length.

Defining the Mediated Effect

The three-path mediation model is depicted as a path diagram in Figure 1. Estimating

the model requires that the following three regression equations be estimated:

M1 = b01 + b1X + e1; ð1Þ

M2 = b02 + b2M1 + b5X + e2; ð2Þ

Y = b03 +b4X +b3M2 +b6M1 + e3: ð3Þ

In these equations, Y is the dependent variable, X is the independent variable, and M1 and

M2 are the two mediators. In the first equation, b1 is the regression of M1 on X. In the

second equation, b2 is the regression of M2 on M1, and b5 is the regression of M2 on X. In

the third equation, b3 is the regression of Y on M2, b4 is the regression of Y on X, and b6 is

2 Organizational Research Methods



the regression of Y on M1. The intercepts in the equations are b01, b02, and b03. The resi-

duals are e1, e2, and e3.

There are a number of different effects of X on Y that might be defined using this

model. The direct effect of X on Y, controlling for both mediators, is b4 in Equation 3.

Mediated effects are estimated by the product of the coefficients for each of the paths in

the mediational chain (Alwin & Hauser, 1975). Therefore, the total mediated effect of X
on Y, the effect passing through either mediator, is b1b2b3 + b1b6 + b5b3. This effect can

be broken down into the three-path mediated effect, which is the effect passing through

both mediators (b1b2b3), and the two-path mediated effects, the effects passing through

only one of the mediators (b1b6 and b5b3). Another effect that may be studied is the

mediated effect passing through one mediator, such as b1b2b3 + b5b3 for M2, for which

Sobel (1982) introduced a standard error formula. This article focuses solely on methods

of testing the three-path mediated effect as this is the effect most likely to be of interest to

researchers (James, Mulaik, & Brett, 2006).

Another equation is sometimes considered in testing for mediation in addition to Equations

1-3. The most commonly used method of testing for mediation in the single-mediator con-

text, the approach of Kenny and colleagues (Baron & Kenny, 1986; Judd & Kenny, 1981;

Kenny, Kashy, & Bolger, 1998), requires that the total effect of the independent variable on

the dependent variable also be tested:

Y = b00 + tX + e0: ð4Þ

This test is considered necessary because if the total effect t is significantly nonzero, this

‘‘establishes that there is an effect that may be mediated’’ (Kenny et al., 1998, p. 259),

whereas if t is nonsignificant, there is no effect of X on Y to be mediated.

Figure 1

Path Diagram of the Three-Path Mediated Effect Model
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Note: Residuals are omitted. Variable labels refer to data based on Kiefer (2005).
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In this article, we take the position that the test in Equation 4 is not necessary to estab-

lish mediation. There are two reasons for continuing to test for mediation even in the pre-

sence of a nonsignificant total X to Y relation. First, as noted by Shrout and Bolger (2002,

p. 429), mediational analysis can provide a more powerful test of the relation between the

independent and dependent variables than the simple regression in Equation 4 provides.

This means that the test of the total effect might be nonsignificant simply because it is not

as powerful as the test of mediation. On the basis of this possibility, Shrout and Bolger

recommended dropping the test of the total relation under circumstances where the mea-

surement of the dependent variable is far removed in time from the measurement of the

independent variable.

The second reason for testing for mediation even if t is nonsignificant is that suppres-

sion (inconsistent mediation) may occur, meaning that the mediated and direct effects

have opposite signs. As noted by MacKinnon et al. (2002, p. 87) for the single-mediator

model, if the mediated and direct effects have opposite signs, the total effect may be near

zero, even though the mediated effect is significantly nonzero. The three-path situation is

more complex, as the signs of the two-path mediated effects b1b6 and b5b3 may also be

either positive or negative, but the point remains the same. The total effect may not differ

significantly from zero even in the presence of significant mediation because of the differ-

ent signs of the effects that make it up.

Methods of Testing for Mediation

Following the framework proposed by MacKinnon et al. (2002; MacKinnon et al.,

2004), methods of testing for mediation can be put into four categories. These are causal-

steps tests, product-of-coefficients tests, difference-in-coefficients tests, and resampling

methods.

Causal-steps tests. The approach of Kenny and colleagues (Baron & Kenny, 1986; Judd

& Kenny, 1981; Kenny et al., 1998) mentioned above is classified as a causal-steps test.

Although it was proposed for the single-mediator situation, it can be extended to the three-

path model. This approach requires the test of the total effect of X on Y to be significant,

though, so it is not applied in this article.

Another causal-steps test, called the joint significance test by MacKinnon et al. (2002),

is based on the definition of mediation offered by James and Brett (1984). It differs from

the Kenny et al. approach in that it does not require the overall relation between the pre-

dictor and the outcome to be significant. Although it was proposed for the single-mediator

situation, it can be easily generalized to the three-path context. In a three-path mediational

model, the joint significance test finds evidence for mediation if each of the three paths

in the mediated effect is significantly nonzero (see Table 1). These paths are b1, b2, and

b3 in Figure 1 and Equations 1-3. The corresponding sample coefficients are b1, b2, and

b3. As noted by MacKinnon et al., the major weaknesses of the joint significance test are

that it does not provide an estimate of the mediated effect and that it cannot be easily used

to construct a confidence interval. Its notable strengths are its simplicity—it merely

requires null hypothesis tests for three regression coefficients—and its control of Type I

error. Because all three paths must be significant for the mediated effect to be significant,
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its null hypothesis rejection rate is the product of the probabilities of rejecting the indivi-

dual coefficients’ null hypotheses. Therefore, its Type I error should not exceed the nom-

inal level of .05 even if two of the paths are so large that their null hypotheses are rejected

with probability 1: .05× 1× 1= .05. Consistent with this expectation, MacKinnon et al.

found that the joint significance test controlled Type I error well and had good power.

Product-of-coefficients tests. Another class of methods of testing for mediation are what

MacKinnon et al. (2002) called product-of-coefficients tests. As noted above, b1b2b3 is

the mediated effect; its sample estimator is b1b2b3. Generalizing from the single-mediator

context, a product-of-coefficients test of the mediated effect divides b1b2b3 by its esti-

mated standard error and refers the result to a standard normal distribution (although the

distribution of b1b2b3 is likely to not be normal). The standard error may be estimated

using different approaches. The derivation of three estimators of the variance (and there-

fore the standard error) of b1b2b3 is shown in the appendix. The estimators are the multi-

variate delta estimator, the unbiased estimator, and the exact estimator. Their formulas are

shown in Table 1. The first extends the work of Sobel (1982) from the two-path to the

three-path situation, and the other two are based on Goodman’s (1960) work. Once any of

Table 1

Methods of Testing the Three-Path Mediated Effect

Method Test (α= :05)

Joint

significance

Reject Hypothesis0 if |b1|/sb1 > t.975(n− 2) and |b2|/sb2 > t.975(n− 3) and

|b3|/sb3 t.975(n− 4), where t.975(df) is the critical t value for a two-tailed

test given the df. For example, t.975(100) = 1.98.

Multivariate delta

standard error

Reject Hypothesis0 if 95% confidence interval = b1b2b3 ± z.975(s2
multivariate delta)1/2

does not include zero, where s2
multivariate delta ¼ b2

1b2
2s2

b3 þ b2
1b2

3s2
b2 þ b2

2b2
3s2

b1 and

z.975 = 1.96.

Unbiased

standard error

Reject Hypothesis0 if 95% confidence interval = b1b2b3 ± z.975(s2
unbiased)1/2

does not include zero, where s2
unbiased ¼ b2

1b2
2s2

b3 + b2
1b2

3s2
b2 + b2

2b2
3s2

b1 −
b2

1s2
b2s2

b3 − b2
2s2

b1s2
b3 − b2

3s2
b1s2

b2 + s2
b1s2

b2s2
b3.

Exact

standard error

Reject Hypothesis0 if 95% confidence interval = b1b2b3 ± z.975(s2
exact)

1/2

does not include zero, where

s2
exact ¼ b2

1b2
2s2

b3 + b2
1b2

3s2
b2 + b2

2b2
3s2

b1 + b2
1s2

b2s2
b3 + b2

2s2
b1s2

b3 + b2
3s2

b1s2
b2 + 2

b1s2
b2s2

b3.

Percentile

bootstrap

Draw a large number of bootstrap samples and estimate b1b2b3 in

each to form bootstrap distribution. Endpoints of a 95% confidence

interval are 2.5th and 97.5th percentiles of distribution. Reject Hypothesis0

if confidence interval does not include zero.

Bias-corrected

bootstrap

Form bootstrap distribution as above. Find p, proportion of the distribution

greater than original sample b1b2b3. Calculate zlower=−1.96+ 2z0 and

zupper = 1.96+ 2z0, where z0 is the z score corresponding to probability p.

For example, for p = .55, z0 = 0.13. End points of a 95% confidence

interval are percentile ranks from the bootstrap distribution corresponding

to normal percentiles for zlower and zupper. Reject Hypothesis0 if confidence

interval does not include zero.
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these standard errors is calculated, its application to testing for mediation is identical. A

95% confidence interval for the mediated effect is calculated as b1b2b3 plus and minus

1.96 times the standard error (where 1.96 is the critical value from the normal distribu-

tion). If the confidence interval does not include zero, the null hypothesis is rejected.

Difference-in-coefficients tests. In the single-mediator case, an estimator of the mediated

effect may be obtained by taking the difference between the coefficient relating the inde-

pendent and dependent variables before and after adjustment for the mediator. There is

not a clear analogous difference-in-coefficient test for the three-path mediated effect, illus-

trating the problem with extending the difference in coefficient tests to more complicated

models. For example, the difference between the coefficient relating the predictor to the

second mediator could be examined before and after adjustment for the first mediator, and

the coefficient relating the first mediator to the outcome could be examined before and

after adjustment for the second mediator. Although it may be possible to develop a three-

path test of mediation based on differences in coefficients, this method would likely be

cumbersome in comparison to the product-of-coefficients test. As a result, difference-in-

coefficients tests for mediation are not considered in the present study.

Resampling methods. In discussing the single-mediator model, MacKinnon et al. (2002)

noted that a major difficulty in using product-of-coefficients tests for mediation is that the

distribution of the product of two regression coefficients is not normal as the tests assume.

In the three-path situation, b1b2b3 estimates the mediated effect, and its distribution is also

nonnormal (Craig, 1936; Springer & Thompson, 1970), leading to poor performance of the

product-of-coefficients tests. In situations such as this, where the assumptions of classical

statistics are violated, resampling methods often perform better because they do not make

as many problematic assumptions (Manly, 1997). Bootstrapping is one such resampling

method that has been widely applied to cases in which classical methods do not perform

well. Bootstrapping involves drawing a large number of samples with replacement from

the original sample. Sampling with replacement means that the bootstrap samples, although

all the same size as the original sample, can exclude some cases from the original sample

and include duplicates of others. The model of interest is estimated in each bootstrap sam-

ple as in the original data. The distribution of sample statistics estimated in each bootstrap

sample can be used to perform significance tests or to form confidence intervals.

MacKinnon et al. (2004) used a Monte Carlo study to compare the performance of several

resampling methods, including several variants of the bootstrap, in the single-mediator case.

Among the best performers they found were the percentile bootstrap and the bias-corrected

bootstrap. Bollen and Stine (1990) used the percentile and bias-corrected bootstrap methods

to estimate confidence intervals for real data in the single-mediator case. They found that

particularly in their small sample, the bootstrap captured the asymmetry in the sampling dis-

tribution missed by the product-of-coefficients test using the multivariate delta standard

error. Shrout and Bolger (2002) also demonstrated and advocated for the use of the boot-

strap in testing mediational models.

Bootstrap methods can be generalized from the two-path to the three-path situation. In

the three-path situation, regression models are first estimated for the original data to find

the coefficients b1, b2, and b3. A large number of bootstrap samples are drawn, the same
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models are estimated for each bootstrap sample, and the b1b2b3 estimates from each boot-

strap sample are used to form the bootstrap distribution. The limits of a percentile boot-

strap confidence interval are simply the values of b1b2b3 at the a/2 and 1− a/2 percentiles

of the bootstrap distribution, where a is the nominal Type I error rate. For example, for

the typical a ¼ :05, the limits are the 2.5th and 97.5th percentiles of the distribution. The

bias-corrected confidence interval limits are also taken from the bootstrap distribution, but

they are adjusted if the bootstrap distribution fails to center at the sample estimate of the

mediated effect. Details of the bias correction procedure are given in Table 1, in Efron

and Tibshirani (1993, chap. 14) and in Manly (1997, sec. 3.4).

An Empirical Example

Six methods of testing the three-path mediated effect have been described. These meth-

ods include one causal-steps method, the joint significance test; three product-of-coefficients

methods, the multivariate delta variance estimator, the unbiased variance estimator, and the

exact variance estimator; and two bootstrap methods, the percentile bootstrap and the bias-

corrected bootstrap. These six methods were applied to data based on Kiefer’s (2005) study

of the role of negative emotion in the effects of organizational change. Two of her hypoth-

eses may be considered together as a three-path mediational model. First (Hypothesis 1a),

the effect of organizational change on employees’ negative emotions was expected to be

mediated by working conditions. Second (Hypothesis 2b), negative emotions were expected

to predict withdrawal from the organization. In terms of Figure 1 and Equations 1-3, organi-

zational change is X, working conditions is M1, negative emotions is M2, and withdrawal is

Y. The paths from X to M1 (b1) and from M1 to M2 (b2) were expected to be negative, and

the path from M2 to Y (b3) was expected to be positive.

The application of these methods was not expected to produce exactly the same results

as Kiefer’s (2005) for three reasons. First, her entire model was more complex, including

three other variables that were not included in the present analysis. Second, as the boot-

strap methods require case-level data and we did not have Kiefer’s original data, our ana-

lyses are based on a simulated data set of the same size as the original data (N ¼ 155),

simulated to match as closely as possible the variances and correlations of Kiefer’s

(Table 1) data. Third, Kiefer reported standardized results, and the present application

reports unstandardized results for simplicity.

Equations 1-3 were estimated using ordinary least squares (OLS) regression for the data

based on Kiefer (2005). As shown in Table 2, each of b1, b2, and b3, the coefficients mak-

ing up the mediated effect, was significantly nonzero. All three effects were in the pre-

dicted direction: Organizational change was negatively related to working conditions,

working conditions were negatively related to negative emotion, and negative emotion

was positively related to withdrawal. The significance of all three coefficients means that

the joint significance test rejected the null hypothesis of no mediation.

The estimate of the mediated effect for the product of coefficients methods, b1 ×
b2 × b3, was 0.332. Standard errors of the mediated effect based on the three different esti-

mators are shown in Table 2. The estimators produced very similar results because the

coefficients were large and their standard errors small. Under these circumstances, the

formulas for all three estimators (see Table 1) are dominated by the first three terms,
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which they all have in common, whereas the remaining terms, which are present only in

the unbiased and exact standard errors, are very small. Confidence intervals calculated

using each estimator are also shown in Table 2. These were calculated by multiplying

each estimated standard error by 1.96 (the critical z value for a two-tailed test with

a= :05) and adding and subtracting the result from the estimate of the mediated effect.

None of the confidence intervals included zero, so the null hypothesis of mediation was

rejected for all three variance estimators.

Results for the bootstrap methods are shown in Table 2. For the percentile bootstrap, 1,000

bootstrap samples were drawn from the original sample. For each bootstrap sample, the

regressions in Equations 1-3 were estimated, and the estimate of the mediated effect b1b2b3

was also calculated. The limits of the 95% confidence interval for the percentile bootstrap are

the 2.5th and 97.5th percentiles of the bootstrap distribution. Therefore, the limits of the per-

centile bootstrap confidence interval in Table 2 were found by simply ordering the 1,000

bootstrap estimates of b1b2b3 and picking the 25th and the 975th values. As the interval did

not include zero, the null hypothesis of no mediation was rejected.

The bias-corrected bootstrap adjusts which percentiles are chosen from the bootstrap dis-

tribution based on whether the bootstrap distribution is mostly above or below the original

sample estimate of b1b2b3. The steps are listed in Table 1. The proportion of bootstrap esti-

mates of b1b2b3 greater than the original sample estimate was .442. The z-score corre-

sponding to this probability, that is, the z-score above which .442 of a standard normal

distribution falls, is 0.1459. Two times this z-score, 0.2918, was added and subtracted from

the usual two-tailed 95% z critical value of ± 1.960 to yield zlower =−1:668 and

zupper = 2:252. These z scores represent the 4.8th and the 98.8th percentiles of a standard

Table 2

Results for Each Method Applied to Data Based on Kiefer (2005)

Method Effect SE Test

Hypothesis0

Test Result

Joint significance b1= −0.947 sb1= 0.299 t(153)= −3.17,

p= :002

b2= −0.639 sb2= 0.062 t(152)= −10.35,

p< .001

b3= 7.06 sb3= 0.078 t(151)= 7.06,

p< :001

Reject Hypothesis0

Multivariate delta

standard error

b1b2b3= 0.332 smultivariate delta= 0.119 95% CI= [0.098,

0.565]

Reject Hypothesis0

Unbiased standard

error

b1b2b3= 0.332 sunbiased= 0.118 95% CI= [0.101,

0.563]

Reject Hypothesis0

Exact standard

error

b1b2b3= 0.332 sexact = 0.121 95% CI= [0.095,

0.568]

Reject Hypothesis0

Percentile

bootstrap

b1b2b3= 0.332 — 95% CI= [0.109,

0.626]

Reject Hypothesis0

Bias-corrected

bootstrap

b1b2b3= 0.332 — 95% CI= [0.131,

0.678]

Reject Hypothesis0

Note: The standard error of b1b2b3 was not estimated using the bootstrap methods. CI = confidence interval.
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normal distribution. The adjustment of the bias-corrected bootstrap can be seen clearly in

this example. The majority of the bootstrap estimates of b1b2b3 fell below the original sam-

ple estimate—442 fell above and 558 fell below—so the percentiles for finding the limits of

the interval were shifted up: from the 2.5th to the 4.8th percentile at the low end and from

the 97.5th to the 98.8th percentile at the high end. Therefore, the limits of the bias-corrected

bootstrap confidence interval are the 48th and the 988th estimates from the ordered distribu-

tion of 1,000 bootstrap estimates of b1b2b3. As for the percentile bootstrap, the confidence

interval did not include zero, so the null hypothesis of no mediation was rejected.

In summary, the six methods all suggested the same conclusion: Reject the null hypothesis

of no mediation. The different methods did not produce exactly the same results, though. The

standard error formulas for the product-of-coefficients methods and the bootstrapping meth-

ods all yielded different confidence intervals. These differences raise the question of whether

the different methods will yield similar results across a broader range of circumstances.

To answer this question, a Monte Carlo study was performed. Its purpose was to com-

pare the performance of these methods in different sample sizes and for different sizes of

the coefficients making up the mediated effect. The methods were compared in terms of

(a) relative bias of their estimates of the standard error of the mediated effect (for the

product-of-coefficients methods only), (b) their Type I error, (c) their power, and (d) the

coverage of their confidence intervals (for all methods except the joint significance test).

Method

Both simulation and analysis of the data were done using Statistical Analysis System

(SAS) software (SAS Institute, 2005). Data were simulated using Equations 1, 2, and 3. The

X variable was simulated to either be normally distributed with a mean of 0 and a variance

of 1 or to be dichotomous with a .5 probability of being in each category. The latter condi-

tion was intended to mimic an experimental design with two groups. The residuals e1, e2,

and e3 were simulated to be normally distributed with a mean of zero and a variance of 1.

The residuals and X when continuous were simulated using the SAS RANNOR function.

When dichotomous, X was simulated using RANNOR and then dichotomized at 0 into 0

and 1. The intercepts b01, b02, and b03 were set to zero. The sizes of the coefficients b1, b2,

b3, and b4 were, in different conditions of the simulation, set equal to zero or set to corre-

spond to Cohen’s (1988) small (.14), medium (.39), or large (.59) partial correlations.

Because of the large computational demands of the bootstrap methods, the number of

conditions was reduced by including only those in which b2 and b3 are no larger than b1,

meaning that 30 of a possible 64 conditions defined by b1, b2, b3 were included. These con-

ditions were chosen because, particularly in experimental studies where X is manipulated to

create maximal effect on M1, it seems reasonable to expect that b1 will be the largest path

in the mediational chain. All levels of b4, the direct effect, were included in the simulation,

meaning that both full mediation (b4 = 0) and partial mediation (b4 6¼ 0) models were

studied. The relations represented by b5 and b6 were expected to be independent of the b1,

b2, b3 paths that define the mediation relation. To verify this result, b5 and b6 were set to

zero or large (.59), but the corresponding coefficients b5 and b6 were estimated in all condi-

tions, regardless of their corresponding true values. Sample size was set to 50, 100, 200,

Taylor et al. / Three-Path Mediation 9



500, or 1,000 in different conditions. There were 4,800 total conditions: two levels of distri-

bution of X × 30 levels of b1, b2, and b3 in which b2 ≤ b1 and b3 ≤ b1 × 4 levels of b4 × 2

levels of b5 × 2 levels of b6 × 5 levels of sample size. One thousand replications were run

for each condition. For each replication in each condition, all six methods were used to test

for mediation. For the bootstrap methods, 1,000 bootstrap samples were drawn in each

replication.

Performance of Standard Error Estimators

The product-of-coefficients methods were compared using the relative bias of their stan-

dard errors. Relative bias of each estimated standard error was calculated for each repli-

cation in a condition as

RelativeBias= SEb1b2b3 � SDb1b2b3

SDb1b2b3

; ð5Þ

where SEb1b2b3 is the estimated standard error of b1b2b3 calculated using one of the three

estimators for one replication within a condition, and SDb1b2b3 is the standard deviation of

b1b2b3 in the 1,000 replications for the same condition. The latter quantity estimates the

true standard error of the mediated effect for the condition. The numerator of Equation 4

is the bias of a standard error estimate. Dividing by the estimated true standard error puts

relative bias in the metric of bias as a proportion of the true value, which allows for easier

comparison across conditions. The relative bias for each of the three methods in the con-

dition as a whole was calculated as the mean of the individual replications’ relative bias

values. Based on Kaplan’s (1988) recommendation, a mean relative bias of .10 or smaller

in absolute value was considered small enough to make the standard error estimator usable

in an applied context.

Type I Error and Power

The six methods of testing for mediation in the three-path situation were each used to test

the null hypothesis of no mediation for each of the replications in each condition. The nom-

inal Type I error rate was set to .05 for all methods. The proportion of replications for which

the null hypothesis was rejected was calculated. This proportion was the Type I error rate in

conditions in which the null hypothesis was true (i.e., b1b2b3 = 0). It was the empirical

power level in conditions in which the null hypothesis was false (i.e., b1b2b3 6¼ 0). For

the joint significance test, testing the null hypothesis of no mediation required a separate

hypothesis test for each of b1, b2, and b3. If all three null hypotheses were rejected, the null

hypothesis of no mediation was rejected. For all other methods, a 95% confidence interval

around the mediated effect was estimated. If this interval did not include zero, the null

hypothesis of no mediation was rejected (see Table 1).

Coverage

The five methods that were used to generate confidence intervals were compared in

terms of their coverage. (The joint significance test was not used to estimate confidence
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intervals.) Coverage was the proportion of replications in which the confidence interval

included the true mediated effect, b1b2b3. As 95% confidence intervals were estimated,

the methods performed well when their coverage levels were near .95.

Results

The same modeling approach was used to analyze results for each of the four study out-

comes: relative bias of standard errors, Type I error, power, and coverage. As described

above, the conditions in the study were defined by eight factors: distribution of X, size of

b1-b6, and sample size. The six methods of testing for mediation constituted a within-

participant factor, as each of the methods was applied to all of the replications in each

condition. In models of the study outcomes, method was treated as a between-participants

factor, making for a total of nine study factors. This treatment of the method factor did not

affect the model results, as the between-participants versus within-participant distinction

is important only in calculating error terms and significance tests, and as described below,

model results were interpreted using effect sizes rather than significance tests. A separate

model was estimated for each of the study outcomes. The intent was to model each out-

come using all nine factors and their interactions. Because of the size of the data sets (as

many as 24,000,000 cases for studying coverage, for example) and the size of the design

matrix with all nine study factors and all possible interactions among them, the models

could not be estimated when all factors were treated as categorical. To be able to test these

interactions, the models were estimated with the quantitative predictors—sample size and

b1 through b6—entered as numerical values rather than as categorical predictors. These

predictors were centered before interaction terms were constructed, following the recom-

mendation of Aiken and West (1991). Entering these factors as numerical values traded

the multiple-degree-of-freedom test for differences of any form across levels of the factors

for a single-degree-of-freedom test for the linear trend in each factor. As effects of these

factors were expected to be at least monotonic, even if not precisely linear, this seemed to

be a reasonable way of retaining the higher order interactions in the model. Finally, the

type of model depended on the form of the outcome being modeled. As relative bias is

continuous, it was modeled using an analysis of covariance (ANCOVA). The other out-

comes, Type I error, power, and coverage, are dichotomous (i.e., reject versus fail to reject

the null hypothesis, confidence interval does versus does not include the true value), so

they were modeled using logistic regression, although the predictors were entered just as

they were for the ANCOVA model of relative bias.

As the number of cases for these models was so large, power to detect even trivially

small effects was very high. Therefore, rather than interpret effects based on the conven-

tional p< :05 significance criterion, or any other significance criterion, effects were inter-

preted on the basis of their associated effect sizes. In the ANCOVA model of relative bias,

the effect size measure was the proportion of variance accounted for, o2. In logistic regres-

sion, there is no true proportion of variance accounted for measure, but there are analogs.

Following the recommendation of Menard (2000), R2
L was used for the logistic models of

Type I error, power, and coverage. R2
L tells the proportion of reduction in deviance (badness

of fit) in a model attributable to a predictor. For o2, an effect accounting for at least 1% of

Taylor et al. / Three-Path Mediation 11



the variance was considered large enough to be interpretable. As effect size measures in

logistic regression tend to be smaller than R2 or o2 values from OLS regression or analysis

of variance (Hagle & Mitchell, 1992; Hosmer & Lemeshow, 2000, p. 167), the threshold

for interpretation for R2
L was set to 0.5%. Effects meeting or exceeding the 1% threshold

for o2 or the 0.5% threshold for R2
L are referred to below as being ‘‘nontrivial.’’ To reduce

the size of the model summary tables, only nontrivial effects are listed separately. Tables

of cell means for each study are constructed to highlight nontrivial effects and generally

collapse across effects not reaching this threshold.

One other issue that was important in modeling all of the outcomes was that the

unbiased variance estimator sometimes produced negative estimates of the variance of

b1b2b3. MacKinnon et al. (2002) had similar results for the unbiased estimator in the

single-mediator case. As can be seen from the formula in Table 1, this result occurs

because, unlike the multivariate delta and exact estimators, the unbiased estimator sub-

tracts some terms to reduce positive bias of the estimator. In conditions in which the

values of b1, b2, and b3 were small or zero, sampling error often made the sum of these

subtracted terms larger than the sum of the added terms. For example, in conditions in

which two or three of b1, b2, and b3 were zero, 30% to 40% of the unbiased variance esti-

mates were negative across sample sizes. In conditions in which two or three of b1, b2,

and b3 were nonzero, on the other hand, negative estimates occurred in as many as 30% of

replications, but only for the smallest effect sizes and sample sizes. For larger effect sizes

and sample sizes, the percentage of negative variance estimates quickly dropped to near

zero. The tendency of the unbiased variance estimator to sometimes yield negative values

even though its true value cannot be negative makes it similar to the adjusted R2 in OLS

regression. The adjusted R2 also has a term subtracted to avoid positive bias, and under

conditions where its true value is near or equal to zero, sampling error often makes it

slightly negative. Negative unbiased variances are problematic because when the square

root is taken, the estimated standard error is an imaginary number, which cannot be used

to construct a confidence interval. In the analyses of study outcomes, unbiased variance

estimate results were included only if they were nonnegative.

Relative Bias of Standard Error Estimators

The multivariate delta, unbiased, and exact estimators of the variance of b1b2b3 were

compared in terms of their relative bias. As shown in Table 3, study factors collectively

accounted for 14.6% of the variance in relative bias. Individual effects are not listed

because no individual effect accounted for as much as 1% of the variance. Although no

individual effects accounted for nontrivial variance, the set of terms including method,

taken together, accounted for nontrivial variance (o2 = :016), as did the sets of terms

including b2 (o2 = :024) and b3 (o2 = :023; note that these sets of terms are overlapping).

Table 4 therefore presents mean relative bias values as a function of method and size of the

mediated effect, collapsing across levels of b4, b5, b6, and distribution of X. To save space,

mediated effect sizes are also collapsed across conditions in which results were similar.

The methods’ performance depended on the number of zero paths in null true models

and on the size of the mediated effect in null false models, so the rows of the table are

defined by these groups. The table also displays results separately by sample size, as there
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appeared to be a consistent, if small, effect of this factor. For each table entry, which is a

mean relative bias collapsing across a number of conditions, the proportion of the condi-

tions in which the absolute value of the mean relative bias exceeded .10 is also shown in

parentheses.

Results are discussed in terms of comparing methods, as this is our major focus, but

it should be kept in mind that as no effects accounted for as much as 1% of the variance,

differences were generally small. The exact variance estimator performed most poorly of

the methods, almost always being biased high. Its relative bias exceeded 1 in conditions

where b1 = b2 = b3 = 0 and only declined to below .10 on average when b1b2b3 exceeded

.01. In conditions in which two or three of b1, b2, and b3 were zero, its relative bias was

unaffected by sample size, but in conditions in which two or three of b1, b2, and b3 were

nonzero, its relative bias improved with increasing sample size. The multivariate delta

variance estimator had a similar pattern of performance, but with much less relative bias

in all conditions. For example, its worst relative bias was only .30, and its mean relative

bias was below .10 in nearly all conditions in which two or three of b1, b2, and b3 were

nonzero. The unbiased variance estimator differed from the other two in that it was more

often negatively than positively biased. It performed quite well when b1 = b2 = b3 = 0;

was positively biased when two of b1, b2, and b3 were zero; and was negatively biased

when two or three of b1, b2, and b3 were nonzero. The reality is that the unbiased variance

estimator is always negatively biased; as described above, these results are based on only

the replications in which the unbiased variance estimate was nonnegative so its square

root could be taken to get a standard error. If all replications in which the unbiased var-

iance was negative had been entered as a zero standard error estimate, for example, it

would likely have exhibited strong negative bias in the conditions where two or three of

b1, b2, and b3 were zero.

Type I Error

All six methods of testing for mediation were compared in terms of their Type I error.

The b2 × b3 interaction and all higher order interactions including both coefficients were

excluded from the model, as b2 × b3 = 0 in all null hypothesis true conditions. As shown

in Table 5, study factors accounted for a 10.4% deviance reduction. The method of test-

ing for mediation had by far the largest effect (R2
L = :030), and sample size also had a

Table 3

Relative Bias Model Summary

Effect SS df MS F p ω
2

Model 579395 767 755.4 3,104.6 <.001 .146

Error 3398638 13967905 0.2

Total 3978033 13968672

Note: Effects are not listed separately because no individual effect accounted for as much as 1% of the

variance. Results for the unbiased standard error are based on only replications in which its variance estimate

was nonnegative.
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nontrivial effect (R2
L = :006). Table 6 therefore shows Type I error rates for the different

methods (although the product-of-coefficients methods are averaged because they per-

formed very similarly) by sample size. The table is also broken down by size of b1, b2,

and b3, as effects of b2 and b3 approached the threshold for being nontrivial (R2
L = :004

and .003), and inspection of cell means suggested that Type I error rates varied meaning-

fully with the sizes of these coefficients. The 30 conditions defined by b1, b2, and b3 are

collapsed into 4 based on the size of the product of the two largest coefficients (the null

hypothesis is true when any of b1, b2, and b3 is zero, so this product was nonzero in some

conditions). As excess Type I error was of particular concern, for each entry in the table,

the proportion of the conditions on which it is based in which a 95% confidence interval

for the Type I error rate was completely above .05 is also shown in parentheses.

Type I error was lower than the nominal level across methods in conditions where

at least two of b1, b2, and b3 were zero (in the first row for each condition). In conditions

where only one of b1, b2, and b3 was zero, Type I error increased with increasing size of

the nonzero coefficients. For the product-of-coefficients methods, the mean Type I error

rate never reached the nominal level, even for the largest effect sizes and sample sizes.

Their Type I error rate did not significantly exceed .05 in any condition. Type I error rates

for the joint significance test and percentile bootstrap were higher than for the product-of-

coefficients methods. For both, the Type I error rate did approach the nominal level for

n= 500 or 1,000 in conditions where the product of the two nonzero coefficients exceeded

.05 and for n= 100 or more in conditions where the product of the nonzero coefficients

exceeded .10. Neither method had Type I error significantly exceeding its nominal level

in more than 4.7% of cells, though. The bias-corrected bootstrap’s Type I error rate fell

below the nominal rate in conditions in which two or three of b1, b2, and b3 were zero,

but increased to beyond the nominal rate as the size of the nonzero effects and sample size

increased. For smaller products of nonzero coefficients, the bias-corrected bootstrap’s

Type I error rate got worse with increasing sample size, reaching a maximum of .081, with

81.3% of cells significantly exceeding .05. For larger products of nonzero coefficients, its

Type I error rate reached a maximum of .087, with 89.1% of cells significantly exceeding

.05, but improved with increasing sample size.

Power

All six methods of testing for mediation were compared in terms of their power. As

shown in Table 7, study factors accounted for a 58.4% deviance reduction. The largest

effect was that of sample size (R2
L = :244); smaller nontrivial amounts of deviance reduc-

tion were associated with b2, b3, their interaction, their interactions with sample size, and

the three-way interaction. As with models of relative bias and Type I error, there were no

effects of b4, b5, or b6. Unlike the models of other study outcomes, though, no nontrivial

effects included method. Table 8 shows power levels as a function of size of the mediated

effect, sample size, distribution of X, and method (the product-of-coefficients methods are

averaged because they performed very similarly). Distribution of X is included as a fac-

tor in the table because it approached the threshold for being nontrivial (R2
L = :004), and

inspection of cell means suggested that power differences across this factor were large

enough to be important. Method is also included as a factor in the table in spite of not
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appearing in any nontrivial effects because the primary purpose of this study is to compare

methods of testing for mediation. The set of all terms including method did, collectively,

reduce deviance at a nontrivial level (likelihood ratio w2½1; 280�= 556; 707:7, p< :001,

R2
L = :031). By comparison, the set of terms including b4, b5, or b6, although conven-

tionally significant, did not approach the criterion for being nontrivial (likelihood ratio

w2½1; 344�= 1; 762:3, p< :001, R2
L = :0001; note that the two sets of terms are overlapping).

The main effects of sample size, size of the mediated effect, and distribution of X were

straightforward: Power increased with increasing sample size, with increasing size of

the mediated effect, and was greater for a continuous normal X than for a dichotomous X.

Sample size moderated differences across mediated effect size. In smaller samples,

increasing effect size was always associated with increasing power. In larger sample size

conditions, though, a ceiling effect occurred where power approached 1 for smaller and

smaller effects, making the size of the mediated effect much less a predictor of power in

the largest sample sizes than in smaller sample sizes.

The effect of method also varied with sample size and effect size. For the largest sample

sizes and effect sizes, power levels for all methods approached 1, and differences between

methods were near zero. For smaller sample sizes and effect sizes, though, differences

between methods were larger. The bias-corrected bootstrap had the greatest power in all

conditions in which power differences were manifest. It was followed by the joint signifi-

cance test and the percentile bootstrap, which had similar power levels. The product-of-

coefficients methods had the least power.

Coverage

The five methods used to generate confidence intervals for the mediated effect (the joint

significance test cannot be easily used to estimate confidence intervals) were compared in

terms of their coverage. As shown in Table 9, study factors accounted for a 4.7% deviance

reduction. Only method, b2, and b3 reduced a nontrivial amount of deviance in the model.

Coverage in null hypothesis true conditions can be inferred from Type I error. This is

because when the null hypothesis is true, the true value that a confidence interval should

include is zero. If zero is not included, the null hypothesis is rejected, and the interval has

failed to capture the true value. If zero is included, the null hypothesis is retained, and the

Table 5

Type I Error Model Summary, Nontrivial Effects (R2
L ≥ :005)

Effect LR χ2 df p R2
L

Method 97,620.3 5 <.001 .030

Sample size 18,661.6 1 <.001 .006

All other effects (R2
L < :005) 204,813.9 1145 <.001 .063

Model 338,898.8 1151 <.001 .104

Note: The sum of individual effects’ R2
L differs from the overall model R2

L because R2
L is not a true proportion

of variance accounted for measure. Results for the unbiased standard error are based on only replications in

which its variance estimate was nonnegative. LR = likelihood ratio.
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interval has succeeded in capturing the true value. Therefore, coverage is equal to 1 minus

Type I error in null true conditions. Returning to Table 6, it is clear that all methods had

too high coverage (indicating too wide confidence intervals) in conditions in which two or

three of b1, b2, and b3 were zero. Coverage fell to near the nominal level in the largest

effect size and sample size conditions for the product-of-coefficients methods. For the

percentile bootstrap, coverage fell to near the nominal level for somewhat smaller effect

and sample sizes. The bias-corrected bootstrap had coverage that fell as low as .913 for

the largest effect sizes in n= 100 conditions and as low as .919 for smaller effect sizes

and larger sample sizes.

Table 10 shows coverage in null false conditions and, similar to the Type I error results,

the proportion of cells in which coverage was significantly below .95 as a function of

method, size of the mediated effect, and sample size. Sample size is included, although its

effect did not reach the threshold for being nontrivial, because there nevertheless appeared

to be a clear pattern of results across its levels. Unlike Tables 6 and 8, Table 10 presents

the product-of-coefficients methods separately because their coverage levels were quite

different. The unbiased standard error had the lowest coverage levels (indicating too nar-

row confidence intervals), with a minimum of .839, with 100% of conditions falling sig-

nificantly below .95. Its coverage levels increased with increasing sample size and effect

size. The multivariate delta standard error had a similar pattern of performance but with

generally better coverage; its lowest coverage was .880. The exact standard error had the

best coverage of the product-of-coefficients methods. It was as low as .920 in one con-

dition but fell between .940 and .950 in most conditions where the mediated effect was

.01 or larger and sample size was at least 200. The percentile bootstrap had very good

coverage performance, with a minimum of .930, and at least .940 across conditions when

sample size was at least 100. The bias-corrected bootstrap had too low coverage, with a

minimum of .897 in the smallest sample size and effect size conditions, but it matched the

percentile bootstrap in having good coverage for sample sizes of at least 200.

Table 7

Power Model Summary, Nontrivial Effects (R2
L ≥ .005)

Effect LR w2 df p R2
L

Sample size 4,460,920.4 1 ≤ .001 .244

b2 847,728.3 1 ≤ .001 .046

b3 841,959.7 1 ≤ .001 .046

Sample Size × b2 338,318.9 1 ≤ .001 .019

Sample Size × b3 335,062.0 1 ≤ .001 .018

b2 × b3 445,095.5 1 ≤ .001 .024

Sample Size × b2 × b3 276,536.8 1 ≤ .001 .015

All other effects (R2
L ≤ :005) 2,983,032.0 1528 ≤ .001 .163

Model 10,652,891.0 1535 ≤ .001 .584

Note: The sum of individual effects’ R2
L differs from the overall model R2

L because R2
L is not a true proportion

of variance accounted for measure. Results for the unbiased standard error are based on only replications in

which its variance estimate was nonnegative. LR = likelihood ratio.
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Discussion

This article has introduced three estimators of the standard error of the three-path

mediated effect and has compared their performance to three other methods of testing

for mediation. The best performers for null hypothesis testing, based on an assessment of

Type I error and power, were the joint significance test, the percentile bootstrap, and the

bias-corrected bootstrap. The joint significance test and the percentile bootstrap were the

more conservative methods: They successfully controlled Type I error and had good power.

The bias-corrected bootstrap had consistently the highest power of any tested method, but

its Type I error rates were significantly above the nominal level in conditions of large

sample size and large nonzero coefficients in the mediated effect.

In terms of coverage performance, the bootstrap methods were the best performers. The

percentile bootstrap had too low coverage for the smallest sample size in null false condi-

tions but had coverage near the nominal level in all other conditions. Mirroring its too-high

Type I error, the bias-corrected bootstrap had too low coverage in some null hypothesis

true conditions, but it performed well in null hypothesis false conditions with sample sizes

of at least 200. Of the product-of-coefficients methods, the exact standard error performed

best: It almost always had coverage at or above the nominal level, whereas the other two

methods had far too low coverage in null hypothesis false conditions with smaller samples.

Of the three product-of-coefficients methods, the multivariate delta estimator performed

best in relative bias. It consistently overestimated standard errors by 20% to 30% when

two or three of the paths in the mediated effect were zero but for most conditions had neg-

ligible relative bias. The unbiased standard error frequently yielded negative variance esti-

mates for the mediated effect in the smallest effect size conditions, and the exact standard

error had bias similar to that of the multivariate delta method, but larger.

In summary, we recommend three methods for testing the three-path mediated effect.

These are the joint significance test, the percentile bootstrap, and the bias-corrected boot-

strap. The major advantage of the joint significance test is its ease and speed of appli-

cation. In circumstances where only a test of the null hypothesis of no mediation is of

interest, it is an ideal method, as it controlled Type I error at or below its nominal level

and had good power. Its major drawback is that it cannot be easily used to estimate a

confidence interval for the mediated effect. The bootstrap methods allow for confidence

Table 9

Coverage Model Summary, Nontrivial Effects (R2
L ≥ :005)

Effect LR χ2 df p R2
L

Method 48,262.7 4 <.001 .006

b2 70,427.9 1 <.001 .008

b3 70,121.4 1 <.001 .008

All other effects (R2
L < :005) 238,473.9 1273 <.001 .029

Model 391,633.9 1279 <.001 .047

Note: The sum of individual effects’ R2
L differs from the overall model R2

L because R2
L is not a true proportion

of variance accounted for measure. Results for the unbiased standard error are based on only replications in

which its variance estimate was nonnegative. LR = likelihood ratio.
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intervals to be estimated as well as performing hypothesis tests. Of the two, the percentile

bootstrap is the more conservative. It controlled Type I error at or below its nominal level

in all conditions. The bias-corrected bootstrap had the highest power of any method across

conditions but had excess Type I error in some conditions. Although statistically signifi-

cant, these excess Type I error rates were only .087 at the largest, though, so the extra

power the method affords might outweigh the excess Type I error.

An SAS macro that performs all the tests for mediation discussed in this article is

available at the second author’s Web site (http://www.public.asu.edu/∼ davidpm/ripl/

mediate.htm). The macro works only for manifest variable models. For models that

include latent variables, the joint significance test may be easily performed using any

structural equation modeling (SEM) program that outputs estimates and standard errors

for b1, b2, and b3. These include Mplus (Muthén & Muthén, 2006), LISREL (Jöreskog &

Sörbom, 1996), EQS (Bentler, 1995), and AMOS (SPSS Inc., 2006). Confidence intervals

for both bootstrap methods may also be obtained from Mplus (using the ‘‘model indirect’’

command and the ‘‘cinterval(bootstrap)’’ or ‘‘cinterval(bcbootstrap)’’ output options).

LISREL, EQS, and AMOS will perform bootstrapping and save out bootstrap estimates of

the b1, b2, and b3 but will not provide limits of a confidence interval based on these boot-

strap estimates. Both percentile and bias-corrected confidence limits may be found from

these output values, either manually (e.g., by picking the 2.5th and 97.5th percentiles for a

percentile bootstrap 95% confidence interval) or using a second SAS macro also available

at the second author’s Web site.

Generalizing the Results

The results of the present study are similar to those of previous studies of the two-path

mediated effect. MacKinnon and colleagues (2002) also found good Type I error and

power performance for the joint significance test. MacKinnon et al. (2004) found the bias-

corrected bootstrap to have the most power of any tested method and recommended it

based on this result. They also found that it had excess Type I error, though, and that the

percentile bootstrap had better control of Type I error (pp. 117, 120), although they con-

sidered the extra power to be worth risking a little excess Type I error. Although our

recommendation is more conservative in suggesting the percentile bootstrap along with

the bias corrected bootstrap, the similarity of results across two- and three-path mediated

effects suggests that these best performing methods may be generalized to testing media-

tional chains of any length.

The Monte Carlo study reported here made several simplifying assumptions, such as that

there were no other variables in the model other than the independent variable, the dependent

variable, and the two mediators. This condition need not hold for mediation to be tested. The

best performing methods require only estimates of the three-path coefficients b1, b2, b3, and

their standard errors. The inclusion of other variables in the model should only improve these

estimates, and therefore the tests of the mediated effect, particularly when exclusion of the

other variables would have resulted in bias in the estimates of the path coefficients.

Another simplifying assumption of the Monte Carlo study was that the variables were all

measured without error. In practice, of course, this is a highly unrealistic assumption. Mea-

surement error in the variables in the model will attenuate their zero-order correlations
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toward zero. This typically means that the coefficients b1, b2, and b3 will also be attenuated

toward zero, although in the models including more than one predictor (Equations 2 and

3), coefficients may be biased in either direction (Cohen, Cohen, West, & Aiken, 2003,

Box 4.3.1). Standard errors for the coefficients will increase with measurement error in the

dependent variable of each regression (Cohen et al., 2003, p. 124). For both of these rea-

sons, the power results reported here are likely upper bounds on the power that might be

expected in models having effect sizes used in the Monte Carlo study. The problem of

measurement error in the variables can be dealt with using an SEM. Latent variables can

be used in place of any or all of the measured variables X, M1, M2, and Y in Figure 1. As

the path coefficients b1, b2, b3, and their standard errors can still be estimated, the methods

discussed here can all be applied.

In the Baron and Kenny (1986) framework, partial and full mediation are distinguished.

Partial mediation occurs when a mediator accounts for only some of the relation between

the independent and dependent variables. Full mediation occurs when no significant

relation remains between the independent and dependent variables after the mediator is

entered in the model. Whether a mediator (or series of mediators as in the three-path situa-

tion) partially or fully mediates the independent-to-dependent variable relation can be

found by examining the size of the direct effect, which is b4 in the three-path situation.

The size of the corresponding true value b4 was a factor manipulated in the Monte Carlo

study; it did not have a nontrivial effect, either alone or in an interaction term, on any of

the study outcomes. This result suggests that the conclusions of the present study may be

generalized across instances of both partial and full mediation.

Mediational effects may also be categorized as consistent or inconsistent (MacKinnon,

Krull, & Lockwood, 2000). In the single-mediator context, mediation is consistent when

the mediated effect has the same sign as the direct effect. Mediation is inconsistent when

the mediated effect has the opposite sign as the direct effect. The issue is more complex

in the two-mediator case because there are effects that pass through only one mediator

(b1b6 and b5b3) in addition to the mediated effect b1b2b3 and the direct effect b4, and these

effects may have any combination of positive and negative signs. In the Monte Carlo study

reported here, all coefficients had only positive or zero values. The performance of the

methods compared should be unaffected by the signs of the effects, though. The signs of

the b4, b5, and b6 paths are irrelevant because these paths are not included in any of the

tests; the paths are important only because their estimation allows for better estimates of

b1, b2, and b3 and their standard errors. As for the signs of b1, b2, and b3, the joint signifi-

cance test applies two-tailed tests to each, so its performance will not depend on their signs.

Similarly for the product-of-coefficients methods, the point estimate of the mediated effect

b1b2b3, which is where confidence intervals are centered, will be an unbiased estimate of

the true mediated effect b1b2b3 as long as each coefficient is an unbiased estimate of its

corresponding true value, regardless of the sign on any of the coefficients or true values.

The estimates of the standard error of b1b2b3 will also not be affected by the signs of the

coefficients, as the coefficients are squared when entered in the formulas (see Table 1).

Finally, confidence intervals generated using bootstrap methods will be unaffected by the

signs of the coefficients. If at least one coefficient has a true value of zero (i.e., the null

hypothesis is true), then bootstrap estimates of that coefficient will tend to change sign

from one bootstrap sample to another, making the bulk of the bootstrap distribution fall
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near zero and leading to a failure to reject the null hypothesis. If all three coefficients are

nonzero (i.e., the null hypothesis is false), then bootstrap estimates of the coefficients will

tend to have the same sign from one bootstrap sample to another, moving the bulk of the

bootstrap distribution away from zero (with the direction depending on the signs of all

three coefficients) and leading to a rejection of the null hypothesis.

Limitations and Future Directions

Estimating a three-path mediational model using Equations 1-3 requires making a num-

ber of assumptions, mostly relating to the correct specification of the model. As outlined

by James, Mulaik, and Brett (1982), correct specification includes specification of the

causal order of the variables, specification of the causal direction (no reciprocal paths are

estimated), the assumption that the model is self-contained (i.e., there are no omitted vari-

ables; this includes the assumption that interactions need not be included), the assumption

that there are no moderator effects, and the assumption that the model is stable. As with a

simple regression model, the misspecification of the model by failing to include any of

these relations or variables when they should be included will lead to bias in the regression

coefficients. The three models in Equations 1-3 are also assumed to have independent resi-

duals. This assumption can be tested if the three-path mediation test occurs in the context

of a larger SEM, which could allow for the covariance among the residuals to be estimated

to discover whether it is, in fact, different from zero.

In addition, as the models that make up the three-path mediational model are regression

models, whether estimated using regression or SEM, they make all the assumptions typi-

cally made by regression models. These include the assumptions of linearity of the relations

between variables, normally distributed residuals when conditioning on the predictors, and

residuals that are independent of one another. If the linearity assumption is violated, this is a

misspecification of the model, and regression coefficients will tend to be biased. If the

assumptions about the residuals are violated, the standard errors will be biased.

The methods used to obtain point estimates and confidence intervals for the three-path

mediated effect investigated in this article assume that the estimate of the relation between

the mediators and the relation from the mediator to the dependent variable represent the true

causal effect. As outlined by Holland (1988), these assumptions may be unlikely to be true.

Following Holland’s analysis, it is likely that the unadjusted total effect of the treatment on

the first mediator, the treatment effect on the second mediator, and the treatment effect on

the dependent variable are estimates of the underlying causal effect. The regression coeffi-

cients for the relations among the two mediators and the dependent variable are not direct

estimates of causal effects in Rubin’s (1974) causal model. For example, the ordering of the

two mediators and the dependent variable may not be as hypothesized. Researchers should

keep in mind that the methods described here make this assumption, which may be wrong

for some data. Theory and additional experimental studies must be used to bolster the causal

hypothesis underlying the three-path mediation model.

One approach to testing for mediation that has not been mentioned here is the asym-

metric distribution of the product method. MacKinnon et al. (2004) applied this method

in the single mediator case, where the distribution used is of the product of two random

variables, one for each of the two paths. In the three-path situation studied here, the
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distribution of the product of three random variables would be required. A few studies

provide analytic formulas for this distribution, but no software to integrate the density has

yet been introduced. This approach and Monte Carlo approaches to estimate this distribu-

tion are a topic for future study.

Appendix

The multivariate delta method is a general method of estimating the variance of functions of
random variables that are normally distributed. As the regression coefficients b1, b2, and b3 are nor-
mally distributed, this method can be applied to estimate the variance of b1b2b3. The two parts
required are the covariance matrix of b1, b2, and b3, labeled V, and the vector of partial derivatives
of b1b2b3 with respect to each of b1, b2, and b3, labeled d. The covariance matrix is pre- and post-
multiplied by the vector of derivatives:
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The three-path coefficients b1, b2, and b3 are independent, so the last three terms are zero, and the
multivariate delta estimate of the variance is
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The unbiased estimate of the variance of b1b2b3 is based on the work of Goodman (1960). His
Equation 5 gives the unbiased estimate of the variance of two independent random variables, but
he suggested that it could be easily extended to more than two variables. Extending his equation to
three independent variables, which in this case are the path coefficients b1, b2, and b3, yields
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The exact variance estimate is also an extension of Goodman’s (1960) exact variance estimate
for the product of two random variables. This formula requires the square of the coefficient of
variation to be defined. For variable bi, it is GðbiÞ= s2

bi=b2
i . Extending Goodman’s Equation 2, the

exact variance estimate of b1b2b3 is
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