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In a three-path mediational model, two mediators intervene in a series between an indepen-
dent and a dependent variable. Methods of testing for mediation in such a model are general-
ized from the more often used single-mediator model. Six such methods are introduced and
compared in a Monte Carlo study in terms of their Type I error, power, and coverage. Based
on its results, the joint significance test is preferred when only a hypothesis test is of interest.
The percentile bootstrap and bias-corrected bootstrap are preferred when a confidence inter-
val on the mediated effect is desired, with the latter having more power but also slightly
inflated Type I error in some conditions.
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Mediational effects are commonly studied in organizational behavior research. For
example, Stewart and Barrick (2000) studied the relation between self-rated inter-
dependence in production teams and the teams’ supervisor-rated performance. They found
that a set of intrateam process variables—communication, conflict, shirking, and flexibility—
mediated the relation between the teams’ interdependence and performance. In another
study, employees’ perceived control of their time was found to partially mediate the rela-
tions between the independent variables of workload, job autonomy, and planning beha-
vior and the dependent variables of work strain, job satisfaction, and job performance
(Claessens, Van Eerde, Rutte, & Roe, 2004). Among other effects, workload reduced per-
ceived control of time and perceived control of time improved job satisfaction.

Mediational models are also common in other social sciences. A well-known example
of mediation in psychology is that intentions mediate the effect of attitude on behavior
(Ajzen & Fishbein, 1980). In sociology, son’s educational achievement is thought to medi-
ate the effect of father’s socioeconomic status on son’s socioeconomic status (Duncan,
Featherman, & Duncan, 1972). In experimental prevention research, a prevention program
is designed to change social norms regarding smoking, which are assumed to be causally
related to smoking (e.g., MacKinnon & Dwyer, 1993).

In all of the above examples, one mediator transmits the influence of an independent
variable to a dependent variable. Some theories are based on a long mediation chain even
though analyses often focus on single mediators. Cook and Campbell (1979) called this
chain of effects the micromediational chain. Analyses of micromediational chains longer
than two paths (one mediator) are also becoming common. For example, Tekleab, Bartol,
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and Liu (2005) found support for a model in which the effect of pay on turnover was
mediated by two variables acting in turn, perceived distributive justice (fairness of allo-
cation) and pay raise satisfaction. Employees who were paid more perceived higher levels
of distributive justice, which led to higher reported levels of satisfaction with pay raises,
which in turn reduced the probability they would voluntarily leave the company. In another
study of employee turnover, Allen and Griffeth (2001) found that job performance posi-
tively affected employees’ perceived employment alternatives, which positively affected
their intention to leave (turnover intention), which in turn affected actual turnover.

Such longer chain mediational models can also be found in other social sciences. For
example, a study of divorced mothers tested the hypothesis that the effect of negative life
events on parenting behaviors would be mediated by two variables in turn: psychological
distress and avoidant coping (Tein, Sandler, & Zautra, 2000). In another study of an inter-
vention designed to increase mammography screening, the effect was mediated by per-
ceived susceptibility to breast cancer and perceived benefits of screening (Aiken, Gerend, &
Jackson, 2001). Going beyond two mediator series, McGuire (1980, pp. 102-103) proposed
a model in which a series of seven variables mediates the effects of exposure to health
communication on behavior.

Although McGuire’s (1980) model is an extreme example, there are clearly models
being proposed that include more than a single mediator in the causal chain between inde-
pendent and dependent variables. The single-mediator case has been extensively studied. A
number of methods of testing for mediation in this context have been proposed (e.g., Baron
& Kenny, 1986; MacKinnon, Fritz, Williams, & Lockwood, in press; Sobel, 1982), and
their performance has been discussed and compared (MacKinnon, Lockwood, Hoffman,
West, & Sheets, 2002; MacKinnon, Lockwood, & Williams, 2004; Shrout & Bolger,
2002). Methods of testing for single-mediator effects have not yet been generalized to test-
ing for longer mediational chains, though. The purpose of this article is to extend several
methods used in the two-path (single-mediator) context to the three-path (two mediators in
series) context, with the ultimate aim of concluding which methods might perform best in
testing mediational chains of any length.

Defining the Mediated Effect

The three-path mediation model is depicted as a path diagram in Figure 1. Estimating
the model requires that the following three regression equations be estimated:

My =By + B X+er, (1)
M> =By + BoMi + BsX + &2, (2)
Y =Bz + BaX + B3M2 + BeM + €3. (3)

In these equations, Y is the dependent variable, X is the independent variable, and M; and
M, are the two mediators. In the first equation, B, is the regression of M; on X. In the
second equation, f3, is the regression of M, on M, and s is the regression of M, on X. In
the third equation, B; is the regression of ¥ on M;, B, is the regression of ¥ on X, and B is
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Figure 1
Path Diagram of the Three-Path Mediated Effect Model
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Note: Residuals are omitted. Variable labels refer to data based on Kiefer (2005).

the regression of ¥ on M. The intercepts in the equations are B, B(,, and Bys. The resi-
duals are €1, €5, and &5.

There are a number of different effects of X on Y that might be defined using this
model. The direct effect of X on Y, controlling for both mediators, is B, in Equation 3.
Mediated effects are estimated by the product of the coefficients for each of the paths in
the mediational chain (Alwin & Hauser, 1975). Therefore, the total mediated effect of X
on Y, the effect passing through either mediator, is 3,,B5 + B;B¢ + BsBs. This effect can
be broken down into the three-path mediated effect, which is the effect passing through
both mediators (3,,03), and the two-path mediated effects, the effects passing through
only one of the mediators (B;B¢ and BsP;). Another effect that may be studied is the
mediated effect passing through one mediator, such as B,,B; + BsB; for M,, for which
Sobel (1982) introduced a standard error formula. This article focuses solely on methods
of testing the three-path mediated effect as this is the effect most likely to be of interest to
researchers (James, Mulaik, & Brett, 2006).

Another equation is sometimes considered in testing for mediation in addition to Equations
1-3. The most commonly used method of testing for mediation in the single-mediator con-
text, the approach of Kenny and colleagues (Baron & Kenny, 1986; Judd & Kenny, 1981;
Kenny, Kashy, & Bolger, 1998), requires that the total effect of the independent variable on
the dependent variable also be tested:

Y =By +1X + &o. (4)

This test is considered necessary because if the total effect T is significantly nonzero, this
“establishes that there is an effect that may be mediated” (Kenny et al., 1998, p. 259),
whereas if 7 is nonsignificant, there is no effect of X on Y to be mediated.
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In this article, we take the position that the test in Equation 4 is not necessary to estab-
lish mediation. There are two reasons for continuing to test for mediation even in the pre-
sence of a nonsignificant total X to Y relation. First, as noted by Shrout and Bolger (2002,
p. 429), mediational analysis can provide a more powerful test of the relation between the
independent and dependent variables than the simple regression in Equation 4 provides.
This means that the test of the total effect might be nonsignificant simply because it is not
as powerful as the test of mediation. On the basis of this possibility, Shrout and Bolger
recommended dropping the test of the total relation under circumstances where the mea-
surement of the dependent variable is far removed in time from the measurement of the
independent variable.

The second reason for testing for mediation even if 1 is nonsignificant is that suppres-
sion (inconsistent mediation) may occur, meaning that the mediated and direct effects
have opposite signs. As noted by MacKinnon et al. (2002, p. 87) for the single-mediator
model, if the mediated and direct effects have opposite signs, the total effect may be near
zero, even though the mediated effect is significantly nonzero. The three-path situation is
more complex, as the signs of the two-path mediated effects ;4 and B5p; may also be
either positive or negative, but the point remains the same. The total effect may not differ
significantly from zero even in the presence of significant mediation because of the differ-
ent signs of the effects that make it up.

Methods of Testing for Mediation

Following the framework proposed by MacKinnon et al. (2002; MacKinnon et al.,
2004), methods of testing for mediation can be put into four categories. These are causal-
steps tests, product-of-coefficients tests, difference-in-coefficients tests, and resampling
methods.

Causal-steps tests. The approach of Kenny and colleagues (Baron & Kenny, 1986; Judd
& Kenny, 1981; Kenny et al., 1998) mentioned above is classified as a causal-steps test.
Although it was proposed for the single-mediator situation, it can be extended to the three-
path model. This approach requires the test of the total effect of X on Y to be significant,
though, so it is not applied in this article.

Another causal-steps test, called the joint significance test by MacKinnon et al. (2002),
is based on the definition of mediation offered by James and Brett (1984). It differs from
the Kenny et al. approach in that it does not require the overall relation between the pre-
dictor and the outcome to be significant. Although it was proposed for the single-mediator
situation, it can be easily generalized to the three-path context. In a three-path mediational
model, the joint significance test finds evidence for mediation if each of the three paths
in the mediated effect is significantly nonzero (see Table 1). These paths are B,, B,, and
B; in Figure 1 and Equations 1-3. The corresponding sample coefficients are by, b,, and
b3. As noted by MacKinnon et al., the major weaknesses of the joint significance test are
that it does not provide an estimate of the mediated effect and that it cannot be easily used
to construct a confidence interval. Its notable strengths are its simplicity—it merely
requires null hypothesis tests for three regression coefficients—and its control of Type I
error. Because all three paths must be significant for the mediated effect to be significant,
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Table 1
Methods of Testing the Three-Path Mediated Effect
Method Test (o =.05)
Joint Reject Hypothesiso if |b1|/Sb1 > t.975(n -2) and |b2|/sb2 > t4975(n —3) and
significance 1D3l/s3 t.975(n — 4, Where 97545 is the critical ¢ value for a two-tailed
test given the df. For example, 7 975100y = 1.98.
Multivariate delta Reject Hypothesis if 95% confidence interval = b;byb3 £ Z97i(smumv4mtc i)
standard error does not include zero, where 2, ivariate dela = 03 P3523 + b1b3s%, + b3b3ss, and
2975 = 1.96.
Unbiased Reject Hypothesis if 95% conﬁdence interval = bybobs £ 2975(% piased)
standard error does not include zero, where sunbmecl bIb3st, + bibist, + bibist, —

22 2 2
blsbzsb% b25b15b3 b2sblsb2+sblsb25b3

Exact Reject Hypothesisg if 95% confidence interval = bbybs £ z.975(s
standard error does not include zero, where
b2b25b3 + bzbzsbz + bzbzsbl + bzsbzsbx + b2sblsb3 + bzsblsbz + b15b25%3

cxa(t)

CXdC[

Percentile Draw a large number of bootstrap samples and estimate bb,b3 in
bootstrap each to form bootstrap distribution. Endpoints of a 95% confidence
interval are 2.5th and 97.5th percentiles of distribution. Reject Hypothesisg
if confidence interval does not include zero.

Bias-corrected Form bootstrap distribution as above. Find p, proportion of the distribution
bootstrap greater than original sample b,b,b3. Calculate zjoyer = —1.96 + 270 and
Zupper = 1.96 + 270, where z; is the z score corresponding to probability p.
For example, for p = .55, zp = 0.13. End points of a 95% confidence
interval are percentile ranks from the bootstrap distribution corresponding
to normal percentiles for zjower and zypper- Reject Hypothesis, if confidence
interval does not include zero.

its null hypothesis rejection rate is the product of the probabilities of rejecting the indivi-
dual coefficients’ null hypotheses. Therefore, its Type I error should not exceed the nom-
inal level of .05 even if two of the paths are so large that their null hypotheses are rejected
with probability 1: .05 x 1 x 1 =.05. Consistent with this expectation, MacKinnon et al.
found that the joint significance test controlled Type I error well and had good power.

Product-of-coefficients tests. Another class of methods of testing for mediation are what
MacKinnon et al. (2002) called product-of-coefficients tests. As noted above, B,,0; is
the mediated effect; its sample estimator is b;b,b3. Generalizing from the single-mediator
context, a product-of-coefficients test of the mediated effect divides bb,bs by its esti-
mated standard error and refers the result to a standard normal distribution (although the
distribution of b;b,bs is likely to not be normal). The standard error may be estimated
using different approaches. The derivation of three estimators of the variance (and there-
fore the standard error) of bb,b; is shown in the appendix. The estimators are the multi-
variate delta estimator, the unbiased estimator, and the exact estimator. Their formulas are
shown in Table 1. The first extends the work of Sobel (1982) from the two-path to the
three-path situation, and the other two are based on Goodman’s (1960) work. Once any of
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these standard errors is calculated, its application to testing for mediation is identical. A
95% confidence interval for the mediated effect is calculated as b;b,b3 plus and minus
1.96 times the standard error (where 1.96 is the critical value from the normal distribu-
tion). If the confidence interval does not include zero, the null hypothesis is rejected.

Difference-in-coefficients tests. In the single-mediator case, an estimator of the mediated
effect may be obtained by taking the difference between the coefficient relating the inde-
pendent and dependent variables before and after adjustment for the mediator. There is
not a clear analogous difference-in-coefficient test for the three-path mediated effect, illus-
trating the problem with extending the difference in coefficient tests to more complicated
models. For example, the difference between the coefficient relating the predictor to the
second mediator could be examined before and after adjustment for the first mediator, and
the coefficient relating the first mediator to the outcome could be examined before and
after adjustment for the second mediator. Although it may be possible to develop a three-
path test of mediation based on differences in coefficients, this method would likely be
cumbersome in comparison to the product-of-coefficients test. As a result, difference-in-
coefficients tests for mediation are not considered in the present study.

Resampling methods. In discussing the single-mediator model, MacKinnon et al. (2002)
noted that a major difficulty in using product-of-coefficients tests for mediation is that the
distribution of the product of two regression coefficients is not normal as the tests assume.
In the three-path situation, b1 b,b3 estimates the mediated effect, and its distribution is also
nonnormal (Craig, 1936; Springer & Thompson, 1970), leading to poor performance of the
product-of-coefficients tests. In situations such as this, where the assumptions of classical
statistics are violated, resampling methods often perform better because they do not make
as many problematic assumptions (Manly, 1997). Bootstrapping is one such resampling
method that has been widely applied to cases in which classical methods do not perform
well. Bootstrapping involves drawing a large number of samples with replacement from
the original sample. Sampling with replacement means that the bootstrap samples, although
all the same size as the original sample, can exclude some cases from the original sample
and include duplicates of others. The model of interest is estimated in each bootstrap sam-
ple as in the original data. The distribution of sample statistics estimated in each bootstrap
sample can be used to perform significance tests or to form confidence intervals.

MacKinnon et al. (2004) used a Monte Carlo study to compare the performance of several
resampling methods, including several variants of the bootstrap, in the single-mediator case.
Among the best performers they found were the percentile bootstrap and the bias-corrected
bootstrap. Bollen and Stine (1990) used the percentile and bias-corrected bootstrap methods
to estimate confidence intervals for real data in the single-mediator case. They found that
particularly in their small sample, the bootstrap captured the asymmetry in the sampling dis-
tribution missed by the product-of-coefficients test using the multivariate delta standard
error. Shrout and Bolger (2002) also demonstrated and advocated for the use of the boot-
strap in testing mediational models.

Bootstrap methods can be generalized from the two-path to the three-path situation. In
the three-path situation, regression models are first estimated for the original data to find
the coefficients b;, by, and b3. A large number of bootstrap samples are drawn, the same
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models are estimated for each bootstrap sample, and the b;b,b3 estimates from each boot-
strap sample are used to form the bootstrap distribution. The limits of a percentile boot-
strap confidence interval are simply the values of b;b,bs at the o/2 and 1 — o/2 percentiles
of the bootstrap distribution, where « is the nominal Type I error rate. For example, for
the typical o = .05, the limits are the 2.5th and 97.5th percentiles of the distribution. The
bias-corrected confidence interval limits are also taken from the bootstrap distribution, but
they are adjusted if the bootstrap distribution fails to center at the sample estimate of the
mediated effect. Details of the bias correction procedure are given in Table 1, in Efron
and Tibshirani (1993, chap. 14) and in Manly (1997, sec. 3.4).

An Empirical Example

Six methods of testing the three-path mediated effect have been described. These meth-
ods include one causal-steps method, the joint significance test; three product-of-coefficients
methods, the multivariate delta variance estimator, the unbiased variance estimator, and the
exact variance estimator; and two bootstrap methods, the percentile bootstrap and the bias-
corrected bootstrap. These six methods were applied to data based on Kiefer’s (2005) study
of the role of negative emotion in the effects of organizational change. Two of her hypoth-
eses may be considered together as a three-path mediational model. First (Hypothesis 1a),
the effect of organizational change on employees’ negative emotions was expected to be
mediated by working conditions. Second (Hypothesis 2b), negative emotions were expected
to predict withdrawal from the organization. In terms of Figure 1 and Equations 1-3, organi-
zational change is X, working conditions is M/, negative emotions is M,, and withdrawal is
Y. The paths from X to M; (b;) and from M, to M, (b,) were expected to be negative, and
the path from M, to Y (b3) was expected to be positive.

The application of these methods was not expected to produce exactly the same results
as Kiefer’s (2005) for three reasons. First, her entire model was more complex, including
three other variables that were not included in the present analysis. Second, as the boot-
strap methods require case-level data and we did not have Kiefer’s original data, our ana-
lyses are based on a simulated data set of the same size as the original data (N = 155),
simulated to match as closely as possible the variances and correlations of Kiefer’s
(Table 1) data. Third, Kiefer reported standardized results, and the present application
reports unstandardized results for simplicity.

Equations 1-3 were estimated using ordinary least squares (OLS) regression for the data
based on Kiefer (2005). As shown in Table 2, each of by, b,, and b3, the coefficients mak-
ing up the mediated effect, was significantly nonzero. All three effects were in the pre-
dicted direction: Organizational change was negatively related to working conditions,
working conditions were negatively related to negative emotion, and negative emotion
was positively related to withdrawal. The significance of all three coefficients means that
the joint significance test rejected the null hypothesis of no mediation.

The estimate of the mediated effect for the product of coefficients methods, b; x
by x b3, was 0.332. Standard errors of the mediated effect based on the three different esti-
mators are shown in Table 2. The estimators produced very similar results because the
coefficients were large and their standard errors small. Under these circumstances, the
formulas for all three estimators (see Table 1) are dominated by the first three terms,
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Table 2
Results for Each Method Applied to Data Based on Kiefer (2005)
Hypothesis,
Method Effect SE Test Test Result
Joint significance b= —0.947 sp1 =0.299 t(153)= —3.17,
p=.002
b, = —0.639 spo = 0.062 t(152) = —10.35,
p<.001
b3 ="7.06 sp3 =0.078 t(151)=17.06, Reject Hypothesis,
p <.001
Multivariate delta ~ b1brb3 =0.332 Smultivariate delta = 0.119  95% CI =[0.098, Reject Hypothesis,
standard error 0.565]
Unbiased standard ~ b{b,b3 =0.332 Sunbiased = 0.118  95% CI=[0.101, Reject Hypothesis,
error 0.563]
Exact standard b1byb3 =0.332 Sexact = 0.121  95% CI=10.095, Reject Hypothesis,
error 0.568]
Percentile b1bb;=0.332 — 95% CI1=10.109, Reject Hypothesis,
bootstrap 0.626]
Bias-corrected b1byb3;=0.332 — 95% CI=1[0.131, Reject Hypothesis,
bootstrap 0.678]

Note: The standard error of byb,b3 was not estimated using the bootstrap methods. CI = confidence interval.

which they all have in common, whereas the remaining terms, which are present only in
the unbiased and exact standard errors, are very small. Confidence intervals calculated
using each estimator are also shown in Table 2. These were calculated by multiplying
each estimated standard error by 1.96 (the critical z value for a two-tailed test with
o =.05) and adding and subtracting the result from the estimate of the mediated effect.
None of the confidence intervals included zero, so the null hypothesis of mediation was
rejected for all three variance estimators.

Results for the bootstrap methods are shown in Table 2. For the percentile bootstrap, 1,000
bootstrap samples were drawn from the original sample. For each bootstrap sample, the
regressions in Equations 1-3 were estimated, and the estimate of the mediated effect b, b, b3
was also calculated. The limits of the 95% confidence interval for the percentile bootstrap are
the 2.5th and 97.5th percentiles of the bootstrap distribution. Therefore, the limits of the per-
centile bootstrap confidence interval in Table 2 were found by simply ordering the 1,000
bootstrap estimates of b1b,b3 and picking the 25th and the 975th values. As the interval did
not include zero, the null hypothesis of no mediation was rejected.

The bias-corrected bootstrap adjusts which percentiles are chosen from the bootstrap dis-
tribution based on whether the bootstrap distribution is mostly above or below the original
sample estimate of b;b,b3. The steps are listed in Table 1. The proportion of bootstrap esti-
mates of bybybs greater than the original sample estimate was .442. The z-score corre-
sponding to this probability, that is, the z-score above which .442 of a standard normal
distribution falls, is 0.1459. Two times this z-score, 0.2918, was added and subtracted from
the usual two-tailed 95% :z critical value of £1.960 to yield zwe = —1.668 and
Zupper = 2.252. These z scores represent the 4.8th and the 98.8th percentiles of a standard
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normal distribution. The adjustment of the bias-corrected bootstrap can be seen clearly in
this example. The majority of the bootstrap estimates of b;b,b3 fell below the original sam-
ple estimate—442 fell above and 558 fell below—so the percentiles for finding the limits of
the interval were shifted up: from the 2.5th to the 4.8th percentile at the low end and from
the 97.5th to the 98.8th percentile at the high end. Therefore, the limits of the bias-corrected
bootstrap confidence interval are the 48th and the 988th estimates from the ordered distribu-
tion of 1,000 bootstrap estimates of b1b,b3. As for the percentile bootstrap, the confidence
interval did not include zero, so the null hypothesis of no mediation was rejected.

In summary, the six methods all suggested the same conclusion: Reject the null hypothesis
of no mediation. The different methods did not produce exactly the same results, though. The
standard error formulas for the product-of-coefficients methods and the bootstrapping meth-
ods all yielded different confidence intervals. These differences raise the question of whether
the different methods will yield similar results across a broader range of circumstances.

To answer this question, a Monte Carlo study was performed. Its purpose was to com-
pare the performance of these methods in different sample sizes and for different sizes of
the coefficients making up the mediated effect. The methods were compared in terms of
(a) relative bias of their estimates of the standard error of the mediated effect (for the
product-of-coefficients methods only), (b) their Type I error, (c) their power, and (d) the
coverage of their confidence intervals (for all methods except the joint significance test).

Method

Both simulation and analysis of the data were done using Statistical Analysis System
(SAS) software (SAS Institute, 2005). Data were simulated using Equations 1, 2, and 3. The
X variable was simulated to either be normally distributed with a mean of 0 and a variance
of 1 or to be dichotomous with a .5 probability of being in each category. The latter condi-
tion was intended to mimic an experimental design with two groups. The residuals €1, &,
and &3 were simulated to be normally distributed with a mean of zero and a variance of 1.
The residuals and X when continuous were simulated using the SAS RANNOR function.
When dichotomous, X was simulated using RANNOR and then dichotomized at O into O
and 1. The intercepts B, By,, and By; were set to zero. The sizes of the coefficients B;, B,
Bs, and B, were, in different conditions of the simulation, set equal to zero or set to corre-
spond to Cohen’s (1988) small (.14), medium (.39), or large (.59) partial correlations.
Because of the large computational demands of the bootstrap methods, the number of
conditions was reduced by including only those in which B, and B, are no larger than f3;,
meaning that 30 of a possible 64 conditions defined by B,, B,, B; were included. These con-
ditions were chosen because, particularly in experimental studies where X is manipulated to
create maximal effect on M, it seems reasonable to expect that 3, will be the largest path
in the mediational chain. All levels of B, the direct effect, were included in the simulation,
meaning that both full mediation (8, =0) and partial mediation (§, # 0) models were
studied. The relations represented by 35 and B, were expected to be independent of the B,
B,, B; paths that define the mediation relation. To verify this result, f5 and B were set to
zero or large (.59), but the corresponding coefficients b5 and b were estimated in all condi-
tions, regardless of their corresponding true values. Sample size was set to 50, 100, 200,
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500, or 1,000 in different conditions. There were 4,800 total conditions: two levels of distri-
bution of X x 30 levels of B;, B,, and B; in which B, <, and B; < B, x 4 levels of B, x 2
levels of Bs x 2 levels of B x 5 levels of sample size. One thousand replications were run
for each condition. For each replication in each condition, all six methods were used to test
for mediation. For the bootstrap methods, 1,000 bootstrap samples were drawn in each
replication.

Performance of Standard Error Estimators

The product-of-coefficients methods were compared using the relative bias of their stan-
dard errors. Relative bias of each estimated standard error was calculated for each repli-
cation in a condition as

SE —SD
Relative Bias = ——210203 b1b2b3 5)

SDyp1p2p3

where SEp1pp3 is the estimated standard error of by b, b3 calculated using one of the three
estimators for one replication within a condition, and SDp17p3 is the standard deviation of
b1byb3 in the 1,000 replications for the same condition. The latter quantity estimates the
true standard error of the mediated effect for the condition. The numerator of Equation 4
is the bias of a standard error estimate. Dividing by the estimated true standard error puts
relative bias in the metric of bias as a proportion of the true value, which allows for easier
comparison across conditions. The relative bias for each of the three methods in the con-
dition as a whole was calculated as the mean of the individual replications’ relative bias
values. Based on Kaplan’s (1988) recommendation, a mean relative bias of .10 or smaller
in absolute value was considered small enough to make the standard error estimator usable
in an applied context.

Type I Error and Power

The six methods of testing for mediation in the three-path situation were each used to test
the null hypothesis of no mediation for each of the replications in each condition. The nom-
inal Type I error rate was set to .05 for all methods. The proportion of replications for which
the null hypothesis was rejected was calculated. This proportion was the Type I error rate in
conditions in which the null hypothesis was true (i.e., B;B,p;=0). It was the empirical
power level in conditions in which the null hypothesis was false (i.e., B,B,B5 # 0). For
the joint significance test, testing the null hypothesis of no mediation required a separate
hypothesis test for each of by, by, and bs. If all three null hypotheses were rejected, the null
hypothesis of no mediation was rejected. For all other methods, a 95% confidence interval
around the mediated effect was estimated. If this interval did not include zero, the null
hypothesis of no mediation was rejected (see Table 1).

Coverage

The five methods that were used to generate confidence intervals were compared in
terms of their coverage. (The joint significance test was not used to estimate confidence
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intervals.) Coverage was the proportion of replications in which the confidence interval
included the true mediated effect, ,3,B5. As 95% confidence intervals were estimated,
the methods performed well when their coverage levels were near .95.

Results

The same modeling approach was used to analyze results for each of the four study out-
comes: relative bias of standard errors, Type I error, power, and coverage. As described
above, the conditions in the study were defined by eight factors: distribution of X, size of
B,-B¢, and sample size. The six methods of testing for mediation constituted a within-
participant factor, as each of the methods was applied to all of the replications in each
condition. In models of the study outcomes, method was treated as a between-participants
factor, making for a total of nine study factors. This treatment of the method factor did not
affect the model results, as the between-participants versus within-participant distinction
is important only in calculating error terms and significance tests, and as described below,
model results were interpreted using effect sizes rather than significance tests. A separate
model was estimated for each of the study outcomes. The intent was to model each out-
come using all nine factors and their interactions. Because of the size of the data sets (as
many as 24,000,000 cases for studying coverage, for example) and the size of the design
matrix with all nine study factors and all possible interactions among them, the models
could not be estimated when all factors were treated as categorical. To be able to test these
interactions, the models were estimated with the quantitative predictors—sample size and
B, through Bs—entered as numerical values rather than as categorical predictors. These
predictors were centered before interaction terms were constructed, following the recom-
mendation of Aiken and West (1991). Entering these factors as numerical values traded
the multiple-degree-of-freedom test for differences of any form across levels of the factors
for a single-degree-of-freedom test for the linear trend in each factor. As effects of these
factors were expected to be at least monotonic, even if not precisely linear, this seemed to
be a reasonable way of retaining the higher order interactions in the model. Finally, the
type of model depended on the form of the outcome being modeled. As relative bias is
continuous, it was modeled using an analysis of covariance (ANCOVA). The other out-
comes, Type I error, power, and coverage, are dichotomous (i.e., reject versus fail to reject
the null hypothesis, confidence interval does versus does not include the true value), so
they were modeled using logistic regression, although the predictors were entered just as
they were for the ANCOV A model of relative bias.

As the number of cases for these models was so large, power to detect even trivially
small effects was very high. Therefore, rather than interpret effects based on the conven-
tional p < .05 significance criterion, or any other significance criterion, effects were inter-
preted on the basis of their associated effect sizes. In the ANCOVA model of relative bias,
the effect size measure was the proportion of variance accounted for, ®?. In logistic regres-
sion, there is no true proportion of variance accounted for measure, but there are analogs.
Following the recommendation of Menard (2000), R7 was used for the logistic models of
Type I error, power, and coverage. R? tells the proportion of reduction in deviance (badness
of fit) in a model attributable to a predictor. For @?, an effect accounting for at least 1% of
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the variance was considered large enough to be interpretable. As effect size measures in
logistic regression tend to be smaller than R? or »? values from OLS regression or analysis
of variance (Hagle & Mitchell, 1992; Hosmer & Lemeshow, 2000, p. 167), the threshold
for interpretation for R? was set to 0.5%. Effects meeting or exceeding the 1% threshold
for ? or the 0.5% threshold for R? are referred to below as being “nontrivial.” To reduce
the size of the model summary tables, only nontrivial effects are listed separately. Tables
of cell means for each study are constructed to highlight nontrivial effects and generally
collapse across effects not reaching this threshold.

One other issue that was important in modeling all of the outcomes was that the
unbiased variance estimator sometimes produced negative estimates of the variance of
b1byb3. MacKinnon et al. (2002) had similar results for the unbiased estimator in the
single-mediator case. As can be seen from the formula in Table 1, this result occurs
because, unlike the multivariate delta and exact estimators, the unbiased estimator sub-
tracts some terms to reduce positive bias of the estimator. In conditions in which the
values of B,, B,, and B; were small or zero, sampling error often made the sum of these
subtracted terms larger than the sum of the added terms. For example, in conditions in
which two or three of B;, B,, and B; were zero, 30% to 40% of the unbiased variance esti-
mates were negative across sample sizes. In conditions in which two or three of B, B,
and B3 were nonzero, on the other hand, negative estimates occurred in as many as 30% of
replications, but only for the smallest effect sizes and sample sizes. For larger effect sizes
and sample sizes, the percentage of negative variance estimates quickly dropped to near
zero. The tendency of the unbiased variance estimator to sometimes yield negative values
even though its true value cannot be negative makes it similar to the adjusted R? in OLS
regression. The adjusted R? also has a term subtracted to avoid positive bias, and under
conditions where its true value is near or equal to zero, sampling error often makes it
slightly negative. Negative unbiased variances are problematic because when the square
root is taken, the estimated standard error is an imaginary number, which cannot be used
to construct a confidence interval. In the analyses of study outcomes, unbiased variance
estimate results were included only if they were nonnegative.

Relative Bias of Standard Error Estimators

The multivariate delta, unbiased, and exact estimators of the variance of b b,b; were
compared in terms of their relative bias. As shown in Table 3, study factors collectively
accounted for 14.6% of the variance in relative bias. Individual effects are not listed
because no individual effect accounted for as much as 1% of the variance. Although no
individual effects accounted for nontrivial variance, the set of terms including method,
taken together, accounted for nontrivial variance (o> =.016), as did the sets of terms
including B, (o> =.024) and B; (®? =.023; note that these sets of terms are overlapping).
Table 4 therefore presents mean relative bias values as a function of method and size of the
mediated effect, collapsing across levels of By, Bs, B¢, and distribution of X. To save space,
mediated effect sizes are also collapsed across conditions in which results were similar.
The methods’ performance depended on the number of zero paths in null true models
and on the size of the mediated effect in null false models, so the rows of the table are
defined by these groups. The table also displays results separately by sample size, as there
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Table 3
Relative Bias Model Summary
Effect SS df MS F p w*
Model 579395 767 755.4 3,104.6 <.001 .146
Error 3398638 13967905 0.2
Total 3978033 13968672

Note: Effects are not listed separately because no individual effect accounted for as much as 1% of the
variance. Results for the unbiased standard error are based on only replications in which its variance estimate
was nonnegative.

appeared to be a consistent, if small, effect of this factor. For each table entry, which is a
mean relative bias collapsing across a number of conditions, the proportion of the condi-
tions in which the absolute value of the mean relative bias exceeded .10 is also shown in
parentheses.

Results are discussed in terms of comparing methods, as this is our major focus, but
it should be kept in mind that as no effects accounted for as much as 1% of the variance,
differences were generally small. The exact variance estimator performed most poorly of
the methods, almost always being biased high. Its relative bias exceeded 1 in conditions
where 3; = B, = B; =0 and only declined to below .10 on average when B, 3,5 exceeded
.01. In conditions in which two or three of B;, B,, and B; were zero, its relative bias was
unaffected by sample size, but in conditions in which two or three of ;, B,, and B; were
nonzero, its relative bias improved with increasing sample size. The multivariate delta
variance estimator had a similar pattern of performance, but with much less relative bias
in all conditions. For example, its worst relative bias was only .30, and its mean relative
bias was below .10 in nearly all conditions in which two or three of B;, B,, and B; were
nonzero. The unbiased variance estimator differed from the other two in that it was more
often negatively than positively biased. It performed quite well when B, =, =p;=0;
was positively biased when two of B, B,, and B; were zero; and was negatively biased
when two or three of ,, B,, and ; were nonzero. The reality is that the unbiased variance
estimator is always negatively biased; as described above, these results are based on only
the replications in which the unbiased variance estimate was nonnegative so its square
root could be taken to get a standard error. If all replications in which the unbiased var-
iance was negative had been entered as a zero standard error estimate, for example, it
would likely have exhibited strong negative bias in the conditions where two or three of
B, By, and B5 were zero.

Type I Error

All six methods of testing for mediation were compared in terms of their Type I error.
The B, x B; interaction and all higher order interactions including both coefficients were
excluded from the model, as B, x B; =0 in all null hypothesis true conditions. As shown
in Table 5, study factors accounted for a 10.4% deviance reduction. The method of test-
ing for mediation had by far the largest effect (R7 =.030), and sample size also had a
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nontrivial effect (R? =.006). Table 6 therefore shows Type I error rates for the different
methods (although the product-of-coefficients methods are averaged because they per-
formed very similarly) by sample size. The table is also broken down by size of B, B,,
and Bs, as effects of B, and B; approached the threshold for being nontrivial (R? =.004
and .003), and inspection of cell means suggested that Type I error rates varied meaning-
fully with the sizes of these coefficients. The 30 conditions defined by B, B,, and B are
collapsed into 4 based on the size of the product of the two largest coefficients (the null
hypothesis is true when any of f,, B,, and B5 is zero, so this product was nonzero in some
conditions). As excess Type I error was of particular concern, for each entry in the table,
the proportion of the conditions on which it is based in which a 95% confidence interval
for the Type I error rate was completely above .05 is also shown in parentheses.

Type I error was lower than the nominal level across methods in conditions where
at least two of B;, B,, and 5 were zero (in the first row for each condition). In conditions
where only one of B;, B,, and B; was zero, Type I error increased with increasing size of
the nonzero coefficients. For the product-of-coefficients methods, the mean Type I error
rate never reached the nominal level, even for the largest effect sizes and sample sizes.
Their Type I error rate did not significantly exceed .05 in any condition. Type I error rates
for the joint significance test and percentile bootstrap were higher than for the product-of-
coefficients methods. For both, the Type I error rate did approach the nominal level for
n =500 or 1,000 in conditions where the product of the two nonzero coefficients exceeded
.05 and for n =100 or more in conditions where the product of the nonzero coefficients
exceeded .10. Neither method had Type I error significantly exceeding its nominal level
in more than 4.7% of cells, though. The bias-corrected bootstrap’s Type I error rate fell
below the nominal rate in conditions in which two or three of B,, B,, and ; were zero,
but increased to beyond the nominal rate as the size of the nonzero effects and sample size
increased. For smaller products of nonzero coefficients, the bias-corrected bootstrap’s
Type I error rate got worse with increasing sample size, reaching a maximum of .081, with
81.3% of cells significantly exceeding .05. For larger products of nonzero coefficients, its
Type I error rate reached a maximum of .087, with 89.1% of cells significantly exceeding
.05, but improved with increasing sample size.

Power

All six methods of testing for mediation were compared in terms of their power. As
shown in Table 7, study factors accounted for a 58.4% deviance reduction. The largest
effect was that of sample size (R7 = .244); smaller nontrivial amounts of deviance reduc-
tion were associated with B,, B, their interaction, their interactions with sample size, and
the three-way interaction. As with models of relative bias and Type I error, there were no
effects of By, Bs, or Bg. Unlike the models of other study outcomes, though, no nontrivial
effects included method. Table 8 shows power levels as a function of size of the mediated
effect, sample size, distribution of X, and method (the product-of-coefficients methods are
averaged because they performed very similarly). Distribution of X is included as a fac-
tor in the table because it approached the threshold for being nontrivial (R? =.004), and
inspection of cell means suggested that power differences across this factor were large
enough to be important. Method is also included as a factor in the table in spite of not
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Table 5
Type I Error Model Summary, Nontrivial Effects (R? > .005)
Effect LR 2 df p R:
Method 97,620.3 5 <.001 .030
Sample size 18,661.6 1 <.001 .006
All other effects (R% <.005) 204,813.9 1145 <.001 .063
Model 338,898.8 1151 <.001 104

Note: The sum of individual effects’ R,% differs from the overall model R,z_ because R,z_ is not a true proportion
of variance accounted for measure. Results for the unbiased standard error are based on only replications in
which its variance estimate was nonnegative. LR = likelihood ratio.

appearing in any nontrivial effects because the primary purpose of this study is to compare
methods of testing for mediation. The set of all terms including method did, collectively,
reduce deviance at a nontrivial level (likelihood ratio %2[1,280] =556,707.7, p < .001,
R? =.031). By comparison, the set of terms including B4, Bs, or B, although conven-
tionally significant, did not approach the criterion for being nontrivial (likelihood ratio
¥3[1,344]=1,762.3, p < .001, R? = .0001; note that the two sets of terms are overlapping).

The main effects of sample size, size of the mediated effect, and distribution of X were
straightforward: Power increased with increasing sample size, with increasing size of
the mediated effect, and was greater for a continuous normal X than for a dichotomous X.
Sample size moderated differences across mediated effect size. In smaller samples,
increasing effect size was always associated with increasing power. In larger sample size
conditions, though, a ceiling effect occurred where power approached 1 for smaller and
smaller effects, making the size of the mediated effect much less a predictor of power in
the largest sample sizes than in smaller sample sizes.

The effect of method also varied with sample size and effect size. For the largest sample
sizes and effect sizes, power levels for all methods approached 1, and differences between
methods were near zero. For smaller sample sizes and effect sizes, though, differences
between methods were larger. The bias-corrected bootstrap had the greatest power in all
conditions in which power differences were manifest. It was followed by the joint signifi-
cance test and the percentile bootstrap, which had similar power levels. The product-of-
coefficients methods had the least power.

Coverage

The five methods used to generate confidence intervals for the mediated effect (the joint
significance test cannot be easily used to estimate confidence intervals) were compared in
terms of their coverage. As shown in Table 9, study factors accounted for a 4.7% deviance
reduction. Only method, 3,, and ; reduced a nontrivial amount of deviance in the model.

Coverage in null hypothesis true conditions can be inferred from Type I error. This is
because when the null hypothesis is true, the true value that a confidence interval should
include is zero. If zero is not included, the null hypothesis is rejected, and the interval has
failed to capture the true value. If zero is included, the null hypothesis is retained, and the
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Table 7
Power Model Summary, Nontrivial Effects (R? > .005)
Effect LR > df p R?
Sample size 4,460,920.4 1 <.001 244
By 847,728.3 1 <.001 .046
B3 841,959.7 1 <.001 .046
Sample Size x B, 338,318.9 1 <.001 .019
Sample Size x P 335,062.0 1 <.001 .018
By x Ps 445,095.5 1 <.001 024
Sample Size x B, x B3 276,536.8 1 <.001 .015
All other effects (Ri <.005) 2,983,032.0 1528 <.001 .163
Model 10,652,891.0 1535 <.001 584

Note: The sum of individual effects’ R? differs from the overall model R? because R? is not a true proportion
of variance accounted for measure. Results for the unbiased standard error are based on only replications in
which its variance estimate was nonnegative. LR = likelihood ratio.

interval has succeeded in capturing the true value. Therefore, coverage is equal to 1 minus
Type I error in null true conditions. Returning to Table 6, it is clear that all methods had
too high coverage (indicating too wide confidence intervals) in conditions in which two or
three of B,, B,, and B3 were zero. Coverage fell to near the nominal level in the largest
effect size and sample size conditions for the product-of-coefficients methods. For the
percentile bootstrap, coverage fell to near the nominal level for somewhat smaller effect
and sample sizes. The bias-corrected bootstrap had coverage that fell as low as .913 for
the largest effect sizes in n» =100 conditions and as low as .919 for smaller effect sizes
and larger sample sizes.

Table 10 shows coverage in null false conditions and, similar to the Type I error results,
the proportion of cells in which coverage was significantly below .95 as a function of
method, size of the mediated effect, and sample size. Sample size is included, although its
effect did not reach the threshold for being nontrivial, because there nevertheless appeared
to be a clear pattern of results across its levels. Unlike Tables 6 and 8, Table 10 presents
the product-of-coefficients methods separately because their coverage levels were quite
different. The unbiased standard error had the lowest coverage levels (indicating too nar-
row confidence intervals), with a minimum of .839, with 100% of conditions falling sig-
nificantly below .95. Its coverage levels increased with increasing sample size and effect
size. The multivariate delta standard error had a similar pattern of performance but with
generally better coverage; its lowest coverage was .880. The exact standard error had the
best coverage of the product-of-coefficients methods. It was as low as .920 in one con-
dition but fell between .940 and .950 in most conditions where the mediated effect was
.01 or larger and sample size was at least 200. The percentile bootstrap had very good
coverage performance, with a minimum of .930, and at least .940 across conditions when
sample size was at least 100. The bias-corrected bootstrap had too low coverage, with a
minimum of .897 in the smallest sample size and effect size conditions, but it matched the
percentile bootstrap in having good coverage for sample sizes of at least 200.
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Table 9
Coverage Model Summary, Nontrivial Effects (R? > .005)
Effect LR 2 df p R:
Method 48,262.7 4 <.001 .006
By 70,427.9 1 <.001 .008
B3 70,121.4 1 <.001 .008
All other effects (R,% <.005) 238,473.9 1273 <.001 .029
Model 391,633.9 1279 <.001 .047

Note: The sum of individual effects’ R? differs from the overall model R? because R? is not a true proportion
of variance accounted for measure. Results for the unbiased standard error are based on only replications in
which its variance estimate was nonnegative. LR = likelihood ratio.

Discussion

This article has introduced three estimators of the standard error of the three-path
mediated effect and has compared their performance to three other methods of testing
for mediation. The best performers for null hypothesis testing, based on an assessment of
Type I error and power, were the joint significance test, the percentile bootstrap, and the
bias-corrected bootstrap. The joint significance test and the percentile bootstrap were the
more conservative methods: They successfully controlled Type I error and had good power.
The bias-corrected bootstrap had consistently the highest power of any tested method, but
its Type I error rates were significantly above the nominal level in conditions of large
sample size and large nonzero coefficients in the mediated effect.

In terms of coverage performance, the bootstrap methods were the best performers. The
percentile bootstrap had too low coverage for the smallest sample size in null false condi-
tions but had coverage near the nominal level in all other conditions. Mirroring its too-high
Type I error, the bias-corrected bootstrap had too low coverage in some null hypothesis
true conditions, but it performed well in null hypothesis false conditions with sample sizes
of at least 200. Of the product-of-coefficients methods, the exact standard error performed
best: It almost always had coverage at or above the nominal level, whereas the other two
methods had far too low coverage in null hypothesis false conditions with smaller samples.

Of the three product-of-coefficients methods, the multivariate delta estimator performed
best in relative bias. It consistently overestimated standard errors by 20% to 30% when
two or three of the paths in the mediated effect were zero but for most conditions had neg-
ligible relative bias. The unbiased standard error frequently yielded negative variance esti-
mates for the mediated effect in the smallest effect size conditions, and the exact standard
error had bias similar to that of the multivariate delta method, but larger.

In summary, we recommend three methods for testing the three-path mediated effect.
These are the joint significance test, the percentile bootstrap, and the bias-corrected boot-
strap. The major advantage of the joint significance test is its ease and speed of appli-
cation. In circumstances where only a test of the null hypothesis of no mediation is of
interest, it is an ideal method, as it controlled Type I error at or below its nominal level
and had good power. Its major drawback is that it cannot be easily used to estimate a
confidence interval for the mediated effect. The bootstrap methods allow for confidence
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intervals to be estimated as well as performing hypothesis tests. Of the two, the percentile
bootstrap is the more conservative. It controlled Type I error at or below its nominal level
in all conditions. The bias-corrected bootstrap had the highest power of any method across
conditions but had excess Type I error in some conditions. Although statistically signifi-
cant, these excess Type I error rates were only .087 at the largest, though, so the extra
power the method affords might outweigh the excess Type I error.

An SAS macro that performs all the tests for mediation discussed in this article is
available at the second author’s Web site (http://www.public.asu.edu/ ~ davidpm/ripl/
mediate.htm). The macro works only for manifest variable models. For models that
include latent variables, the joint significance test may be easily performed using any
structural equation modeling (SEM) program that outputs estimates and standard errors
for by, by, and b3. These include Mplus (Muthén & Muthén, 2006), LISREL (Joreskog &
Sorbom, 1996), EQS (Bentler, 1995), and AMOS (SPSS Inc., 2006). Confidence intervals
for both bootstrap methods may also be obtained from Mplus (using the “model indirect”
command and the “cinterval(bootstrap)” or “cinterval(bcbootstrap)” output options).
LISREL, EQS, and AMOS will perform bootstrapping and save out bootstrap estimates of
the by, by, and b3 but will not provide limits of a confidence interval based on these boot-
strap estimates. Both percentile and bias-corrected confidence limits may be found from
these output values, either manually (e.g., by picking the 2.5th and 97.5th percentiles for a
percentile bootstrap 95% confidence interval) or using a second SAS macro also available
at the second author’s Web site.

Generalizing the Results

The results of the present study are similar to those of previous studies of the two-path
mediated effect. MacKinnon and colleagues (2002) also found good Type I error and
power performance for the joint significance test. MacKinnon et al. (2004) found the bias-
corrected bootstrap to have the most power of any tested method and recommended it
based on this result. They also found that it had excess Type I error, though, and that the
percentile bootstrap had better control of Type I error (pp. 117, 120), although they con-
sidered the extra power to be worth risking a little excess Type I error. Although our
recommendation is more conservative in suggesting the percentile bootstrap along with
the bias corrected bootstrap, the similarity of results across two- and three-path mediated
effects suggests that these best performing methods may be generalized to testing media-
tional chains of any length.

The Monte Carlo study reported here made several simplifying assumptions, such as that
there were no other variables in the model other than the independent variable, the dependent
variable, and the two mediators. This condition need not hold for mediation to be tested. The
best performing methods require only estimates of the three-path coefficients by, b;, b3, and
their standard errors. The inclusion of other variables in the model should only improve these
estimates, and therefore the tests of the mediated effect, particularly when exclusion of the
other variables would have resulted in bias in the estimates of the path coefficients.

Another simplifying assumption of the Monte Carlo study was that the variables were all
measured without error. In practice, of course, this is a highly unrealistic assumption. Mea-
surement error in the variables in the model will attenuate their zero-order correlations
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toward zero. This typically means that the coefficients by, by, and b3 will also be attenuated
toward zero, although in the models including more than one predictor (Equations 2 and
3), coefficients may be biased in either direction (Cohen, Cohen, West, & Aiken, 2003,
Box 4.3.1). Standard errors for the coefficients will increase with measurement error in the
dependent variable of each regression (Cohen et al., 2003, p. 124). For both of these rea-
sons, the power results reported here are likely upper bounds on the power that might be
expected in models having effect sizes used in the Monte Carlo study. The problem of
measurement error in the variables can be dealt with using an SEM. Latent variables can
be used in place of any or all of the measured variables X, M, M,, and Y in Figure 1. As
the path coefficients by, by, b3, and their standard errors can still be estimated, the methods
discussed here can all be applied.

In the Baron and Kenny (1986) framework, partial and full mediation are distinguished.
Partial mediation occurs when a mediator accounts for only some of the relation between
the independent and dependent variables. Full mediation occurs when no significant
relation remains between the independent and dependent variables after the mediator is
entered in the model. Whether a mediator (or series of mediators as in the three-path situa-
tion) partially or fully mediates the independent-to-dependent variable relation can be
found by examining the size of the direct effect, which is b4 in the three-path situation.
The size of the corresponding true value B, was a factor manipulated in the Monte Carlo
study; it did not have a nontrivial effect, either alone or in an interaction term, on any of
the study outcomes. This result suggests that the conclusions of the present study may be
generalized across instances of both partial and full mediation.

Mediational effects may also be categorized as consistent or inconsistent (MacKinnon,
Krull, & Lockwood, 2000). In the single-mediator context, mediation is consistent when
the mediated effect has the same sign as the direct effect. Mediation is inconsistent when
the mediated effect has the opposite sign as the direct effect. The issue is more complex
in the two-mediator case because there are effects that pass through only one mediator
(B; B and BsP5) in addition to the mediated effect B, 3,35 and the direct effect B,, and these
effects may have any combination of positive and negative signs. In the Monte Carlo study
reported here, all coefficients had only positive or zero values. The performance of the
methods compared should be unaffected by the signs of the effects, though. The signs of
the b4, bs, and bg paths are irrelevant because these paths are not included in any of the
tests; the paths are important only because their estimation allows for better estimates of
b1, by, and b3 and their standard errors. As for the signs of by, b,, and b3, the joint signifi-
cance test applies two-tailed tests to each, so its performance will not depend on their signs.
Similarly for the product-of-coefficients methods, the point estimate of the mediated effect
b1b,bs3, which is where confidence intervals are centered, will be an unbiased estimate of
the true mediated effect 3,,B; as long as each coefficient is an unbiased estimate of its
corresponding true value, regardless of the sign on any of the coefficients or true values.
The estimates of the standard error of byb,b3 will also not be affected by the signs of the
coefficients, as the coefficients are squared when entered in the formulas (see Table 1).
Finally, confidence intervals generated using bootstrap methods will be unaffected by the
signs of the coefficients. If at least one coefficient has a true value of zero (i.e., the null
hypothesis is true), then bootstrap estimates of that coefficient will tend to change sign
from one bootstrap sample to another, making the bulk of the bootstrap distribution fall
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near zero and leading to a failure to reject the null hypothesis. If all three coefficients are
nonzero (i.e., the null hypothesis is false), then bootstrap estimates of the coefficients will
tend to have the same sign from one bootstrap sample to another, moving the bulk of the
bootstrap distribution away from zero (with the direction depending on the signs of all
three coefficients) and leading to a rejection of the null hypothesis.

Limitations and Future Directions

Estimating a three-path mediational model using Equations 1-3 requires making a num-
ber of assumptions, mostly relating to the correct specification of the model. As outlined
by James, Mulaik, and Brett (1982), correct specification includes specification of the
causal order of the variables, specification of the causal direction (no reciprocal paths are
estimated), the assumption that the model is self-contained (i.e., there are no omitted vari-
ables; this includes the assumption that interactions need not be included), the assumption
that there are no moderator effects, and the assumption that the model is stable. As with a
simple regression model, the misspecification of the model by failing to include any of
these relations or variables when they should be included will lead to bias in the regression
coefficients. The three models in Equations 1-3 are also assumed to have independent resi-
duals. This assumption can be tested if the three-path mediation test occurs in the context
of a larger SEM, which could allow for the covariance among the residuals to be estimated
to discover whether it is, in fact, different from zero.

In addition, as the models that make up the three-path mediational model are regression
models, whether estimated using regression or SEM, they make all the assumptions typi-
cally made by regression models. These include the assumptions of linearity of the relations
between variables, normally distributed residuals when conditioning on the predictors, and
residuals that are independent of one another. If the linearity assumption is violated, this is a
misspecification of the model, and regression coefficients will tend to be biased. If the
assumptions about the residuals are violated, the standard errors will be biased.

The methods used to obtain point estimates and confidence intervals for the three-path
mediated effect investigated in this article assume that the estimate of the relation between
the mediators and the relation from the mediator to the dependent variable represent the true
causal effect. As outlined by Holland (1988), these assumptions may be unlikely to be true.
Following Holland’s analysis, it is likely that the unadjusted total effect of the treatment on
the first mediator, the treatment effect on the second mediator, and the treatment effect on
the dependent variable are estimates of the underlying causal effect. The regression coeffi-
cients for the relations among the two mediators and the dependent variable are not direct
estimates of causal effects in Rubin’s (1974) causal model. For example, the ordering of the
two mediators and the dependent variable may not be as hypothesized. Researchers should
keep in mind that the methods described here make this assumption, which may be wrong
for some data. Theory and additional experimental studies must be used to bolster the causal
hypothesis underlying the three-path mediation model.

One approach to testing for mediation that has not been mentioned here is the asym-
metric distribution of the product method. MacKinnon et al. (2004) applied this method
in the single mediator case, where the distribution used is of the product of two random
variables, one for each of the two paths. In the three-path situation studied here, the
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distribution of the product of three random variables would be required. A few studies
provide analytic formulas for this distribution, but no software to integrate the density has
yet been introduced. This approach and Monte Carlo approaches to estimate this distribu-
tion are a topic for future study.

Appendix

The multivariate delta method is a general method of estimating the variance of functions of
random variables that are normally distributed. As the regression coefficients by, b,, and b3 are nor-
mally distributed, this method can be applied to estimate the variance of b;b,b3. The two parts
required are the covariance matrix of by, b,, and b3, labeled V, and the vector of partial derivatives
of b1 b,b3 with respect to each of by, by, and b3, labeled d. The covariance matrix is pre- and post-
multiplied by the vector of derivatives:

s s s ob
b1 Sblb2  Sp1b3 |
2 avd’ Ob1byby 0bibybs Obbybs ; 2 bbb
ivari = = Sb2b1 w3 | | —ops
multivariate delta b, D b, TD by b2 S 0by
Sp3bl Sh32  Sip Oby1bybs

52, Spi2 Spips | | babs
= [babs, bibs, bibo) | spop1 S5, spaws | | bib3
Spabl Spab2 Sk biby

= b3b3sy, + bib3si, + bib3siy + 2b1bab3sy o+ 2b163b3 5,5+ 2b1babasiops.

The three-path coefficients by, b,, and b3 are independent, so the last three terms are zero, and the
multivariate delta estimate of the variance is
2 2.2 2,22 2 2
Smultivariate delta = = bibysy: + bibis, + bibs
The unbiased estimate of the variance of b1b,b3 is based on the work of Goodman (1960). His
Equation 5 gives the unbiased estimate of the variance of two independent random variables, but

he suggested that it could be easily extended to more than two variables. Extending his equation to
three independent variables, which in this case are the path coefficients by, b, and b3, yields

§2 2 2 2N\2 2 2 2N\2 2 2N2 22
Sunbiased = (b7 sbl)(b — 5p)sp3 + (D) sbl)(b = 533)8p0 + (b3 — 535) (b3 — 533)53,
2 22 2 22 2 2 2 2
+ (b sbl)‘bz ‘bz (b sb2)gblsb% (b5 — ‘bs)%lsbz + g1;1 9b25b3
= (bibssys — bisiysis — D3siiSts + Sh15a873) + (B1b3sy — bisiySiy — 387,80 + St1510573)
253 52563 2551563 T Sp15525b3 b2 5253 35b15p2 T Sp15525b3
2.2 22 2
+ (b3b sbl b38p18h — b3sblsb2 + SblsbzsbS) + (b15b25b3 - sb15b25b3)
22 22 22 22 22
+ (b3 Sblslﬁ Sblsb2qb%) (b3 91;2 Sp1 91;251;3) + ‘blsbzsbs

2 2 2 2
=b1b3sy3 + bibisy, + bibisy, — bispysis — basyisps — b3Sy, + Sp15p5p3-

The exact variance estimate is also an extension of Goodman’s (1960) exact variance estimate
for the product of two random variables. This formula requires the square of the coefficient of
variation to be defined. For variable b, it is G(b;) = s,/b?. Extending Goodman’s Equation 2, the
exact variance estimate of by b, b3 is
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Serace = (D10203)*[G(B1) + G(b2) + G(b3) + G(b1)G(b2)G(b1) + G(b3) + G(b2)G(b3)
+ G(b1)G(b2)G(bs3)]
= (b1babs)?[(551/b7) + (552/03) + (553/B3) + (55 /67) (s32/D3) + (551 /67) (s3/63)
+ (532/b3) (s33/63) + (531/b1) (s30/83) (33/ %))
= bibysis + bibisy, + b3basy + bispysis + 0335 + b3si i + 55155050
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