
Tetrahedral Mesh Compression with the Cut-Border Machine

Stefan Gumhold�, Stefan Guthe, Wolfgang Straßer

WSI/GRIS University of Tübingen

Abstract

In recent years, substantial progress has been achieved in the area
of volume visualization on irregular grids, which is mainly based
on tetrahedral meshes. Even moderately fine tetrahedral meshes
consume several mega-bytes of storage. For archivation and trans-
mission compression algorithms are essential. In scientific appli-
cations lossless compression schemes are of primary interest. This
paper introduces a new lossless compression scheme for the con-
nectivity of tetrahedral meshes. Our technique can handle all tetra-
hedral meshes in three dimensional euclidean space even with non
manifold border. We present compression and decompression al-
gorithms which consume for reasonable meshes linear time in the
number of tetrahedra. The connectivity is compressed to less than
2.4 bits per tetrahedron for all measured meshes. Thus a tetrahe-
dral mesh can almost be reduced to the vertex coordinates, which
consume in a common representation about one quarter of the total
storage space.

We complete our work with solutions for the compression of ver-
tex coordinates and additional attributes, which might be attached
to the mesh.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—object representations I.3.6 [Com-
puter Graphics]: Methodology and Techniques—Graphics data
structures and data types E.4 [E.4 Coding and Information Theory]:
Data compaction and compression

Keywords: compression algorithms, solid modeling, scientific vi-
sualization, volume rendering

1 Introduction

Tetrahedral meshes have been around in finite element simula-
tions on volumetric domains for a long time. With the growing
need of visualizing simulation data, tetrahedral meshes established
themselves also in volume visualization. There are several beauti-
ful properties of tetrahedral meshes which make them the natural
choice for volume data representation. The flexibility of a tetra-
hedral mesh is ideally suited for irregular samplings and multi-
resolution analysis. The convex nature of a single tetrahedron al-
lows for a simple visibility sorting algorithm[12], which is essential
in volume visualization.

In most application areas of tetrahedral meshes some data is at-
tached to the mesh elements. The data can be attached to the ver-
tices, edges, the faces, the border faces or the tetrahedra. A density
might be attached to the vertices, the intensity of a flow to the edges
or material identifiers to the tetrahedra. The tetrahedral mesh serves
several different purposes. It can be used to store nearest neighbors,
to subdivide a volume into convex primitives or to sample and, by

�Email: gumhold@uni-tuebingen.de

using the barycentric coordinates, to parameterize the domain of a
function. The function can be scalar, a vector field or even a tensor
field as for example the stress tensor of an inhomogeneous mate-
rial. Our compression algorithm can be extended in a natural way
to support compression of all three types of data functions defined
on all different types of mesh elements.

1.1 Basic Definitions and Notations

We deal with tetrahedral meshes in the three dimensional Euclidean
space given by a set of tetrahedra such that any two tetrahedra either
are disjunctive or share a face, an edge or a vertex. We denote the
number of vertices, edges, faces, border faces and tetrahedra with
v, e, f , b and t respectively.

We will denote the total amount of bits consumed by a tetra-
hedral mesh with S, where we use a right subscript to express a
special representation type. Sstd denotes for example the standard
representation with a list of vertex coordinate triples, a list of vertex
index quadruples representing the tetrahedra and additional lists for
the attached data. We split the storage space S into the bits L con-
sumed by the locations of the vertices, C consumed by the connec-
tivity and D consumed by the data attached to the mesh elements.
If no data is present only the geometry consisting of connectivity
and vertex locations has to be encoded in G bits. For reasonable
representations we get:

S � G +D G � C + L

The combined representation of two and more components of the
tetrahedral mesh can be more efficient since better predictions
might improve delta coding or just because the coding mechanism
can combine some fractional bits.

1.2 Basic Equations and Approximations

The basic equation for a tetrahedral mesh as defined in the previous
section is the Euler equation:

v � e+ f � t = �; (1)

where � is the Euler characteristic of the mesh and in most cases
negligibly small. If we count the tetrahedron-face instances once
for each tetrahedron and once for each face we get a second equa-
tion including the number of border faces b:

f = 2t+
b

2
: (2)

In the case of triangle meshes the corresponding equations are suf-
ficient to determine the average face-order of a vertex and the num-
ber of triangles per vertex in a mesh with small Euler characteristic
and few boundary edges, but not in the tetrahedral case as Figure
1 illustrates. The tetrahedron-order of a vertex might vary between
one as in Figure 1 a) and v for the mesh in b)1. Thus for the number
of tetrahedra in an arbitrary tetrahedral mesh we only know

v

4
� t 2
(v2): (3)

1The mesh is one of the delaunay tetrahedrizations of the shown set of

points.

a)

z

y

x

2
v

v
2

b)

Figure 1: tetrahedral meshes with a) minimum and b) maximum
vertex tetrahedron-order 4t

v
.

None of the tetrahedral meshes of Figure 1 are used to sample vol-
umetric functions for volume visualization or finite element ana-
lysis. The tetrahedral meshes of interest normally have a limited
edge-order of the vertices, a small border portion and low Euler
characteristics of the mesh and of the border mesh, respectively.
Therefore, we express the fraction between t and v in terms of the
average number of edges around a vertex �ov!e = 2e

v
, the num-

ber of border vertices vb, � and �b the Euler characteristic of the
border. As the border is closed we get 3b = 2eb, where eb is the
number of border edges. Using the Euler equation for triangular
meshes vb + b = eb + �b, we get vb = �b �

b
2

. This equation
together with equations 1 and 2 yields

t

v
=

�ov!e

2
� 1�

vb

v
+

�+ �b

v
: (4)

To find a basic approximation for the relation between t and v in
a typical tetrahedral mesh with small border portion and low Euler
characteristics we are left with the estimation of �ov!e for a regular
tetrahedral mesh. Unfortunately, the Euclidean space can not be
tetrahedralized with equilateral tetrahedra. But the fraction of 4�
over the steradian occupied by an equilateral tetrahedron yields2

with 11:64 a good approximation of the average vertex edge-order.

The tetrahedralization of a cubic grid yields �ov!e
v!1
�! 12 for an

1 : 5 zoning3 and �ov!e
v!1
�! 14 for an 1 : 6 zoning. Considering

this and the measured average edge-orders in Table 1, we assume
in the following an average vertex order of thirteen. For tetrahedral
meshes with small Euler characteristic and border portion we get in
agreement with Table 1

v : e : f : t � 1 : 6:5 : 11 : 5:5: (5)

Let us use this approximation to estimate the storage consumption
of a tetrahedral mesh in the standard representation, where each
vertex is given by three 32bit floating point coordinates and each
tetrahedron by four vertex indices:

Lstd = 96v; Cstd = 4t � dlog
2
ve

v�105

= 374v: (6)

For a typically sized tetrahedral mesh with a hundred thousand
vertices the connectivity consumes about four times more storage
space than the vertex coordinates. Using our algorithm we can re-
duce the connectivity to about eleven bits per vertex (see Table 3).
This reduces the storage requirements to a quarter without loosing
information.

1.3 Entropy and Arithmetic Coding

Let A = fa1; : : : ; amg be an alphabet with m different symbols
and S = s1s2 : : : sn a sequence of n symbols si 2 A. Then we

2We applied the Euler equation for spherical triangle meshes.
3Each cube is split into five tetrahedra.

define the relative frequency �ai of the symbol ai by

�ai(S)
def
=

jfjjsj = aigj

n
: (7)

If besides the relative frequencies no further information about the
sequence S is known, it can be shown that at least

E(S)
def
= E(n; �a1 ; : : : ; �am)

def
= �n �

X
a2A

�a(S) log2 �a(S) (8)

bits are needed to encode the sequence S. The quantity E is called
binary entropy. Arithmetic coding (see [13] for an introduction)
allows to encode a sequence with only slightly more bits than the
binary entropy.

2 Related Work

As shown in the previous section tetrahedral meshes consume dis-
proportional storage space in comparison to the data functions they
sample. There are two approaches to reduce the size of tetrahedral
meshes. The first one is mesh simplification as described for tetra-
hedral meshes in [5, 1, 14, 11, 7]. Most methods are based on the
edge collapse operation introduced by Hoppe [4] which is easily
generalized from the triangular case. All these methods are lossy
compression schemes.

In the area of lossless compression we only know of the
Grow&Fold method proposed by Szymczak [8]. The compressed
representation consists of a tetrahedra spanning tree and a folding
string. The spanning tree is rooted at an arbitrary tetrahedron and
grown by attaching all other tetrahedra to external triangles of the
current spanning tree. For each added tetrahedron three bits encode
whether further tetrahedra are attached to the three external trian-
gles of this tetrahedron or not. The folding string contains for each
external triangle of the spanning tree a 2-bit code defining one of
the three edge or no edge. If an edge is specified, this external tri-
angle is folded together with the triangle adjacent through the spec-
ified edge. As the spanning tree contains t tetrahedral and 2t + 1
external faces the storage requirements so far are 7t + O(1)bits.
External triangles of the spanning tree without folding edge are ei-
ther border triangles of the tetrahedral mesh or must be glued to a
triangle which is not edge-adjacent. The glue operations consume
over two bits but appear in reasonable meshes seldom enough such
that the total storage space increases only slightly seven bits per
tetrahedron. In section 6 we compare the storage space consumed
by our compressed representation to the lower bound of seven bits
per tetrahedron for the Grow&Fold representation:

CG&F

def
= 7t: (9)

The limitation of the Grow&Fold approach is that it cannot handle
non manifold borders.

Grow&Fold combines ideas from the triangle mesh compression
techniques “geometry compression through topological surgery”
introduced by Taubin [9] and “edgebreaker” proposed by Rossignac
[6]. Our compression scheme generalizes the cut-border machine
proposed by Gumhold in [3] which is similar to the edgebreaker ap-
proach. But the cut-border machine is much easier to generalize to
the tetrahedral case as the edgebreaker. The ideas of the triangular
cut-border machine are briefly repeated in section 3.1. Basically,
the cut-border machine traverses the mesh in a region filling way,
which is determined by the connectivity of the mesh, and encodes
for each newly added triangle one operation, which describes how
the triangle is formed upon the current border edge of the growing
region.

Touma’s [10] triangle mesh connectivity compression scheme al-
lows the encoding of regular triangle meshes with better space effi-
ciency. This method is in a way similar to the cut-border machine.
By encoding the vertex triangle-orders with a run-length encoding
scheme half of the operations encoded by the cut-border machine
can be saved. For regular triangle meshes the vertex triangle-orders
can be encoded very space efficiently such that the compressed rep-
resentation may only consume half the storage space of the cut-
border representation. Touma also proposes a simple prediction for
the vertex coordinates. The coordinates are estimated as the fourth
vertex of a parallelogram which is formed from the triangle inside
the growing region and adjacent to the current border edge of the
growing region. The crease angle at this edge is estimated from the
other crease angles at the interior triangle. Encoded is only the dif-
ference between the estimation and the actual location of the vertex.

Section 4 on coordinate compression is mainly inspired by the
work of Deering [2] on delta encoding and the work of Touma [10]
on coordinate compression.

3 Connectivity Compression

The connectivity compression is based on the generalization of the
cut-border machine described in [3]. Section 3.1 gives a short
overview of the method. After that we generalize the ideas to
the tetrahedral case in section 3.2 and describe the different cut-
border operations (section 3.3) and the compressed representation
(section 3.4). The best traversal strategy we found is proposed in
section 3.5. In section 3.6 we introduce an improvement for the
mesh border encoding which is also helpful for triangle mesh com-
pression with the cut-border machine. In the triangular case the
cut-border machine is very simple to implement and also extremely
fast. The generalization to the tetrahedral case requires a more so-
phisticated data structure for non manifold triangle meshes as de-
scribed in section 3.7.

3.1 Triangle Connectivity Compression with the
Cut-Border Machine

The cut-border machine compresses triangle meshes which consist
of a list of vertices and a list of triangles, each triangle containing
the three vertex indices and the indices of the three edge-adjacent
triangles. If the latter adjacency information is not known it can be
easily computed through hashing.

The cut-border machine is based on a region growing traversal of
the triangle mesh starting with an arbitrary triangle. The border of
the growing region is called the cut-border. It divides the mesh into
the inner and the outer part, which contain the already compressed
and the remaining triangles respectively. Triangles are added to the
inner part at a distinguished current cut-border edge which will be
called the gateas proposed in [6]. After each addition of a triangle
the gate moves on to another cut-border edge, until all triangles
of an edge-connected component of the triangle mesh have been
compressed. This is done for each edge-connected component.

The compressed representation contains for each triangle a bit
code of an operation identifier which tells how the triangle was
formed upon the gate. There are three cases: the gate is an edge
of the mesh border, the gate forms a triangle with a vertex on the
cut-border or the triangle is formed with a new vertex. The different
operations are called “border” , “new vertex” and “connect”. The
“connect”-operations take one parameter which specifies the offset
of the third vertex relative to the gate. The “connect”-operations
with offset one and minus one are also called “connect forward”
and “connect backward”. All other “connect”-operations split the
cut-border into two loops. As the triangle meshes describe two
dimensional surfaces in three dimensional space, two cut-border

loops can grow together again, actually once for each handle and
each hole of the triangle mesh. The operation which unifies two
loops is called “union” and takes two parameters, the index of the
second loop and the offset of the third triangle vertex within this
loop.

The cut-border data structure basically consists of a stack of dou-
bly linked lists containing the vertices – or their indices –, which are
adjacent to triangles of the inner and the outer part at the same time.

Data at the faces, edges or vertices such as their coordinates are
included in the compressed representation each time a new mesh-
element is added to the cut-border – for example the vertex coor-
dinates of vertex vi are encoded after the “new vertex”-operation
which introduces vi into the cut-border.

The decompression algorithm builds the mesh in the same order
as the compression algorithm traverses the original mesh. With the
help of the indices attached to the “connect”-operations the orig-
inal connectivity can be reconstructed with permuted vertices and
triangles. During decompression the edge-adjacency information
can be reconstructed with no additional cost.

The success of the method results from the high frequency of
the “new vertex”- and the “connect forward”-operations. Together
they constitute in most meshes over 95% of all operations. The
high frequency of the “connect forward”-operation and the low
frequency of “connect”-operations with large offsets depends in
a high degree on the traversal order, which is determined by the
choice of the gate after each operation.

3.2 From Triangle Connectivity to Tetrahedral

Connectivity Compression

As in the triangular case the uncompressed tetrahedral mesh is
stored as a list of vertices and a list of tetrahedra, each tetrahedron
containing the indices of the incident vertices and the face adjacent
tetrahedra.

The inner and the outer part consist of a set of tetrahedra. The
cut-border is the triangular surface between the inner and the outer
part and the gate is a triangle of the cut-border. For each face-
connected component of the mesh the traversal begins with an arbi-
trary tetrahedron and successively adds face-adjacent tetrahedra at
the gate to the inner part. The different cut-border operations are
described in the next section. The cut-border may become the sur-
face of an arbitrary face-connected tetrahedral mesh and therefore
contain non manifold vertices and edges. In section 3.7 we describe
an appropriate data structure. We assume that the tetrahedral mesh
is embedded in three dimensional space and that the tetrahedra do
not penetrate each other.

As in the triangular case the traversal order highly influences
the distribution of the “connect”-operations with different offsets.
Section 3.5 describes the best heuristic we could find.

3.3 Cut-Border Operations and Situations

There are three possibilities for the fourth vertex of a newly added
tetrahedron at the gate: the gate is a border triangle of the tetrahe-
dral mesh, the gate forms a tetrahedron with a new vertex or the
gate is connected through a tetrahedron to another cut-border ver-
tex. The corresponding cut-border operations will again be called
“border” , “new vertex” and “connect” and are abbreviated with
the symbols �; � and1i.

Although only three different types of cut-border operations ex-
ist, we distinguish ten different situations which describe the sur-
rounding of the cut-border around the gate for the different cut-
border operations. All the situations are illustrated in figures 4 and
5. Figure 4 shows the situations which do not introduce non man-
ifold vertices or edges. For the “border” - and the “new vertex”-
operation only one situation exists which is depicted in figure 4 c)

Algorithm 1 Vertex Enumeration

fifo.pushback(gate.zeroEdge())

fifo.pushback(gate.oneEdge())

fifo.pushback(gate.twoEdge())

while not fifo.empty do

edge = fifo.popfront()

tgl = edge.rightTriangle()

if not marked(tgl) then

mark(tgl)

vtx = tgl.oppositeVtx(edge)

if not marked(vtx) then

mark(vtx)

enumerate(vtx)

fifo.pushback(tgl.nextEdge(edge))

fifo.pushback(tgl.prevEdge(edge))

and b), respectively. The “connect” operation comes along with a
whole variety of situations. The most frequent of these is the “flip”
operation shown in figure 4 a). Here the newly added tetrahedron
connects the gate to an adjacent triangle of the cut-border. The
common edge of these two cut-border triangles is kind of flipped
if the two former cut-border triangles are replaced by the two new
cut-border triangles introduced by the new tetrahedron. The “top”
and the “close” operations are very similar to the “flip” operation.
The only difference is that not only two faces of the newly added
tetrahedron are part of the cut-border but three of them in the case
of the “top” operation or even all in the case of the “close” opera-
tion. The “close” -operation eliminates or closes an edge-connected
component of the cut-border triangle mesh. The “close” -situation
cannot be seen from the outside of the cut-border. Therefore, in
figure 4 e) the cut-border is rendered with transparent triangles. In
the front long edges of outer triangles are visible.

As mentioned earlier, the cut-border can be a non manifold trian-
gle mesh. Figure 5 portrays all types of situations which introduce
a non manifold vertex or edge. In figure 5 a) the non manifold
counterpart of the “flip” situation is shown. Here the free edge of
the “flip” situation is touched by the cut-border and therefore al-
ready belongs to the cut-border. The touched edge becomes non
manifold after application of the “connect” operation. The “join”
situation in figure 5 b) is the non manifold counterpart of the “new
vertex” operation. The fourth vertex of the newly added tetrahe-
dron is part of a region of the cut-border triangle mesh which is
further apart from the gate. This vertex becomes non manifold. Fi-
nally, in the “join” situations depicted in figures 5 c), d) and e) not
only the fourth vertex of the newly added tetrahedron belongs to the
cut-border but also one two or all three free edges of the “join” sit-
uation. Thus one, two or three non manifold edges are introduced.

The situations depicted in figures 4 and 5 constitute all possi-
ble situations, which can be easily verified by considering a newly
added tetrahedron: the three triangles of the tetrahedron which are
unequal to the gate may all be part of the cut-border or not be part.
The same holds true for the fourth vertex and the three edges not
incident to the gate. All of these seven mesh elements might be
present in the cut-border or not. The presence of one of the three
triangles implies the presence of the fourth vertex and the two in-
cident edges. If we take such implications into account each possi-
ble assignment of presence to the three triangles, three edges and
the fourth vertex yields exactly one of the discussed situations.
Thus each face-connected component of the tetrahedral mesh can
be compressed without any vertex repetitions. Only if two com-
ponents of the tetrahedral mesh are exclusively connected through
edge-adjacency and vertex-adjacency the involved non manifold
vertices are repeated. In a simple way the “border” -operation al-
lows for the encoding of all possible border surfaces of tetrahedral
meshes including non manifold borders.

The “connect” operation takes one index as parameter, which

specifies the fourth vertex in the cut-border. The fourth vertex is
with high probability near to the gate. We can exploit this fact
for a more efficient encoding by mapping near fourth vertices to
small connect indices. This is achieved by a breadth-first traversal
through the triangles of the cut-border starting at the gate as shown
in the illustration of algorithm 1. The enumeration is not uniquely
defined before one edge of the gate is specified at which the enu-
meration with the zero connect index will begin. This edge will be
called the zero edgeand is specified by the traversal strategy (see
section 3.5). Algorithm 1 gives pseudo code for the vertex enumer-
ation. The algorithm is similar to the cut-border traversal in the case
of a triangle mesh. In a fifo these edges of the cut-border are stored
which are adjacent both to a visited triangle and to a not visited tri-
angle at the same time. The zero edge is firstly placed into the fifo.
Triangles are visited by extracting the next edge from the fifo and
addressing the adjacent triangle which has not been visited yet. If
the third vertex of the newly visited triangle is reached the first time,
the next available connect index is assigned to it. In this way the
vertices obtain the indices illustrated in the figure of algorithm 1.

The “flip” situation can arise for the operations 10;11 and
12, the “top” situation for 10 and 11 and “close” only for 10.
The different “join” situations correspond to “connect” operations
with larger index and are less frequent. The traversal strategy de-
scribed in section 3.5 optimizes the choice of the zero edge in a way
that most “flip” and “top” situations are encoded with 10.

3.4 Compressed Representation

In the triangular case the “new vertex”-operation � is performed in
about half the cases and is most frequent. In the tetrahedral case the
relative frequency of � is only about 1

5:5
, whereas the connect op-

erations with small index are most frequent. For optimal encoding
of the operation symbols we use arithmetic coding since the rela-
tive frequencies are unequal to 2�k and therefore Huffman-coding
is not appropriate.

The connectivity of the tetrahedral mesh is given by the sequence
of cut-border operations. As each operation adds one tetrahedron or
specifies one border face, t+ b operations are encoded. The binary
entropy defined in equation 8 gives a good lower bound

CCB
def
= E (n; ��; ��; �10

; �11
; : : :) < Cadapt

CB
(10)

for the storage space C
adapt

CB
consumed by our arithmetic coder with

adaptive relative frequencies, which are initialized to the average
values given in the last row of Table 2. Table 3 shows that our
arithmetic coder almost achieves the optimum.

The vertex coordinates and the data at the vertices, edges, faces
and tetrahedra are incorporated in the arithmetic coding stream with
separate coding models. Each time a cut-border operation pro-
duces a new mesh element, the corresponding data is added to the
stream. The representation of a 1:6 zoning of a cube with vertex
data v0; v1; : : : ; v7 and tetrahedral data t0; t1; : : : ; t5 might look as
follows:

t0x0y0z0v0x1y1z1v1x2y2z2v2x3y3z3v3��

�t1x4y4z4v4� � t2x5y5z5v5�

�t3x6y6z6v610t4�� � t5x7y7z7v7������:

3.5 Traversal Order

The traversal strategy chooses after each cut-border operation the
next gate and zero edge. The aim is to favorite a small number
of different kinds of operations. To avoid most connect operations
with large indices it turned out that a good strategy is to stay at
one cut-border vertex until all adjacent tetrahedra have been vis-
ited. The cut-border vertices are processed in a fifo order. For the

choice of the zero edge and the order in which the triangles around
a cut-border vertex are added, we tried two heuristics that favorite
the 10-operation. The first one cycles around edges and tries to
close up with a10-operation by setting the zero edge of the gate
to the edge around which the cut-border machine cycles. The sec-
ond strategy defines the zero edge of each cut-border triangle at the
time when the triangle is created. The zero edge is set to the edge
which is shared by the gate and the new triangle. In case of a new
vertex operation it is obvious that with this choice the zero edge is
the edge with the smallest angle in the outer part. This still holds
true to some extent for the other operations. The first heuristic in-
creased the frequency of the10-operation to 45% and the second
heuristic even to 60%. Thus we chose the second strategy, which is
documented in Table 2.

3.6 Mesh-Border Encoding

In order to allow for a non manifold mesh border, we explicitly
encode the border operations. The border symbol can be avoided
when an edge-adjacent triangle of the gate has already been en-
coded as border triangle. In this case the corresponding connect
symbol can be used. This optimization helped to decrease the addi-
tional amount of storage for the mesh border to one bit per border
triangle as tabulated in Table 3. The same optimization improves
the border encoding in the triangular case of the cut-border ma-
chine.

3.7 Cut-Border Data Structure

Data Structure 1 Cut-Border

CutBorder

CutBorderTriangle triangles[]

Fifo<CutBorderVertex> vertices

TriangleIndex gate

CutBorderTriangle

VertexIndex vertexIndices[3]

TriangleIndex adjacentTriangles[3]

TetraIndex innerTetra

Boolean meshBorder

Integer zeroEdge

CutBorderVertex

VertexIndex meshVertexIndex

Set<TriangleIndex> adjacentTriangles

Data structure 1 shows the cut-border data structure. Three re-
lations between the cut-border vertices and the cut-border triangles
are stored: for each triangle the three incident vertices and three
edge-adjacent triangles; for each vertex all incident triangles. The
latter relation is stored in a set data structure which allows inser-
tion and elimination of elements and the intersection of two sets.
This relation allows for the handling of non manifold vertices and
edges. For each cut-border triangle the incident tetrahedron of the
inner part is stored in order to find the new tetrahedron if the tri-
angle becomes the gate. The meshBorder-flag tells us when the
cut-border triangle has already been encoded as border triangle of
the mesh and therefore does not have to be visited again. With the
help of this flag the optimized border encoding is realized. As the
traversal order introduced in section 3.5 defines the zero edge for
each triangle at creation time, an index between zero and two is
stored for each cut-border triangle defining the zero edge. The cut-
border vertices are organized in a fifo as demanded by the traversal
strategy chosen in section 3.5.

We generate for each vertex of the tetrahedral mesh a field which
stores the index of the cut-border vertex and initialize it before com-
pression to minus one. In this way we can not only map a tetrahe-
dral mesh vertex index to a cut-border vertex index but do also know
which of the tetrahedral mesh vertices are part of the cut-border.

Figure 2: Edge-adjacency of cut-border triangles around non mani-
fold edge.

Let us describe why it is sufficient to keep for each triangle
only three edge-adjacent neighbors even at non manifold edges.
At any time the cut-border describes the surface of a tetrahedral
mesh. Thus the faces around a non manifold edge divide the space
into regions alternately belonging to the inner and the outer part.
These regions around a non manifold edge are called inner/outer
regions. The faces bounding the same outer region can be set to be
edge-adjacent as illustrated in Figure 2. This definition correctly
reflects the proximity needed in enumerating the vertices relative
to the gate. Faces of different outer regions can not be connected
through a tetrahedron without intersecting an inner region.

Finally, we describe the updates of the cut-border data structure
for the different situations depicted in figures 4 and 5. During the
“connect” operation of a manifold “flip” situation (see figure 4 a))
the two present triangles in the cut-border are replaced with two
new ones where the common edge is flipped. The vertices and face-
adjacent triangles of the two new triangles can be easily determined
from the old triangles. For each new triangle the zero edge is set to
the edge, which is incident to the gate. The innerTetra index of
the newly added triangles is set to the newly added tetrahedron, as
in all other situations of all operations. Finally, the old triangles are
removed from the triangle sets of the vertices and the new triangles
are added.

The first step during the update of the “new vertex” operation is
to create a new cut-border vertex for the fourth vertex of the newly
added tetrahedron and store its vertex index of the tetrahedral mesh
in the corresponding field. Conversely, the index of the new cut-
border vertex is stored within the corresponding field of the tetra-
hedral mesh vertex. Next the gate triangle is removed and three new
triangles are inserted. Again their zero edges are set to the edges in-
cident to the gate. The “border” operation just sets the border flag
of the gate triangle. For the border optimization the border flags
of the three edge-adjacent cut-border triangles are checked and if
one of them is set, the operation is encoded with the corresponding
“connect” operation. The “top” situation is similar to the “flip”
situation except that three triangles are removed and only one is
added. As last manifold situation the “close” operation eliminates
all involved triangles and these vertices for which the set of adja-
cent triangles becomes empty. If a cut-border vertex is removed the
index stored with the corresponding tetrahedral mesh vertex is set
to minus one again.

In order to distinguish between manifold and non manifold sit-
uations we have to clear up how to decide whether an edge of the
newly added tetrahedron belongs to the cut-border or not. The ques-
tion is trivially answered positively if an incident triangle of the
newly added tetrahedron already belongs to the cut-border. Other-
wise the answer can be determined by intersecting the set of adja-
cent triangles of the incident vertices of the edge in question. If the
intersection is empty no cut-border triangle contains the edge and
therefore the edge cannot belong to the cut-border. The intersection
test must be performed for all edges of the non manifold situations
in figure 5 which are not incident to a cut-border triangle. In case

of the “nm flip” situation this is one edge and in case of the four
“join” situations these are three edges. Only if the non manifold
edges are detected, the face-adjacencies can be updated according
to figure 2. And this is the only difference in the update process
between the “nm flip” and “flip” situations and between the four
different “join” situations and the “new vertex” operation.

The “nm flip” operation is distinguished from the “flip” situa-
tion by checking if the edge connecting the two newly added tri-
angles belongs to the cut-border or not. This check can be done
after the update performed for the “flip” situation, such that the
face-adjacencies of the two new triangles can be corrected if neces-
sary. This is only possible if we assume that the vertex coordinates
are known and given in three dimensional space. For more gen-
eral tetrahedral meshes the neighbors of the newly added triangles
must be explicitly encoded. This can be done with few bits and as
the non manifold situations are much less frequent as the manifold
situations, the total storage space won’t increase significantly for
typical meshes.

The family of “join” situations is detected whenever the three
triangles of the newly added tetrahedron, which are not equal to the
gate, are not part of the cut-border but the fourth vertex is part of
the cut-border. The latter condition is checked with the help of the
cut-border index field attached to the tetrahedral mesh vertices. The
update of the “join” situations is the same as in the case of the “new
vertex” operation accept that the three newly added triangles must
also be inserted to the triangle set of the fourth vertex. Finally, the
three potential non manifold edges are checked for their presence
in the cut-border and the face-adjacencies of the corresponding tri-
angles are corrected if necessary as in the case of the “nm flip”
situation.

4 Coordinate Compression

In a first step we quantize each vertex coordinate to 16 bits accord-
ing to the diagonal of the bounding box of all vertices. Thus the
compression is lossy and for some applications not appropriate. All
the meshes we received came in ASCII format with six to eight
valid digits which is equivalent to 19-26 bits. We loose some in-
formation in the quantization step and the shape of small tetrahedra
changed slightly, but no tetrahedron changed its orientation.

To encode the 16 bit coordinates arithmetically it turned out to
be economical to split each coordinate into four packages of four
bits. For each package we use a different set of adaptive frequen-
cies for the arithmetic coder. This strategy dramatically reduced the
storage space consumed by the arithmetic coder and increased the
compression speed.

The next step in coordinate compression is delta coding. We en-
code the vertex coordinates during the compression of the connec-
tivity. After each new vertex operation the difference vector from
the center of the gate triangle to the new vertex is encoded. Thus we
use the proximity information given by the tetrahedralization of the
vertices. We can estimate the number of bits saved through delta
coding with the following simple argument. Suppose the vertices
are uniformly distributed. Then there are approximately 3

p
v ver-

tices per coordinate axis and it should be possible to save log
2

3
p
v

bits per coordinate. Thus the storage space consumed per vertex
can be estimated with 48 � log

2
v bits, which is about three bits

above the actually achieved storage space.
A final improvement of two bits less storage space per vertex

could be achieved by rotating the coordinate system such that the
z-axis is the normal of the gate and the x-axis parallel to the zero
edge. Quantization is done after changing to the new coordinate
system. To avoid accumulation of rounding errors it is very impor-
tant that during compression the center of the gate is computed with
the same quantized coordinates which are available to the decom-
pression algorithm. The change of the coordinate system saved two

bits in the x- and y-axes. The final storage space consumed per ver-
tex by the coordinates is tabulated in Table 3 in the column labeled

L16bit
CB

v
.

a) bits 0-3 b) bits 4-7

c) bits 8-11 d) bits 12-15

Figure 3: Distribution of coordinates.

Figure 3 shows the relative frequencies of the 16 different values
of each 4 bit package in the case of the randomly generated mesh in
section 6. The yellow bars represent the z-coordinate and the blue
bars the x- and y-coordinates. The x- and y-coordinates were united
as their distributions do not differ at all. The lower eight bits are
distributed quite uniformly, whereas the higher four bits are nearly
exclusively zero. The bits 8 � 11 are especially interesting. The x-
and y-coordinates frequencies have a Gaussian fall off, whereas the
z-coordinate frequencies increase to a maximum at the value 3 and
then drop of much faster than the x- and y-frequencies.

This encouraged us to predict the z-coordinate, which is the
height of the new tetrahedron in the new vertex operation, from
the height of the tetrahedron of the inner part which is adjacent to
the gate. But the distribution of the z-coordinate frequencies was
even smoothed out and the compression became worse. We also
tried to predict the x- and y-coordinates from the interior adjacent
tetrahedron but with a similar failure. All these tests were also per-
formed on the more regular meshes of section 6 with no success.
The prediction of the tetrahedron height, which is proportional to its
volume, should help in meshes where the sampling density changes
significantly. But we still have to conclude that tetrahedral meshes
are too irregular to predict vertex coordinates much better than with
the proximity information of the connectivity alone.

5 Data Compression

The last section showed that tetrahedral meshes are not regular
enough for a good prediction of vertex coordinates. Therefore, we
propose to encode data given for the mesh elements in a different
way. In this section we restrict ourselves to a scalar data function at-
tached to the vertices. This data is transmitted with each new vertex
operation after the vertex coordinates. We propose delta encoding
for the data function after an appropriate quantization. This time we
can additionally use the vertex coordinates to predict the function
value at the new vertex.

Let us denote the scalar data function with f and the location of
the new vertex with ~vn. A linear approximation flin of the function
f is of the form

flin(~v) = ~flin
T
� ~v + flin(~0): (11)

Thus the linear approximation must be known at four locations in

order to determine the unknowns ~flin and flin(~0). In a new vertex

operation the new tetrahedron is always adjacent to a tetrahedron
of the inner part, where the function f is already known. We can
use the corner vertices of this tetrahedron ~v0; ~v1; ~v2 and ~v3 and the
corresponding values of the data function f(~vi) to determine the
unknowns of the linear approximation. The linear system of equa-
tions is

f(~vi) = ~flin
T
� ~vi + flin(~0); i 2 f0; 1; 2; 3g:

If this linear system is solved and the values are plugged into equa-
tion 11 with v = vn, we get as linear prediction at the location
~vn

flin(~vn) = �~f
T ��V

�1 � (~vn � ~v0) + f(~v0); with

�~f
def
=

f(~v1)� f(~v0)
f(~v2)� f(~v0)
f(~v3)� f(~v0)

!
and

�V
def
=

0
�(~v1 � ~v0) (~v2 � ~v0) (~v3 � ~v0)

1
A :

The matrix �V can be inverted, iff the tetrahedron (~v0; ~v1; ~v2; ~v3)
is not degenerated. Vector valued data functions can also be com-
pressed with this method – coordinate by coordinate.

6 Measurements & Results

6.1 The Tetrahedral Meshes

Figure 6 shows the six tetrahedral meshes which we used for our
measurements. They differ in their sizes and their origin. The “Ran-
dom” mesh was generated by delaunay tetrahedralization of a cloud
of randomly distributed points. In order to show that the interior
of this mesh is more complex than the surface, we blended a cut
through the mesh with its surface. The “Proto” mesh is a quite reg-
ular tetrahedralization of an object with non trivial boundary. The
“Bubble” is the output of a simplification algorithm applied to a
spherical symmetric scalar function. Again the blending technique
shows part of the interior. The “Torso” meshes are regularly tetra-
hedralized real world meshes and the “Blunt Fin” is a curvy linear
grid.

6.2 Measurements

mesh v v: e: f : t
vb

v
b �ov!e �oe!t

Random 2000 1:7:39:12:67:6:29 0:101 400 14:77 5:11

Proto 2896 1:5:94: 9:41:4:47 0:477 2760 11:89 4:51

Bubble 5715 1:6:89:11:63:5:74 0:150 1710 13:78 5:00

Torso I 11140 1:6:55:10:91:5:35 0:197 4380 13:10 4:90

Torso II 15164 1:6:61:11:04:5:43 0:180 5454 13:22 4:93

Blunt Fin 40960 1:5:74: 9:32:4:58 0:165 13516 11:48 4:78

average 1:6:52:10:83:5:31 0:212 13:04 4:87

Table 1: Basic quantities of the measured meshes.

Table 1 shows the basic quantities of the different meshes and
average values which confirm equation 5.

In Table 2 the distribution of the cut-border symbols is analyzed.
The first column shows for each mesh the total number t+ b of en-
coded operations. In the following columns the relative frequencies
of the different cut-border symbols are shown. 10 is with 60%
the most frequent operation, followed by �, 11 and 12. With the
border optimization described in section 3.6 the frequency of the
border symbol became negligibly small. The last column shows
the fraction of the non-manifold situations in Figure 5 which arose

during compression. This number is important for the optimal run-
ning time of the compression and decompression algorithms as the
non-manifold operations consume more computing power.

Table 3 illustrates different aspects of the consumed storage
space and running time for the cut-border machine. The first col-
umn shows the storage space consumed by our arithmetic coder
for the connectivity. The second and third columns tabulate the
binary entropy of the cut-border operations in bits per vertex and
bits per tetrahedra. Comparison of the first two columns shows that
our arithmetic coder is near the optimum. The cut-border machine
consumes on average about two bits per tetrahedron, even for the
randomly generated mesh which forces more connect operations
with a high index. CCB,� is the binary entropy of the sequence of
cut-border operations which were used to encode the border faces.
The fourth column of Table 3 shows that the border could be en-
coded with about one bit per triangle. As the best triangle mesh
compression methods consume also about one bit per triangle, the
initializing of the cut-border machine with the border of the tetra-
hedral mesh would not improve our border encoding described in
3.6. The fifth column of Table 3 documents the compression speed
in tetrahedra per second for connectivity alone. The decompres-
sion speed is approximately the same. The speed does not depend
on the size but more on the frequency of non-manifold operations
(compare the last column of Table 2). The last but one column
contains the storage space consumed by the vertex coordinates, if
compressed with the technique described in section 4. Finally, the
last column shows that the vertex compression doesn’t decrease the
compression speed significantly.

Table 4 compares the cut-border machine to the standard repre-
sentation and the Grow&Fold compression of Szymczak [8]. The
results of the cut-border machine are convincing and improve the
standard representation by a factor of 20 to 50 depending primarily
on the size of the tetrahedral mesh but also on the regularity.

7 Conclusion

We presented for the first time a lossless connectivity compression
scheme for tetrahedral meshes which can handle non manifold bor-
ders. Our implementation of the cut-border machine showed that
it achieves very high compression rates and is able to compress
tetrahedral connectivity to about two bits per tetrahedron, which
is between three and four times better than previously reported re-
sults. Lossy compression of vertex coordinates turned out to be
not as efficient as in the triangular case but still valuable for most
applications. Future work must concentrate on more sophisticated
compression techniques for the vertex coordinates and further data
attached to the tetrahedral mesh.

8 Acknowledgements

We like to thank Hans-Christian Hege for providing the “Torso”-
meshes, Paolo Cignoni for the “Bubble”-mesh and Claudio T. Silva

mesh t+ b �� �� �10
�11

�12
�1i>2

�nm

Random 12971 0:001 0:154 0:519 0:118 0:108 0:101 0:116

Proto 15695 0:001 0:184 0:631 0:073 0:067 0:044 0:046

Bubble 34526 0:001 0:165 0:549 0:106 0:091 0:088 0:109

Torso I 64028 0:002 0:174 0:607 0:080 0:072 0:064 0:069

Torso II 87788 0:001 0:173 0:603 0:083 0:075 0:065 0:069

Blunt Fin 200910 0:000 0:204 0:707 0:045 0:044 0:000 0:000

average 0:001 0:176 0:602 0:084 0:076 0:060 0:068

Table 2: Total number of encoded operations; relative frequencies
of cut-border operations; relative frequency of non-manifold situa-
tions.

mesh
C

adapt

CB
v

CCB
v

CCB
t

CCB,�
b

�
t

sec

�
C

L
16bit
CB
v

�
t

sec

�
G

Random 15:12 15:02 2:39 1:37 84831 34:40 73866

Proto 9:55 9:48 2:12 0:90 93603 30:86 74259

Bubble 13:52 13:43 2:34 1:11 85774 30:09 74146

Torso I 11:02 10:99 2:05 1:29 92508 30:41 76749

Torso II 11:15 11:14 2:05 1:20 92574 29:64 76992

Blunt Fin 6:00 5:99 1:31 0:54 98587 26:36 78493

average 11:06 11:01 2:04 1:07 91313 30:29 75751

Table 3: Cut-border machine: consumed storage for connectivity,
border and quantized vertex coordinates. Running time for connec-
tivity alone and together with vertex coordinates in tetrahedra per
second on a Pentium II 350MHz.

mesh
Cstd

C
adapt

CB

C
adapt

CB
v

CG&F
v

Random 18:39 15:12 44:03

Proto 22:61 9:55 31:29

Bubble 22:22 13:52 40:18

Torso I 27:27 11:02 37:45

Torso II 27:29 11:15 38:01

Blunt Fin 48:90 6:00 32:06

Table 4: Comparison of the different approaches.

for the “Proto”-mesh.

This work was supported by the Deutsche Forschungsgemein-
schaft (DFG) and is part of the project D1 within the Sonder-
forschungsbereich 382.

References

[1] Paolo Cignoni, Claudio Montani, Enrico Puppo, and Roberto
Scopigno. Multiresolution representation and visualization
of volume data. IEEE Transactions on Visualization and
Computer Graphics, 3(4):352–369, October–December 1997.
ISSN 1077-2626.

[2] Michael F. Deering. Geometry compression. In Robert Cook,
editor, SIGGRAPH 95 Conference Proceedings, Annual Con-
ference Series, pages 13–20. ACM SIGGRAPH, Addison
Wesley, August 1995. held in Los Angeles, California, 06-
11 August 1995.

[3] Stefan Gumhold and Wolfgang Straßer. Real time compres-
sion of triangle mesh connectivity. In Michael Cohen, editor,
SIGGRAPH 98 Conference Proceedings, Annual Conference
Series, pages 133–140. ACM SIGGRAPH, Addison Wesley,
July 1998. ISBN 0-89791-999-8.

[4] Hugues Hoppe. Progressive meshes. In Holly Rushmeier,
editor, SIGGRAPH 96 Conference Proceedings, Annual Con-
ference Series, pages 99–108. ACM SIGGRAPH, Addison
Wesley, August 1996. held in New Orleans, Louisiana, 04-
09 August 1996.

[5] Jovan Popović and Hugues Hoppe. Progressive simplicial
complexes. In Turner Whitted, editor, SIGGRAPH 97 Confer-
ence Proceedings, Annual Conference Series, pages 217–224.
ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-
89791-896-7.

[6] J. Rossignac. Edgebreaker: connectivity compression for tri-
angle meshes. Technical Report GIT-GVU-98-35, Georgia
Institute of Technology, October 1998.

[7] Oliver G. Staadt and Markus H. Gross. Progressive tetra-
hedralizations. In Proceedings of IEEE Visualization ’98,
page 7. ETH Zürich, Institute of Scientific Computing, Au-
gust 1998.

[8] A. Szymczak and J. Rossignac. Grow&Fold: compression of
tetrahedral meshes. Technical Report GIT-GVU-99-02, Geor-
gia Institute of Technology, February 1999.

[9] Gabriel Taubin and Jarek Rossignac. Geometric compression
through topological surgery. ACM Transactions on Graphics,
17(2):84–115, April 1998.

[10] Costa Touma and Craig Gotsman. Triangle mesh compres-
sion. In Wayne Davis, Kellogg Booth, and Alain Fourier, ed-
itors, Proceedings of the 24th Conference on Graphics Inter-
face (GI-98), pages 26–34, San Francisco, June18–20 1998.
Morgan Kaufmann Publishers.

[11] Vivek Verma and Allen VanGelder. DECIMATION OF
TETRAHEDRAL GRIDS WITH ERROR CONTROL. Tech-
nical Report UCSC-CRL-97-25, University of California,
Santa Cruz, Jack Baskin School of Engineering, June 23,
1998.

[12] Peter L. Williams. Visibility ordering meshed polyhedra.
ACM Transactions on Graphics, 11(2):103–126, April 1992.

[13] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arith-
metic coding for data compression. Communications of the
ACM, 30(6):520–540, June 1987.

[14] Yong Zhou, Baoquan Chen, and Arie Kaufman. Multireso-
lution tetrahedral framework for visualizing regular volume
data. In Roni Yagel and Hans Hagen, editors, IEEE Visualiza-
tion 9́7, pages 135–142. IEEE, November 1997.

a) “flip” b) “new vertex” c) “border” d) “top” e) “close”

Figure 4: The different manifold cut-border situations. The gate is shown as green triangle and the newly added tetrahedron with green edges
and blue transparent faces.

a) “nm flip” b) “join” c) “join, 1 nm edge” d) “join, 2 nm edges” e) “join, 3 nm edges”

Figure 5: The different types of non manifold cut-border situations.

a) Random b) Proto c) Bubble

d) Torso I e) Torso II f) Blunt Fin

Figure 6: The measured tetrahedral meshes. The transparent meshes were rendered with projected tetrahedra. To the tetrahedra of the
“Torso I”-mesh a material identifier is attached. The “Blunt Fin”-mesh was rendered with false colors.

