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SUMMARY

The centroidal Voronoi tessellation based Delaunay triangulation (CVDT) provides an optimal dis-
tribution of generating points with respect to a given density function and accordingly generates a
high-quality mesh. In this paper, we discuss algorithms for the construction of the constrained CVDT
from an initial Delaunay tetrahedral mesh of a three-dimensional domain. By establishing an appropri-
ate relationship between the density function and the speci�ed sizing �eld and applying the Lloyd’s
iteration, the constrained CVDT mesh is obtained as a natural global optimization of the initial mesh.
Simple local operations such as edges=faces �ippings are also used to further improve the CVDT mesh.
Several complex meshing examples and their element quality statistics are presented to demonstrate
the e�ectiveness and e�ciency of the proposed mesh generation and optimization method. Copyright
? 2003 John Wiley & Sons, Ltd.

KEY WORDS: centroidal Voronoi Delaunay triangulation; tetrahedral mesh generation; optimization;
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1. INTRODUCTION

In many scienti�c and engineering problems ranging from �uid �ows to structural analysis,
mesh generation often forms a crucial part of the numerical solution procedure. Automatic
unstructured tetrahedral mesh generations for complex three dimensional (3D) domains have
proved to be very successful tools for the e�cient solution of complex application problems.
The Advancing Front technique (AFT) [1–4], Octree methods [5] and Voronoi Delaunay-
based methods [6–15] are some of the well studied techniques in unstructured mesh gener-
ation. Among them, due to the rigorous mathematical theory and systematic implementation,
Delaunay-based tetrahedral meshing methods have gained a lot of popularity. Still, this type of
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1356 Q. DU AND D. WANG

methods cannot eliminate the existence of sliver elements in the mesh, that is, highly distorted
tetrahedra (slivers) with the degree of dihedral angles as low as 0.01 or as high as 179.99 are
often encountered [16–18]. Such sliver elements a�ect the accuracy of the numerical solution
in the application; thus, for the construction of the initial mesh, further mesh optimization is
usually required. In fact, tremendous e�orts have been made to achieve better mesh quality
through mesh improvement and optimization.
The existing algorithms for tetrahedral mesh improvements fall into three basic categories

[15–22]:

1. Geometric optimization, also called mesh smoothing: the vertices are repositioned to
improve mesh quality without changing mesh topology (i.e. node connectivity). Several
smoothing strategies exist, such as optimal Laplacian smoothing and its variants.

2. Topological optimization, including local reconnection: edges or faces are swapped to
locally change nodes connectivity for a given set of vertices.

3. Vertex insertion and deletion: vertices, including those near the boundary, are added or
deleted to optimize the mesh through re�ning or coarsening.

Many of the above methods were often e�ciently implemented through local operations, and
they are usually combined in an iterative fashion to enhance the mesh quality. However, due to
their local nature, they may not o�er signi�cant improvement globally. In practice, the global
features of the overall quality of the mesh include the mesh conformity with a speci�ed sizing
�eld which generally refers to the function that, at any vertex, gives the length of the edges
(or equivalently the parameters of elements) connecting the vertex. In this sense, with only
local operations, the improved mesh is not going to be optimal. Most experiments show that,
even after combined local optimization operations, some less-ideal elements still remain in
the mesh. Such di�culties in high-quality mesh generation motivate the application of global
optimization methods which can improve both the mesh quality and the conformity with the
given sizing �eld.
Centroidal Voronoi tessellations (CVT) are Voronoi tessellations of a region such that the

generating points of the tessellations are also the mass centroids of the corresponding Voronoi
regions with respect to a given density function [23]. CVT are used in diverse applications,
including data compression, clustering analysis, cell biology, territorial behaviour of animals
and optimal allocation of resources [23, 24]. The dual data structure of CVT is the correspond-
ing Delaunay triangulation called centroidal Voronoi–Delaunay triangulation (CVDT). For an
arbitrary domain, if we specify some geometric constraints, such as �xed boundary structure
which may include vertices or edges that are not allowed to change, we get the Constrained
CVDT (or CCVDT). In Reference [25], the two dimensional CVDTs are constructed based on
CVTs with some prescribed density functions. They result in high quality triangular meshes
for 2D domains which produce very good results when model partial di�erential equations are
solved using these meshes. The quality of the Delaunay-based triangular mesh is often greatly
a�ected by the placement of the generating points [6, 7, 15], though the point placement is not
the unique factor that needs to be addressed in order to produce a good mesh. The results in
Reference [25] indicate that CVDT provides an optimal distribution of generating points that
leads to high quality meshes. Hence, CVDT can be used as a good alternative for generating
high quality meshes that satisfy the desired speci�cation in sizing �eld or local re�nement
requirements. This is largely due to the property that the distribution of vertices from the
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TETRAHEDRAL MESH GENERATION AND OPTIMIZATION 1357

CVDTs construction conforms with the given density function globally [23]. Thus, if Lloyd’s
iteration [26] is applied to an initial Delaunay tetrahedral mesh to construct a CCVDT of
a 3D domain, the �nal 3D triangulation may be naturally viewed as an optimization of the
initial mesh. In this paper, a systematic implementation of such a strategy is investigated.
To brie�y describe the main ingredients, we start with the construction of an initial Delaunay

tetrahedral mesh for the given domain. First, a surface triangular mesh is taken as the input.
Then, we begin the construction of the volume mesh which consists of two parts: conforming
boundary tetrahedronization and interior re�nement through Delaunay points insertion. The
boundary tetrahedronization is stored for later use and a sizing �eld HB(p) (p being a point
in the domain) is selected which can either come from the user input or from an interpolation
scheme based on the boundary tetrahedral mesh whose vertices have sizing values. The interior
re�nement is divided into two parts: interior points generation based on a division of interior
edges using algebraic or geometric propagation and neighbouring grid �ltering [10], and point
insertion into the existing mesh based on the classical constrained Delaunay insertion procedure
[8, 9]. With the initial mesh, an appropriate density function is constructed from the sizing
�eld. The 3D construction of the CCVDT is then underway with the application of the Lloyd
iteration: the Voronoi regions (i.e. Voronoi polyhedra) of the interior vertices (which are
allowed to move) are computed from the Delaunay tetrahedronization and the mass centres of
these Voronoi regions are computed; then, these mass centres are inserted (as new vertices)
into the mesh to replace the original generators. If any generator is close (in some measure
or by certain criterion) to the boundary, we project it onto the boundary surface and merge
the projection point with the closest vertex on the boundary triangular mesh to the projection
of their midpoint on the boundary. The above two procedures, namely, the computation of
mass centres and the Delaunay insertion, are iterated alternatively until convergence. The
resulting CCVDT is expected to be a signi�cantly improved tetrahedral mesh and it is in
more harmony with the sizing �eld. The mesh vertices are optimally positioned and the
mesh’s overall structure is improved. This produces dramatic enhancement of element quality
as almost all the slivers existing in the initial mesh are removed after the iteration. For
further improvement, we apply simple local operations such as edges=faces �ippings to the
few remaining bad-shaped elements. In the end, a high-quality tetrahedral mesh is obtained
as the output.
The remainder of the article is organized as follows. In Section 2, we brie�y describe

the generation of the initial constrained Delaunay tetrahedral mesh and the derivation of the
sizing �eld. In Section 3, we present some basic concepts and results concerning CVT, CVDT
and CCVDT. And in Section 4, a detailed description for constructing the three dimensional
CCVDT is provided. In Section 5, local optimization techniques are discussed for further
improvement of the mesh. In Section 6, some application examples and the mesh quality
statistics are presented. Finally, a few concluding remarks are given in Section 7.

2. INITIAL DELAUNAY TETRAHEDRONIZATION

For a given 3D domain, we use the classical Delaunay-based methods to generate the ini-
tial Delaunay tetrahedronization. Here, a surface triangular mesh of the domain boundary is
taken as the input. The tetrahedronization consists of two steps: the conforming boundary
tetrahedronization; and the interior Delaunay re�nement.
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2.1. Conforming boundary tetrahedronization

The input surface triangular mesh of the boundary can be generated using various methods,
including parametric mapping, paving, advancing front, and parametric space meshing and
mapping [6, 27–31]. Each surface mesh point contains an element sizing value HB(p), (p
being a boundary point) which de�nes the approximate length of the edges (or equivalently
the elements) emanating from p. These sizing values will be used to construct the sizing �eld
of the entire domain.
For the conforming boundary tetrahedronization, we �rst make an unconstrained Delaunay

tetrahedronization of all the surface mesh points (occasionally including some prescribed in-
terior points) by the classic incremental Delaunay insertion procedure. There are three steps
involved: the construction of base, cavity and balls [8, 9]. This tetrahedronization forms the
triangulation of the convex hull of the boundary points and it usually does not match the
surface mesh or even the geometry of the domain, i.e. the boundary integrity is not pre-
served [10–14]. To reconstruct the missing elements of the surface mesh in a conforming
manner, a mixture of boundary recovery techniques is used [13]. The local operations such
as edges=faces �ippings are �rst used to recover the missing edges=faces for the constrained
setting [10, 11] and subsequently, the edges=faces splittings [12, 13] technique are used for
the Delaunay re�nement. A conforming boundary tetrahedronization is completed after the
boundary recovery.
With the conforming boundary tetrahedronization, we derive a sizing �eld H (p) for any

point p of the domain (as the measurement of the approximate average length of the edges
emanating from it) through either interpolation or user speci�cation. Together with the bound-
ary tetrahedronization, they form the control space [7] of the tetrahedra mesh generation. The
user speci�ed sizing �eld could also be based on either a priori known information or a
posteriori local error estimation.

2.2. Interior Delaunay re�nement

The vertices of the boundary tetrahedronization include only the boundary mesh points and
possibly some added Steiner points. The partially constructed mesh obviously needs interior
re�nement. The re�nement is divided into two parts: interior points generation and point
insertion into the existing mesh.
For the interior points generation, we use a simple method proposed in Reference [10]:

division of interior edges using algebraic or geometric propagation and neighbouring grid
�ltering. Other generation methods may be considered, including the method of advancing
Front and sphere packing. Once the points are generated, we apply the classical constrained
version of the incremental Delaunay insertion procedure to successively insert these points
into the existing mesh. Then, the above process of points generation and insertion is iter-
ated until no interior points can be generated which signals the end of the initial Delaunay
tetrahedronization.
The initial generated tetrahedral mesh usually has a substantial portion of badly shaped

elements, like slivers, which need improvements. This is due to many reasons, for example,
the points placement may not be optimal when using the interior edges subdivision method
and there are also inherent problems of 3D Delaunay insertion procedure [14]. Even using the
AFT points generation [7], some less-ideal elements still exist in the mesh. In the following
sections, we present a global optimization method for the removal of slivers through the
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construction of constrained centroidal Voronoi–Delaunay-based triangulation (CVDT) so that
the overall quality of the mesh may be greatly enhanced.
For reference, we here give a de�nition of the quality of a tetrahedron. Let K be a tetra-

hedron, its quality is given by

Q(K)= �
�
hmax

where hmax is the diameter of K (length of the longest edge of K), � the radius of the
inscribed sphere and �=2

√
6 is a normalization factor such that the quality of an equilateral

tetrahedron is 1. This quality function varies in the interval (0; 1] (a well-shaped tetrahedron
has a quality close to 1, while an ill-shaped element has a quality close to 0). Obviously,
much of our work can be used in conjunction with many other quality measures for tetrahedral
meshing [32]. The particular measure chosen here does not greatly a�ect the outcome of the
meshing algorithm.

3. CVT, CVDT AND CCVDT

Given a set of input points {zi}k1 belonging to a domain �⊂RN , the Voronoi region V̂i
corresponding to the point zi consists of all points in � that are closer to zi than to any other
point in the set. The set {V̂i}k1 forms a partition of � and is known as a Voronoi tessellation or
Voronoi diagram of �. The points {zi}k1 are called generating points or generators. The dual
Delaunay triangulation is formed by connecting pairs of generating points which correspond
to adjacent Voronoi regions [33, 34].
Recently, the centroidal Voronoi tessellation (CVT) and a wide range of its applications

have been studied in Reference [23]. It has been subsequently applied to 2D grid generation
and optimization [25]. The CVT also provides an e�ective algorithms for nodal generation in
some meshless methods [24]. In the following, we recall some of the relevant concepts and
results of CVT given in Reference [25].

3.1. Basic concepts

Given a density function � de�ned on a region V , the mass centroid z∗ of V is de�ned by

z∗=

∫
v
y�(y) dy

∫
v
�(y) dy

Thus, given k points Zi, i=1; : : : ; k, in the domain �, we can de�ne their associated Voronoi
regions Vi, i=1; : : : ; k, which form a tessellation of �. On the other hand, given the regions
Vi, i=1; : : : ; k, we can de�ne their mass centroids Z∗

i , i=1; : : : ; k.

De�nition 3.1 (Du et al. [23, 25])
Given the set of points {zi}k1 in the domain � and a positive density function � de�ned on
�, a Voronoi tessellation is a centroidal Voronoi tessellation (CVT) if zi= z∗i , i=1; : : : ; k,
i.e. the generators of the Voronoi regions Vi, zi, are themselves the mass centroids of those
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1360 Q. DU AND D. WANG

regions. The dual Delaunay triangulation is referred to as the Centroidal Voronoi–Delaunay
triangulation (CVDT).

For any tessellation {Vi}k1 of the domain � and a set of points {zi}k1 (independent of {Vi}k1)
in �, we can de�ne the following cost (or error or energy) functional:

F({Vi}k1; {zi}k1)=
k∑
i=1

∫
Vi
�(x)‖x − zi‖2 dx

The standard CVTs along with their generators are critical points of this cost functional. Using
the concept of cost functional, we also have:

De�nition 3.2
Given the set of points {zi}k1 in � a density function �, and a constraint set P, a Voronoi
tessellation is called a constrained centroidal Voronoi tessellation (CCVT) if {{Vi}k1; {zi}k1}
minimizes the problem:

min
{zi}k1∈P;{Vi}k1

F({Vi}k1; {zi}k1)=
k∑
i=1

∫
Vi
�(x)‖x − zi‖2 dx

The dual Delaunay triangulation is referred to as the constrained centroidal Voronoi Delaunay
triangulation (CCVDT).

For constrained CVTs on general surfaces, we refer to Reference [35] for further studies.
In the case of constrained Delaunay meshing, the above set P can be con�ned to a set that
may include �xed boundary vertices, edges or even faces (in 3D).

3.2. Algorithms for CVDT and CCVDT

Constructing CVDT involves the calculation of the generators of the CVT and the construction
of the corresponding Delaunay triangulation based on those generators. The latter construction
step can be accomplished using standard Delaunay triangulation algorithms. Hence, the key
part of CVDTs generation lies in �nding the generators. For this, there are two kinds of
methods: probabilistic and deterministic methods [23, 36]. Here, we just describe one particu-
lar algorithm for our use. The algorithm is based on the popular Lloyd’s method [26] which
is an obvious iteration between constructing Voronoi tessellations and centroids. Given a set
�, a positive integer k, and a probability density function � de�ned on ��, and a constraint
set P:

0. select an initial set of k points {zi}k1 belonging to P.
1. construct the Voronoi tessellation {Vi}k1 of � associated with the points {zi}k1;
2. compute, in the set P, the minimum of the functional

G({zi}k1)=
k∑
i=1

∫
Vi
�(x)‖x − zi‖2 dx

the minimizer is the new set of points {zi}k1;
3. if this new set of points meets some convergence criterion, �nd the corresponding
Delaunay triangulation, terminate; otherwise, return to step 1.
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Figure 1. CVDT mesh on a two dimensional square for some given densities.

The above algorithm enjoys the property that the functional F is monotonically decreasing
throughout the iteration. When the set P is simply taken to be � and no additional requirement
is made, it reduces to the standard Lloyd’s iteration [26].

3.3. Application to mesh generation

One useful application of CVDT (CCVDT) is in mesh generation, including unconstrained
and constrained mesh generation. A couple of examples on the two dimensional CVT-based
triangular meshes on a square domain with a uniform and a non-uniform density distribution
of vertices are given in Figure 1. Numerical solutions of some model PDEs demonstrate
that these meshes, produced by properly chosen density functions, can provide more accurate
solutions compared to other structured or unstructured meshes [25].
For unconstrained mesh generation, the construction of CVDT deals mainly with the dis-

tribution of the generators according to some given density function �. Such a function �
is used to re�ect the properties of the underlying solution to be calculated on the mesh. Its
selection can either be based on an a priori estimate or on some posteriori error estimates
[37].

3.4. Geometric constraints due to the boundary

For constrained mesh generation, several di�erent approaches were proposed in Reference
[25] to handle the geometrical boundary constraints of the given domain in the construction
of CCVDT:

1. From the boundary to the interior: a subset of generating points on the boundary is
predetermined.

2. From the interior to the boundary: construct the CVT and CVDT without applying any
constraints using a standard algorithm such as the Lloyd method and during the con-
struction process, for those Voronoi regions that extend to the exterior of the domain,
their corresponding generators are projected to the boundary.

3. Variational formulation: to formulate a general variational approach which covers both
of the above. For details, please refer to Reference [25].
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The example given in Figure 1 is constructed based on the second approach [25], the densities
used in the calculation are di�erent with one being uniform while the other being related to
the derivatives of the PDE solution.

3.5. The Lloyd iteration and the mesh smoothing

The construction of CVDT (or CCVDT) through the Lloyd iteration can be viewed from
a di�erent angle as a smoothing process of an initial mesh. The CVDT concept provides a
good theoretical explanation to the smoothing process: by successively moving generators to
the mass centres (of the Voronoi regions), the cost functional is reduced. Here, smoothing
means both node-movement and node reconnection. With a suitable choice of the density
function, the cost functional can be related to error estimators for the underlying problem.
Since the averages of the neighbouring generators provide approximation to the mass centres
of the Voronoi regions, such smoothing process mimics the process of iteratively constructing
CVTs such as the Lloyd’s algorithm, and thus, contributes to reduction of the discretization
error.

3.6. Equidistribution of cost

In Reference [23], interesting properties concerning the distribution of the cost functional were
presented. For example, it was shown that in the one dimensional case,

∫
Vi
�(x)(x − xi)2 dx≈ c ∀i

for some constant c when the number of generators is large. This means, asymptotically
speaking, the error or cost is equally distributed in the Voronoi intervals [23].
For the multidimensional CVT, a conjecture has been made [38] which states that asymp-

totically, as the number of generators becomes large, all Voronoi regions are approximately
congruent to the same basic cell that only depends on the dimension. The basic cell was
shown to be the regular hexagon in two dimensions, which tells us that the CVDT provides
high quality mesh. The conjecture remains open for three and higher dimensions [38], but its
validity has been veri�ed through extensive numerical studies and it is widely used in practical
applications such as in the area of vector quantizations [39]. For mesh generations, it is also
a good and practical strategy to construct a similar equi-distribution of error principle based
on the conjecture which in turn provides an appropriate relation between the density function
and the sizing �eld H (p). The sizing �eld can thus be directly related to the error estimators
of the solutions while the corresponding costs or error functionals are assumed to be related
implicitly to the distortion of the elements quality. Also, based on the numerical evidence on
the validity of Gersho conjecture in 3D, the construction of a three dimensional CCVDT, like
in 2D, would produce an optimal high-quality tetrahedral mesh in the end. Such an assertion
is indeed numerically supported by our various meshing examples. In the next section, we
will discuss how to construct this three dimensional CCVDT using the Lloyd method which
e�ectively turns the construction into a natural global optimization for the initial Delaunay
tetrahedral mesh generated in Section 2.
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4. THE CONSTRUCTION OF 3D CONSTRAINED CVDT

Since our goal is to improve the global quality of the initial constrained Delaunay tetrahedral
mesh both geometrically and topologically, Lloyd’s iteration to be used starts from the initial
Delaunay mesh and the whole process is as follows:

0. Construct an initial conforming or constrained Delaunay tetrahedronization of a given 3D
domain (actually the input being a surface triangular mesh) under a given sizing �eld
H (p). Here, H (p) is derived from the boundary points’ sizing. And also store all the
data of the conforming boundary tetrahedronization.

1. Construct the Voronoi region for each of interior points that are allowed to change their
positions, and construct the mass centre of the Voronoi region with a properly de�ned
density function � derived for the sizing �eld H (p).

2. Insert the computed mass centres into the conforming Delaunay tetrahedronization in the
constrained Delaunay insertion procedure.

3. Compute the di�erence D=
k∑
i=1

‖Pi − Pimc‖2, {Pi} is the set of interior points allowed to
change, {Pimc} is the set of corresponding computed mass centre.

4. If D is less than a given tolerance, terminate; otherwise, return to step 1.

There are a few issues to be addressed in the above iterative process, namely: (1) how to
relate an appropriate density function to the sizing �eld H (p)? (2) due to the complexity of
3D cases, computing each Voronoi region’s mass centre exactly is impractical, then, how to
obtain the approximate mass centres? and (3) when the mass centre of a Voronoi region is
near (in some measure) the boundary and if it was inserted in the existing mesh, a highly
distorted element might be generated; how to modify the construction of CCVDT in such
cases? We will address these issues next.

4.1. Density function de�nition

To de�ne the density function, we rely on the equidistribution of the error (cost) functional
in the 3D case which is based on the Gersho conjecture [38].
Let Vi be a three-dimensional Voronoi region, hi be the radius of Vi, and h= max hi→ 0

as k, the number of generators, goes to in�nity. Then we have the error equidistribution:
∫
Vi
�(Z)‖Z − Zi‖2 dZ ≈ c; ∀i

The cost functional
∫
Vi
�(Z)‖Z − Zi‖2 dZ re�ects the approximation properties on the given

element and thus we assume that it may provide control on the element quality. The CVDT
minimizes the sum of all cost functionals, or equivalently, it obtains an asymptotic cost equi-
distribution. Therefore, the equi-distribution principle leads naturally to a suitable de�nition
of the density function.
By the assumption h= max hi→ 0, there is a point Z∗ in Vi such that∫

Vi
�(Z)‖Z − Zi‖2 dZ ≈�(Z∗)h2|Vi|
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where |Vi| denotes the volume of Vi. The right side roughly equals �h5�(Z∗) for some
constant �. Hence, combining with the equidistribution principle, we have:

�(Z∗)h5 =C(= c=�)

which leads to the following relation between the density function and the sizing �eld:

�(Z)=C=H (Z)5

The choice of C is not important, hence, we take C=1. It is now transparent that the density
function � is directly related to the sizing �eld H =H (p). The mesh of CCVDT with the
density function � will conform well with the sizing �eld. Our numerical examples show
that a large number of nearly equilateral tetrahedra appear in the CCVDT. Also, we have
tested density functions that vary as the inverse 2nd, 3rd, 4th, and 6th powers of H , and
we �nd the element shape quality improvements are all less than that of the 5th power.
This gives, to certain extent, another numerical indication for the validity of the Gersho
conjecture. Accordingly, this implies that our choice of the density function is appropriate for
the construction of CCVDT.

4.2. Computation of mass centres

Let Vi be the Voronoi region of the interior unconstrained point Pi. In the 3D case, Vi is a
polyhedron containing the point Pi. One possible way to compute the mass centre of Vi with
the density function being � is as follows:

First, Vi is decomposed into N tetrahedra. The decomposition approach is very simple: let
{ej; j=1; : : : ; n(Vi)} be the set of edges (of the mesh) connecting Pi. From the construction of
Vi, we know Vi is composed of n(Vi) simpler polyhedra. Each simpler polyhedron is formed
by a 3D planar polygon S and the point Pi, as illustrated in Figure 2. We then �nd the
intersection point Q of the edge ej with S. Pi, Q, and an edge of S forms a tetrahedron. This
gives a complete decomposition of Vi into N =

∑n(Vi)
j=1 mj tetrahedra where mj are the number

of edges of S.

We next compute the mass centre of each tetrahedron using numerical integration together
with linear interpolation for the sizing �eld values (or density function values) of quadrature
points. If any vertex of some tetrahedron is outside the given domain, the contribution of this
vertex is deleted in the mass centre’s computation. We denote the mass centre and the mass
of each tetrahedron by Xj and Mj. The mass centre Yi of Vi can be then computed by:

Yi=

∫
Vi
Y�(Y ) dY

∫
Vi
�(Y ) dY

=

N∑
j=1
XjMj

N∑
j=1
Mj

4.3. Changes to the boundary points

In general, the boundary points, i.e. the surface triangular mesh points and some Steiner points
added during the boundary recovery are �xed and not allowed to change. But when carrying
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Figure 2. Tetrahedra division with respect to a
connecting edge.

Figure 3. Projection and merging.

out the Lloyd iteration, the mass centres of some Voronoi regions may move close to the
boundary, or even outside the domain. This is due to the following causes:

1. The input surface triangular mesh may not have good quality, e.g. there are some badly
shaped elements with small angles.

2. The input domain has a complicated geometry, e.g. it contains small cavities or holes.
3. The given sizing �eld or the distribution of boundary sizing �eld varies substantially.
4. The initial Delaunay tetrahedral mesh contains some badly shaped elements, such as
slivers, that are near the boundary.

Obviously, if we directly insert these generators into the boundary tetrahedronization, some
highly-distorted elements would be generated in the mesh or the insertion procedure may fail.
In these cases, we have the following remedies: if the mass centre moves outside the domain,
we just delete this candidate generator; if the mass centre moves close to the boundary and
the distance is less than some given criterion, we apply the following projection and merging
technique (for simplicity, the 2D case is illustrated in Figure 3):
Let Pm be the mass centre. Pm is �rst projected to the boundary surface in the normal

direction via the surface parameterization (see related discussion in Reference [35]). Denote
the projection point by PN . Let B be the nearest boundary point to PN . If B is not allowed
to move on the boundary due to the domain’s geometric requirement (for example, the eight
vertices of a cube domain are not allowed to move on the boundary), the generator Pm is
deleted. Otherwise, the midpoint Pl of the line segment BPN is projected onto the boundary
surface similarly as Pm; then the mass centre Pm is deleted and B is moved to Pl’s projection
point Pw. This is to say, the possibly problematic mass centres are not inserted into the
existing mesh; instead, their nearest boundary points are changed to appropriate new positions
on the boundary surface if these boundary points are allowed to move without violating any
boundary geometric constraints. Such measures keep a more reasonable points placement near
the boundary and enhances the quality of the nearby elements. A direct consequence is the
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removal of slivers or badly shaped elements near the boundary. This technique has been used
by many other researchers for element quality improvement [17].
With the construction of CCVDT, the initial conforming Delaunay tetrahedral mesh is

improved in several aspects which is numerically demonstrated in our meshing experiments.
Most importantly, the points distribution provided by the CCVDT is globally optimal in the
sense of cost or error functional being minimized, which in turn re�ects the global quality of
mesh elements. The topological structure of the mesh, especially the connectivity of vertices
are globally improved. A large percentage of elements are improved to be nearly equilateral
tetrahedra, and the number of badly shaped elements (quality under a given threshold) or
slivers is greatly reduced, all re�ect the enhancement of the overall mesh quality or average
quality. Secondly, the points placement becomes more conforming to the given or derived
sizing �eld. This makes the transition of element sizing smoother and results in fewer badly
shaped transitional elements. The third aspect is that the badly shaped elements due to the
existence of the badly shaped triangles in the surface mesh are eliminated in whole or by a
large ratio, and the mesh structure near the boundary are much improved, in spirit similar to
those generated using the advancing front method [7].
However, because the above optimization is a global process, there are still a very few

number of local and isolated less-ideal elements in the mesh. Some classical local optimization
techniques are applied for the further improvement of these elements.

5. LOCAL OPTIMIZATION FOR FURTHER IMPROVEMENT

We consider three simple topological operations which are discussed in detail in References
[16–18, 22]:

(1) Flipping2-3 (shown in Figure 4): Given two elements sharing a face, this operation
consists of connecting the opposite vertices, deleting the common face. The resulting
structure has three elements. This operation is performed if the connecting edge passes
through the common face and the worst element of the resulting three elements has
better quality than that of the worst of the initial two.

(2) Flipping3-2 (shown in Figure 4): The inverse of Flipping2-3. The operation is per-
formed under the condition that the quality of the worst element should be enhanced.

d

a c

b e

d

a c

b e

Swap2−3

Swap3−2

Figure 4. Flipping2-3 and the inverse Flipping3-2.
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Figure 5. Flipping4-4.

(3) Flipping4-4 (shown in Figure 5): If an edge in the mesh is shared by four tetrahedra,
and the union of these elements is an octahedron, the operation swaps the edge among
the three pairs of opposite nodes in the octahedron. The operation is performed if the
quality of the worst element is improved.

The above three operations are conducted in the following order:

1. Find the badly shaped (or worst) elements (quality less than a prescribed criterion) and
their surrounding elements.

2. Analyse the faces of the elements and perform the operation Flipping2-3.
3. Analyse the edges of the elements and perform the operation Flipping3-2 or Flipping4-4.
4. Go back to step 1 until no operation can be performed.

Because the global optimization through the construction of CCVDT has eliminated almost
all slivers or badly shaped elements and greatly enhanced the overall mesh quality, we need
not to perform the complicated local operations like the cluster reconnection in References
[3, 17] for their further improvement. The above three simple operations are su�cient for
the improvement of the remaining badly shaped tetrahedra. This will be demonstrated by
various numerical examples in the following section. And these swaps a�ect minimally the
cost or error functional. Moreover, when the distortion of some elements is improved through
swaps, the goodness of �t to the sizing function may be reduced on some occasions, but the
reduction is very little. These insigni�cant changes are due to the fact that our swaps are
local and usually the number of swaps needed to perform is small. Furthermore, the elements
that need swapping are often isolated. Hence, we can omit the adverse e�ects of the swaps
on the global properties of the mesh.

6. APPLICATION EXAMPLES

To present numerical examples, we use the criterion that a tetrahedron is badly shaped if its
quality is less than 0.1 and is well-shaped if its quality is greater than 0.4.
In the following, we provide three examples to illustrate the e�ectiveness of the proposed

optimization method. Each example includes the mesh, its cutting view and a table containing
detailed elements quality statistics of the relevant meshes: the initial Delaunay tetrahedral
mesh, the mesh of the CCVDT, the mesh after the �nal local optimization of the CCVDT
(referred by CCVDT+LOCAL), and the mesh obtained from the initial mesh with only local
optimization (referred by LOCAL), i.e. by coupling the constrained Laplacian smoothing with
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the three kinds of swappings discussed above. The comparisons of the mesh quality data in
the �rst three phases show the progress made in the improvement. The comparison with the
last mesh shows the e�ectiveness of the CCVDT. All elements in each phase are divided
into four groups. The percentages of badly shaped and well-shaped elements, average element
quality and the minimum quality are given in the tables.
Besides the element quality statistics, we have also computed the values of the cost or error

functional of each numerical example, and we �nd a general decreasing trend in these values,
albeit a very small �uctuation which is due to the accuracy of computation in the procedure
of Delaunay kernel, i.e. the Delaunay insertion. Overall, the error functionals all converge
after a number of iterations.
Obviously, the CPU time for constructing the CCVDT equals the total time of each regular

Delaunay meshing multiplied by the number of iterations. In cases where the sizing variation
is not very large and the geometry is not very complex, the convergence is very fast and
accordingly the meshing time is very reasonable. For instance, the number of Lloyd itera-
tions in the construction of CCVDT for Examples 1 and 3 are both less than 200 while for
Example 2, the iterations number goes up to 1000. Since the number of elements that need
swapping is usually small, the additional CPU time of local swap is very small due to the
locality of the local swaps. Naturally, the speeding up of the Lloyd’s iteration is a very impor-
tant direction for our future research, for instance, Newton’s type schemes or over-relaxation
schemes may be applied. Localization through domain decomposition procedures may o�er
signi�cant reduction in the run time. Parallel algorithms also o�er great potential to make
the CCVDT meshing competitive for large scale problems. Recently, algorithms have been
proposed for computing the CVTs on distributed computation systems [36], and applications
of such algorithms to the meshing procedure are currently under exploration.

6.1. Example 1: a simple cube

Example 1 is the tetrahedronization of a simple cube with sizing re�nement along one edge.
Figure 6 shows the mesh (of CCVDT + Local) and its cutting view. Table I shows the
elements quality statistics. From the table, we see that the initial mesh has 30 badly shaped
elements and the minimum quality is 0.012, i.e., there are numerous slivers. Also, there are
a fraction of tetrahedra whose quality falls between 0.1 and 0.4, and this results in a low
average quality 0.674. Overall, they indicate the poor quality of the initial Delaunay mesh. The
second column of the table o�ers dramatic elements quality enhancement: the badly shaped
elements are decreased to zero; the number of elements falls in the quality interval 0.1–0.4
are substantially decreased, the average quality was improved to be 0.757 and the minimum
quality is 0.145. The third column shows the mesh after the �nal local optimization which
is a high-quality mesh: there is no badly shaped elements, the average quality is up to 0.774
and the percentage of well-shaped elements is up to 98.2. Even though the example is for a
very simple geometry, the e�ectiveness of the optimization can be seen clearly.

6.2. Example 2: a mesh having �xed boundary vertices for a domain with hollow cylinders

Example 2, shown in Figure 7 and Table II, is a complex geometry which has many in-
tersections of hollow cylinders, but the variation of the element sizing values is kept to be
small. The mesh shown is also of CCVDT+Local. In this example, in the construction of the
CCVDT, for comparison, �rst we �xed all boundary points and no one is allowed to move,
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Figure 6. A cube’s tetrahedral mesh and its cutting view.

Table I. Elements quality statistics of Example 1.

Initial mesh CCVDT CCVDT + Local mesh Local mesh

Elements number 7263 6886 6858 7209
0:7¡Q¡1:0 3410 4752 4851 3489
0:4¡Q¡0:7 3505 1933 1883 3471
0:1¡Q¡0:4 318 201 124 247
0:0¡Q¡0:1 30 0 0 2
Qmin 0.012 0.145 0.237 0.079
Bad elements (%) 0.4 0.0 0.0 0:0+

Good elements (%) 95.2 97.1 98.2 96.5
Average quality 0.674 0.757 0.774 0.705

i.e. no projection and merging operation is performed. In Table II, after the construction of
CCVDT, there are still 14 badly shaped elements remaining in the mesh. Moreover, even
after the �nal local �ippings, there are still 4 such elements. But when we tried to perform
boundary changing operation, i.e. projection and merging, we found that no such operations
are allowed to perform. Close examination indicates that these four elements are all near the
boundary and there are very few interior points in the neighbour, i.e. the boundary dominates
the problem. That is to say, in this case, we cannot improve the mesh further if the bound-
ary points distribution is not modi�ed and accordingly adding more free interior points. This
again illustrates that for complex geometry, the projection of boundary points and merging
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Figure 7. A complex model’s tetrahedral mesh and its cutting view.

Table II. Elements quality statistics of Example 2.

Initial mesh CCVDT CCVDT + Local mesh Local mesh

Elements number 9627 9328 9214 9547
0:7¡Q¡1:0 848 2150 2269 871
0:4¡Q¡0:7 7016 5988 6023 7369
0:1¡Q¡0:4 1703 1176 918 1286
0:0¡Q¡0:1 60 14 4 21
Qmin 0.004 0.045 0.076 0.043
Bad elements (%) 0.6 0.1 0:0+ 0.2
Good elements (%) 81.6 87.2 89.9 86.3
Average quality 0.586 0.699 0.712 0.632

operation in the construction of CCVDT is in general very necessary. However, other statistics,
including average quality and the ratio of well-shaped elements, tell us the global optimization
through CCVDT is indeed e�ective in improving the overall quality.

6.3. Example 3: an example for composite material simulation

The �nal example shown in Figure 8 and Table III is a mesh for a unit cell with nine sti�
inclusions (spheres) for a composite material simulation. The sizing variation is not large
(0.02–0.1). Here, we performed boundary-point treatments: projection and merging for 18
generators. The good news are reported in Table III: there is a tremendous decrease of badly
shaped elements, from 158 to 7 after the CCVDT construction, and subsequently, the badly
shaped elements are completely eliminated through the �nal local optimization. Similar to
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Figure 8. A mesh for composite material simulation and its cutting view.

Table III. Elements quality statistics of Example 3.

Initial mesh CCVDT CCVDT + Local mesh Local mesh

Elements number 28429 27126 27108 28188
0:7¡Q¡1:0 12742 21197 21215 15650
0:4¡Q¡0:7 13831 5471 5488 11054
0:1¡Q¡0:4 1698 451 405 1465
0:0¡Q¡0:1 158 7 0 19
Qmin 0.005 0.052 0.152 0.049
Bad elements (%) 0.55 0:0+ 0.0 0:0+

Good elements (%) 93.4 98.3 98.5 94.7
Average quality 0.661 0.769 0.773 0.716

Example 2, all the statistics clearly demonstrate the e�ectiveness of the proposed optimization
method.

7. CONCLUDING REMARKS

In conclusion, the proposed tetrahedronal mesh generation and optimization method is based on
the optimization properties of the centroidal Voronoi tessellations and is numerically reliable.
It o�ers dramatic element quality enhancement which meets the goal set in the introduction:
to globally optimize the points distribution and the topological structure of the mesh through
the construction of the CCVDT and to further improve the mesh with local optimization
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techniques. The extensions concerning the adaptive 3D CVT and CVDT are currently under
investigation along with the application to the numerical simulation of partial di�erential
equations arising in practical problems. In order to make our method competitive not only in
the �nal outcome but also in terms of computational e�orts, much of our future studies will
be devoted to the speeding up of CCVDTs construction. At the same time, the theoretical
analysis of the relation between the cost functional and the distortion of the element shape,
and theoretical studies of the validity of the Gersho conjecture, are some challenging issues
to be investigated further that would o�er a more solid theoretical foundation for the methods
proposed here.
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