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Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as
vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and
RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are
the most common terms to refer to the different kinds of EVs based on their origin, com-
position, size, and density. Exosomes have an endosomal origin and are released by many
different cell types, participating in different physiological and/or pathological processes.
Depending on their origin, they can alter the fate of recipient cells according to the infor-
mation transferred. In the last two decades, EVs have become the focus of many studies
because of their putative use as non-invasive biomarkers and their potential in bioengineer-
ing and clinical applications. In order to exploit this ability of EVs many aspects of their
biology should be deciphered. Here, we review the mechanisms involved in EV biogene-
sis, assembly, recruitment of selected proteins, and genetic material as well as the uptake
mechanisms by target cells in an effort to understand EV functions and their utility in clin-
ical applications. In these contexts, the role of proteins from the tetraspanin superfamily,
which are among the most abundant membrane proteins of EVs, will be highlighted.

Keywords: biogenesis, extracellular vesicles, exosomes, biomarkers, tetraspanin-enriched microdomains, antigen
presentation

INTRODUCTION
Exosomes are extracellular vesicles (EVs) of 50–100 nm diameter
released by many cell types when multivesicular bodies (MVBs)
fuse with the plasma membrane at the end of the endocytic-
recycling pathway (1). Different kinds of EVs can be isolated
from all body fluids: blood plasma, serum, urine, saliva, breast
milk, bronchial lavage fluid, amniotic fluid, cerebrospinal fluid,
and malignant ascites (2) and have been envisioned as a novel
mechanism of horizontal gene transfer. EVs contain a specific
composition of lipids, mRNA, regulatory microRNAs, as well as
proteins in a functionally active form (3). The transfer of this
material can regulate gene expression and alter the fate of target
cells (4), which may become activated, differentiated, or dediffer-
entiated according to the information received. As a result, EVs
represent an important tool for intercellular communication and
therefore play a key role in the regulation of physiological as well
as pathological processes. EVs can induce endothelial cell activa-
tion, transfer metastatic capacity (5), or mediate the local spread
of neurodegenerative diseases (6). On the other hand, EVs can
mediate tissue repair and regeneration (7) and immune functions
(8), so they have been proposed as ideal candidates for therapeutic
applications.

Extracellular vesicles are highly enriched in tetraspanins, a pro-
tein superfamily that organize membrane microdomains termed
tetraspanin-enriched microdomains (TEMs) by forming clus-
ters and interacting with a large variety of transmembrane and
cytosolic signaling proteins (9–11).

Among tetraspanins, CD9, CD63, CD81, CD82, and CD151
have a broad tissue distribution, while others are restricted to par-
ticular tissues, such as Tssc6, CD37, and CD53 in hematopoietic
cells. Immunoelectron microscopy studies have showed that

tetraspanins are abundant on various types of endocytic mem-
branes (12) and have been widely used as exosomal markers.
Because of their prevalence in EVs, we will review here the exist-
ing evidence that suggests a functional role for tetraspanins in the
biogenesis, targeting and function of EVs.

TETRASPANIN STRUCTURE: THE KEY FOR THEIR
INVOLVEMENT IN SO MANY PROCESSES
Based on topological studies, tetraspanins have been defined as a
superfamily of proteins with four transmembrane domains with
some characteristic structural features. Despite their low sequence
homology, tetraspanins contain four to six conserved extracellu-
lar cysteine residues, and polar residues within transmembrane
domains. They also contain distinct palmitoylation sites and most
members are also glycosylated (13).

Tetraspanins are involved in a multitude of biological processes
that imply cell adhesion, motility, invasion, or membrane fusion
as well as signaling and protein trafficking. Five critical regions of
tetraspanins and their organization in membrane microdomains
are fundamental for the role of tetraspanins in these biological
processes (14, 15).

EXTRACELLULAR DOMAINS
Extracellular domains are the most variable regions in
tetraspanins, being the least conserved between human and zebra
fish. EC1 (first extracellular loop) also referred to as small extra-
cellular loop (SEL), can be glycosylated in some tetraspanins
and it is not recognized by monoclonal antibodies that recog-
nize cell-surface epitopes. For that reason EC1 is thought not be
involved in binding (13, 16). EC2 or LEL, the large extracellular
loop of tetraspanins is better known based on structural studies
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of CD81–LEL (17, 18). This domain is divided into a constant
region with conserved A, B, and E helices, suggested to mediate
homodimerization through a hydrophobic surface, and a variable
region with helices C and D flanking those sequences responsible
for protein–protein interactions; although this overall structure
of LEL has not been corroborated in other tetraspanins (13, 18).
EC2 includes several conserved cysteine residues forming disul-
fide bonds, crucial for the correct EC2 folding (the CCG motif,
one cysteine residue proximal to transmembrane four present
in all tetraspanins, and the Pro–Xaa–Xaa–Cys (PXXC) motif in
the majority, but not all, tetraspanins). Some tetraspanins present
another pair of cysteine residues for a third disulfide bond (19,
20), while a small subgroup of closely related members contains
eight Cys residues in the LEL (21, 22).

TRANSMEMBRANE DOMAINS
The high degree of conservation of tetraspanin-transmembrane
stretches points to crucial functional roles. Mutations in TM
domains have been associated with retinal disorders (23) and
several studies have shown that conserved polar residues in TM
domains 1, 3, and 4 can be responsible of the correct packing of TM
domains (24, 25). They are responsible for a proper tetraspanin
biosynthesis and maturation via intra-molecular interactions
and contribute to the formation of TEMs through hydrophobic
interactions between tetraspanins (26).

CYTOPLASMIC DOMAINS
The high degree of inter-species conservation of the C-terminal
domain could point to this region as crucial in defining the func-
tional specificity for each tetraspanin. The C-terminal region usu-
ally presents crucial motifs involved in the sorting and targeting of
tetraspanins to a determined intracellular location. The Gly-Tyr-
Glu-Val-Met (GYEVM) sequence targets tetraspanin CD63 to the
late endosomal–lysosomal compartment, while the motif YXXØ
(Tyr-Xaa-Xaa-Ø, where Ø represents of an amino acid with a bulky
hydrophobic side chain) is a sorting signal for clathrin-coated vesi-
cles (27, 28). Potential tyrosine-based sorting sequences YXXØ are
present in other 12 tetraspanins (12). Remarkably, in the absence
of these motifs, their function could be replaced by interactions
with tetraspanins that do contain targeting motifs, providing a
molecular explanation for the wide distribution of tetraspanins in
endosomes, late endosomes, lysosomes as well as the enrichment
of tetraspanins in EVs (29).

The C-terminal domain of CD63 interacts with several sub-
units of adaptor protein (AP) complexes, linking the traffic of this
tetraspanin to clathrin-dependent pathways (27). Among intra-
cellular interacting proteins, CD63 was shown to directly bind
to syntenin-1, a double PDZ domain-containing protein (30).
Remarkably, a major role in exosome biogenesis was recently
reported for syntenin-1 (31).

In addition, the C-terminal domain of tetraspanins can mediate
interactions with cytoskeletal or signaling proteins. The interac-
tion of tetraspanins with the cytoskeleton may occur via proteins
of the ezrin–radixin–moesin (ERM) family, which in turn bind
to actin (32). Tetraspanins CD9 and CD81, but not CD151, co-
immunoprecipitate with ERM proteins (33). Immunoglobulin
superfamily (IgSF) proteins such as EWI-2, EWI-F, ICAM-1, or

VCAM-1,which are direct partners of tetraspanins CD9 and CD81,
also present binding sites for actin-linking ERM proteins (33, 34).
A proteomic study in human primary lymphoblasts and their
derived EVs identified the association of CD81 with a large num-
ber of interacting partners, including alpha-actinin (35, 36). In
the activation and adhesion of T cells, an inducible association
of CD82 with the cytoskeletal matrix has been observed, so that
CD82 induces spreading and development of membrane exten-
sions, involving actin polymerization and contributing to T cell
activation via their cytoplasmic domain (37).

Regarding the interaction of tetraspanins with signaling mole-
cules, early mapping studies with chimeric tetraspanins suggested
that N-terminal and C-terminal regions contained sites to recruit
PKC and other signaling proteins (38, 39). CD9 and CD81 have
been shown to associate to G proteins and the inclusion of GPCR
56 in TEM was described and supported by the identification of
several protein G subunits (40, 41). The direct interaction of CD81
C-terminal domain with the small GTPase Rac (35) regulates
tumor (35) and dendritic cell (DC) (42) migration.

PALMITOYLATION SITES
Palmitoylation, one of the major post-translational modifica-
tions that tetraspanins are subjected to, involves the covalent
attachment of palmitate to juxtamembrane cysteine residues
resulting in the acylation of the protein. For several proteins,
palmitoylation is required for localization into detergent resis-
tant membrane microdomains (43). Regarding tetraspanins and
partner proteins, palmitoylation contributes to organization of
tetraspanin–tetraspanin interactions, the basis for the formation
of TEMs (44–46).

TETRASPANIN WEB, A FUNCTIONAL MEMBRANE MICRODOMAIN
Tetraspanins are able to concentrate on the plasma membrane
and establish a set of interactions between themselves and with
a variety of transmembrane and cytosolic proteins (Figure 1).
Tetraspanins also associate with cholesterol (47) and ganglio-
sides (48) forming specialized membrane platforms termed TEMs.
Based on their biochemical properties and protein composition,
TEMs represent a type of functional membrane microdomain dif-
ferent to other microdomains such as lipid rafts or caveolae (9, 11).

The main tetraspanin protein partners are integrins and IgSF
members of adhesion receptors, signaling receptors, and enzymes
such as metalloproteinases (11, 49). The interactions between
tetraspanins and their protein partners are classified in three levels,
based on their resistance to detergent disruption. Direct inter-
actions with some integrins and IgSF partners are considered
as type I interactions. Type II interactions include the majority
of tetraspanin–tetraspanin interactions, which are stabilized by
their palmitoylation. Weak, type III interactions, also stabilized by
palmitoylation, occur with secondary partners (10).

This capacity of tetraspanins to interact laterally with mem-
brane molecules and organize supramolecular complexes in cell
membranes provides a molecular basis for their ability to mod-
ulate a wide range of fundamental biological and pathological
processes (10, 11). In addition, given that tetraspanins and their
associated proteins are abundant in EVs, the tetraspanin web could
be key to understand how genetic information such as mRNA and
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FIGURE 1 |Tetraspanins have the capacity to interact with several receptor and signaling molecules at the membrane, organizing specialized
tetraspanin-enriched microdomains (TEMs) that may play a role in (A) EV biogenesis, (B) the selection of exosome cargo (proteins and miRNAs),
(C) the binding and uptake of exosomes by target cells, or (D) the ability of exosomes to present antigen in the context of an immune response.

microRNA, as well as functional proteins are selected to cargo EVs
and transferred to target cells.

TETRASPANINS AS EXOSOME MARKERS
Besides apoptotic bodies (ABs), healthy cells from different sys-
tems are able to secrete several types of membrane vesicles of
endosomal and plasma membrane origin into the extracellular
space. Because of the lack of a selective isolation procedure, and
the high heterogeneity of EVs, there is not a definitive nomencla-
ture for these vesicles. They have been broadly categorized based on
their size and biogenesis into three main groups: i) microvesicles
(MVs), also termed ectosomes, shedding vesicles, or microparti-
cles. They are directly formed by outward budding from the plasma
membrane and represent a very heterogeneous population with a
size ranging from 50 to 1,000 nm diameter, ii) exosomes, with a size
between 30 and 100 nm, formed as intraluminal vesicles (ILVs) in
intracellular endosomal MVBs and released when MVBs fuse with
the plasma membrane, and iii) ABs, with a size bigger than 1 µm
and originated from apoptotic cells (3, 50).

Microvesicles and exosomes are both commonly found in extra-
cellular fluids and may be produced by the same cell type (51, 52).
Moreover, although some vesicles differ clearly from exosomes by
their larger size, others are more difficult to separate since vesi-
cles with a similar size can also bud at the plasma membrane
(53). In addition, exosomes themselves represent a heterogeneous

population given that MBV in some cell types contain ILVs of
heterogeneous size and composition. Thus, features such as size
and/or density cannot be used as strict criteria to define exo-
somes. Many isolation procedures and commercially available
kits, in addition to other biochemical and imaging techniques
such as immunoblotting, mass spectrometry, electron microscopy,
flow cytometry, or nanoparticle tracking, should be considered
cautiously because often they are not efficient in discriminating
among differently sized EVs and/or membrane-free macromolec-
ular aggregates. Research on optimization of these methodologies
is currently a very active issue.

Because of these methodological issues, the identification of a
selective subset of proteins in exosomes would be a valuable tool to
identify and assess the purity of this kind of vesicles. Proteomic and
lipidomic analyses show that exosomes have a defined lipid and
protein composition. According to most recent proteomic results
gathered in the ExoCarta and EVPedia databases (54, 55), exo-
somes have a defined protein signature, comprising conserved as
well as cell type specific sets of exosomal proteins. In this context,
exosomes have been described as highly enriched in tetraspanins
(from 7- to 124-fold compared to their content in the parental
cells) and tetraspanins have been proposed as possible exosome
markers. Tetraspanins CD9, CD63, CD37, CD81, or CD82 are
specially enriched in the membrane of exosomes and they are
often used as exosome biomarkers. CD9 was first identified in
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exosomes from DCs (56). Several studies describe to CD63 and
CD81 as the most frequently identified proteins in exosomes and
are considered classical markers of exosomes. In fact, in many
cells the bulk of CD63 has been described as typical in intracellu-
lar compartments of endosome/lysosomal origin (57). Proteomic
analyses have identified tetraspanins CD63, CD81, CD82, CD53,
and CD37 in B cell-derived exosomes being enriched >100-fold
relative to transferrin receptor (1, 29).

However, this aspect has to be taken with caution since many
tetraspanins are widely distributed in the plasma membrane, so
that they may be present in other subpopulations of vesicles. Stud-
ies aimed to distinguish subpopulations of EVs from different cell
types based on the presence of several tetraspanins have shown
that in some cases this criterion on its own does not permit suc-
cessful discrimination of exosomes from other EVs. Several studies
have shown that classical markers of exosomes, such as CD63 and
CD81, are enriched in vesicles with features of exosomes but which
originate through budding from the plasma membrane and could
not be distinguished from exosomes (53, 58, 59). CD9 was also
found in large vesicles can thus not be considered as specific com-
ponents of endosome-derived vesicles. (60). Most recently, CD81
and CD63 have been detected by flow cytometry in both MVs and
exosomes secreted by three different cell lines (61).

Exosomes themselves comprise a heterogeneous vesicle popula-
tion, also regarding tetraspanin expression. In this regard, Rab27a
GTPase has been demonstrated to modulate exosome secretion
(62) and the vesicular secretion of some conventional markers of
exosomes such as the tetraspanin CD63, but does not affect the
secretion of tetraspanin CD9. Taking advantage of Rab27a inhibi-
tion, the existence of at least two distinct populations of vesicles
secreted by mouse mammary adenocarcinoma was demonstrated,
and the presence of CD63 and CD9 was detected in both (60).
Flotation onto sucrose gradients showed different proportions
of CD63 and CD9, not only in fractions of densities classically
described for exosomes, but also in non-exosomal density frac-
tions, indicating the presence of an heterogeneous vesicle popula-
tion (60). Finally, B cell-derived exosomes were shown to contain
the tetraspanin markers CD9 and CD81, while CD63 was absent
from these exosomes (63).

Thus, the identification and validation of tetraspanins as
markers of exosomes or other vesicular types still deserves fur-
ther standardization of isolation protocols as well as the imple-
mentation of single-vesicle immune-staining analyses. However,
in any case, tetraspanin-based tools may represent powerful
approaches in terms of EV enrichment for biomarker discovery
and therapeutic use.

TETRASPANINS IN EV BIOGENESIS
As mentioned before, exosomes originate as ILVs in late endo-
somes also termed MVBs (Figure 1A). The fate of MVBs may
be the fusion with lysomes for degradation, when the proteins
they contain have been selected through ubiquitination. Alterna-
tively, some MVBs may fuse with the plasma membrane of the cell
releasing ILVs as exosomes (1, 8). Given that exosomes derive from
MVBs, mechanisms involved in MVBs and ILVs biogenesis are
shared with exosomes, although the cellular machinery involved
in their release is likely different.

The endosomal sorting complex required for transport
(ESCRT) is composed by around 20 proteins assembled into 4
complexes (ESCRT-0, -I, -II, and -III) together with associated
proteins (VPS4, VTA1, and ALIX) and is conserved from yeast to
mammals (64). Both ESCRT-dependent and -independent mech-
anisms have been shown to be involved in the trafficking of
proteins to exosomes and in their biogenesis but none of them
are completely understood. The ESCRT-0 complex recognizes and
sequesters ubiquitinated proteins in the endosomal membrane,
ESCRT-I and -II complexes are responsible for membrane defor-
mation into buds with sequestered cargo, while ESCRT-III drives
vesicle scission. Distinct members of the ESCRT machinery have
been involved in exosome biogenesis/secretion in different cell
types (65). AlP1/Alix/Vps31, Tsg 101/Vps23, and ubiquitinated
proteins are necessary for the secretion of exosomes by DCs (66,
67). The ESCRT-0 component Hrs is also required for exosome
formation and/or secretion by DC, impacting on their antigen-
presenting capacity (68). In reticulocytes, the transferrin receptor
is generally fated for exosome secretion by interaction with Alix
(69) and more recently, Alix has been described to be involved in
exosome biogenesis and exosomal sorting of syndecans through
its interaction with syntenin (31). A recent study using RNA inter-
ference (RNAi) to target 23 different components of the ESCRT
machinery and associated proteins, highlights the cell-specificity
of the mechanism of protein sorting and secretion in exosomes
(65). The tumor suppressor protein p53 and its transcriptional
target TSAP6 have been implicated in the regulation of exosome
secretion (70), linked to the ESCRT-III component Chmp1A (71),
illustrating potential couplings between signaling and exosome
biogenesis.

Interestingly, in the absence of ESCRTs, MVBs, and exosomes
may be formed, so that cells in which the four subunits of
the ESCRT complex have been depleted are able to generate
CD63-positive EVs (72). In antigen-presenting cells (APCs), the
recruitment of MHC-II to exosomes is independent of MHC-
II ubiquitination but in contrast, depends on the incorporation
into CD9-enriched microdomains (73). In oligodendroglial cell
lines, exosome biogenesis and secretion is dependent on the for-
mation of ceramide by the shyngomyelinase enzyme, but does
not require ESCRT function (74). Studies focused on melanogen-
esis have shown that mammalian cells have pathways for MVB
formation independently of both ESCRTs and ceramide (75).

In this ESCRT-independent pathway, tetraspanins seem to play
a fundamental role (73, 75). Regarding data based on tetraspanin-
deficient mice, exosome secretion is defective in bone marrow
dendritic cells (BMDCs) from CD9 knockout mice in comparison
with their wild-type counterparts (76). In contrast, the absence of
CD81 in lymphocytes does not affect exosome release (35). Oth-
ers studies have shown the essential role of tetraspanin CD63 in
the biogenesis of lysosome-related organelles (75), although exo-
some secretion was not directly assessed. shRNA knockdown of
the tetraspanin protein CD63 in a B lymphoblastoid APC line
led to increased CD4 T cell activation because of a significantly
increased MHC-II-bearing exosome production (77).

The mechanisms of MV biogenesis, based on membrane bleb-
bing, have been much less studied. External or internal stimuli
promote calcium fluxes, regional changes in plasma membrane
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asymmetry leading to phosphatidylserine exposition, which in
turn leads to modifications in membrane-cytoskeleton contacts,
followed by membrane curvature, and vesicle scission (78). Actin–
myosin interactions allow the contraction of cytoskeleton ending
the budding process. These molecular events may be similar to
those elicited by budding viruses. Tetraspanins in the plasma
membrane are also forming specialized microdomains and their
presence in shedding vesicles (61) has been reported. They have
also been reported to conform specialized membrane regions for
viral budding (79). Tetraspanins may induce membrane-curved
structures (80), as demonstrated for a specialized tetraspanin,
peripherin/RDS, in the retina (81). In addition, tetraspanin con-
nections to the cytoskeleton may influence the fission process of
the vesicles. However, all these hypotheses will have to wait for
experimental evidence to be confirmed.

TETRASPANINS IN EV CARGO SELECTION
INTRACELLULAR ROUTING OF TETRASPANIN PARTNERS
To be directed to exosomes, membrane molecules have first to
be exposed on the plasma membrane and internalized to the
endosome compartments. Tetraspanins are involved in recycling
routes between plasma membrane and several cellular organelles
(Figure 1B) and regulate biosynthetic maturation and trafficking
of their associated partners. One of the most dramatic examples is
that of the dependence of CD19 expression on tetraspanin CD81
(82, 83). CD81 is involved in the proper maturation and traffick-
ing of CD19 from the ER to the Golgi and to the cellular plasma
membrane, where it takes part in the B cell co-receptor signaling
complex formed by CD19–CD21–CD81. A reduced expression of
CD19 in B cells from CD81−/−mice promotes an incorrect transi-
tion from pre-BII to the immature B stage, a phenotype that could
not be rescued by CD9, the tetraspanin with the closest homology
to CD81 (82, 83).

Tetraspanin CD82 associates with the alpha6 integrin, the
epidermal growth factor receptor (EGFR) and the IgSF pro-
tein EWI-2. The co-internalization of CD82 with these partners
promotes alterations in laminin adhesion and migration (84).
CD82/KAI1 acts as a tumor suppressor modulating the activi-
ties of EGFR (85). Tetraspanin CD82/KAI1 has been described
to suppress ligand-induced ubiquitination of EGFR after ligand
binding, altering the rate of recruitment of the activated receptor
to endosomes. Deletion of the C-terminal cytoplasmic domain of
CD82 inhibits endocytic trafficking of the tetraspanin and com-
promises CD82 modulatory role on the endocytic trafficking of
EGF receptor (84, 86).

Tetraspanins also control the trafficking of integrin com-
plexes (87). The assembly of the complex between CD151 and
alpha3beta1 integrin takes place early during the biosynthesis
of the integrin heterodimer (88). The palmitoylation-deficient
mutant of CD151 exhibited a decreased half-life (45), and the
expression of this mutant in fibroblasts diminished the stability of
the alpha3beta1 at the plasma membrane.

Somehow surprisingly, different tetraspanin/partner com-
plexes may present different internalization rates on the same
cells. Thus, evaluation of tetraspanin/integrin colocalization at
the cell membrane or after PMA-induced internalization, showed
that integrin alpha3 colocalization with CD9 and Tspan8 remains

unaltered after internalization. In contrast, integrin alpha4 weakly
colocalizes with CD9 and Tspan8 at the cell membrane but does
so only with Tspan8 after internalization. Activation-induced
Tspan8-internalization proceeds more rapidly than CD9 internal-
ization and is accompanied by disassembly of the Tspan8-CD9–
CD151 membrane complex in resting cells (89). Thus, different
integrin/tetraspanin complexes were biochemically detected in
lysates from cells or EVs. These results point to a rearrangement
of the TEMs during internalization.

PROTEIN SORTING TO EVs
Consistent with the role of TEM in modulating internalization
and recycling, different tetraspanin members have been shown to
regulate protein sorting into EVs. Tetraspanins CD82 and CD9,
by their association with E-cadherin and β-catenin, are neces-
sary for the cellular export of β-catenin via EVs, thus modulating
the wnt-signaling pathway (76). In mouse models of breast can-
cer, cancer-associated fibroblast-derived exosomes are enriched in
tetraspanins CD63, CD81, and CD82 but only CD81 is responsible
of Wnt 11 cargo to EVs. These EVs released into the tumor stroma
are internalized by breast cancer cells, in which Wnt11 contributes
to cell migration and metastasis (90). The melanosomal protein
PMLE (amyloidogenic pigment cell-specific type I integral mem-
brane protein) is sorted into ILVs by the tetraspanin CD63 in an
ESCRTs-independent way (75). This sorting event is important
to generate melanosome precursors so that the deletion of CD63
impairs amyloidogenesis and downstream melanosome morpho-
genesis (75). In contrast targeting of CD9P-1 to EVs occurs, at least
partially, after silencing of its direct tetraspanin partners CD9 and
CD81 (91).

Another set of molecules that may be targeted to EVs by
insertion into TEM are metalloproteinases. The CD10 metallopro-
teinase, involved in the maturation of pre-B cells and migration
of B cells to the blood circulation, has been shown to selec-
tively associate with tetraspanin CD9. CD10 release in EVs was
increased fivefold by stable expression of wild-type CD9 but not
a chimeric CD9 containing the cytoplasmic C-terminal domain
from CD82. Knockdown of CD9 expression promoted a twofold
reduction in the amount of endogenous CD10 released with EVs.
The release of CD10 peptidase activity on EVs in bone marrow
may effectively regulate the extracellular matrix microenviron-
ment (92). Tetraspanins also interact in membrane microdomains
with the metalloproteinases ADAM10 and ADAM17 and control
their sheddase activity (21, 22, 49, 93, 94). CD9 is associated with
ADAM17 through its LEL domain on the surface of leukocytes and
endothelial cells and regulates negatively the activity of ADAM17
(94). ADAM10 and ADAM17 have been shown to be also present
in EVs in a functionally active form. Their sheddase activity on
their substrates could be initiated in endosomal compartments
and the product of their activity released as soluble molecules in
EVs. For example, the cytokine TNF-α, or L1 and CD44 adhesion
molecules, are cleaved by ADMA10 and ADAM17 and released in
EVs by ovarian cancer or melanoma cells (95–97). The presence
of ADAM17 and ADAM10 active forms in vesicles has been also
detected in melanoma and HIV-1 infected T cells (98).

In the immune system, the sorting of MHC-I and MHC-II to
exosomes seems to be dependent on their recruitment to TEMs
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(29, 73). Early proteomic and biochemical studies on B-, T-,
and dendritic-cells-derived EVs evidence that EVs derived from
these cells are enriched in tetraspanins CD9, CD63, CD81, CD82,
MHC-I, and MHC-II (29, 56, 99). Characterization of physical
interactions between proteins in detergent resistant membranes
supported that the trafficking of MHC-II to B cell-derived EVs
is dependent on their recruitment to membrane microdomains
formed by tetraspanins CD37, CD53, CD63, CD81, and CD82
(100). In DCs, peptide-loaded MHC-II follows a different sort-
ing route depending on the maturation state of the DCs (73). In
immature DCs, peptide-loaded MHC-II is ubiquitinated for lyso-
somal degradation, but in mature DCs peptide-loaded MHC-II is
driven by CD9 tetraspanin to MVBs, subsequently released as EVs
and finally able to activate T cells (73). The presence of MHC-I and
MHC-II associated to CD9 and CD81 has been also confirmed in
B cells and B cells derived EVs (63). Interestingly, some MHC hap-
lotypes were significantly underrepresented in EVs from CD81
deficient T-lymphoblasts (101). In contrast, silencing of CD63
tetraspanin does not affect the trafficking of MHC-II complexes
to exosomes in DCs, although increases their secretion (77).

The role of tetraspanins in EV cargo selection (Figure 1B) has
been corroborated in high throughput analyses. Comparison of
EVs derived from a highly metastatic rat pancreatic adenocarci-
noma cell line expressing Tspan8 with its wild-type counterpart
suggests that Tspan8 contributes to a selective recruitment of pro-
teins into EVs, including VCAM-1 and the integrin alpha4, which
were involved in EV–EC binding and internalization (102). The
genetic deletion of CD81 in primary mouse lymphoblasts impairs
the inclusion in EVs of a selective repertoire of transmembrane
CD81 partners, including MHC molecules, the B cell receptor,
ICAM-1, and Rac (101). In this study, high throughput quanti-
tative proteomics demonstrated that TEM interactions network
accounts for 45% exosomal proteome, so that depletion of a
given tetraspanin diminishes the concentration in EVs of some
of their associated partners in the network (101). All these evi-
dences suggest TEMs play a role in defining the protein content
of EVs so that the proteome of TEM and that of exosomes are
closely overlapping. However, since internalization rates of dif-
ferent TEM components are different and the ratio of plasma
membrane versus endosome expression is different for different
tetraspanins, the composition of TEM varies in different intracel-
lular compartments. A more profound analysis of the dynamics
of TEM-driven intermolecular interactions along the endocytic
pathway is thus needed to fully understand how these specialized
membrane platforms drive their components toward EVs.

RNA SORTING TO EVs
Exosomes also contain a selected composition in small RNAs
(vaultRNA, tRNAs, and miRNAs) (103) and specialized mecha-
nisms are involved in their recruitment and loading to EVs (104).
Several miRNAs present specific EXOmotifs (GGAG) that are able
to bind to heterogeneous ribonucleoprotein A2B1 (hnRNPA2B1),
which is responsible for the trafficking of these miRNAs into
EVs (105). Other sequences and proteins have been described to
regulate the loading of small RNAs to EVs (106, 107) Intrigu-
ingly, among the intracellular TEM interactome in human lym-
phoblasts many RNA-binding proteins were recovered (101).

This connection could also provide a molecular mechanism for
the recruitment of mRNA or miRNA into exosomes in which
tetraspanins may be involved. Accordingly, in EV-derived from the
metastatic rat pancreatic adenocarcinoma line expressing Tspan8
mentioned above, from 1,500 transcripts; 285 were enriched by
>3-fold in Tspan8–EVs compared to EVs from cells not expressing
Tspan8 (102).

Therefore, the TEMs act as specialized scaffolds for the com-
partmentalization of receptors and signaling proteins from the
plasma membrane into EVs, playing a role in the sorting and
selective recruitment of several proteins and possibly RNA. This
scaffold would represent a potential target in the design of genetic
therapies to route a desired agent to these natural nanocarriers.

TETRASPANINS IN EV TARGETING AND UPTAKE
Although in some scenarios EVs may serve as extrusion moieties,
with a functional role at the parental cell, the most spread func-
tion of EVs is their capacity to be selectively taken up by cells distal
from the site of their release. This uptake may regulate gene expres-
sion or initiate the activation of signaling cascades in the recipient
cells because of the EV molecular cargo (3, 108). Specificity in the
uptake process of EVs by the target cells is another interesting point
of EV biology to explore. For example, tumor-derived EVs play a
significant role in the communication and interaction between the
tumor and immune cells by suppressing the anti-tumoral immune
response (108). But in addition, cancer cells-derived EVs trans-
fer cancer-promoting factors to neighbor cells within the tumor
microenviroment or to the circulation promoting cancer spread.
Therefore, specific cell targeting may determine the functional
outcome for EVs.

The targeting and uptake of exosomes by recipient cells is
poorly understood. Adhesion molecules such as integrins and
ICAMs, which are commonly inserted in TEMs (34, 109), are
involved in the binding of exosomes to the target cell (Figure 1C).
Exosome uptake by immune cells is mediated by ICAM-1/LFA1
(110–112). A membranous form of ICAM-1 found on tumor-
derived exosomes, is able to bind to leukocytes and impair their
adhesion to activated endothelial cells (113).

The tetraspanin-mediated sorting of specific adhesion recep-
tors to EVs may influence the targeting of these EVs since several
adhesion receptors and proteases depend on TEM for their sorting
to EVs. However, to date, only a few studies have directly addressed
the role of TEM in EV targeting and uptake (89, 114). Thus, as
mentioned before, the expression of Tspan8 in rat adenocarci-
noma increases the sorting of VCAM-1 and integrin alpha4 to EVs,
eliciting the preferential binding of these EVs to endothelial cells
(89, 102). In this context, ICAM-1 presented on EV surface seems
to be functionally important for binding (114). In contrast, EVs
derived from the highly metastatic rat pancreatic adenocarcinoma
line BSp73ASML, which are enriched, in α6β4 and tetraspanins
CD151 and Tspan8, preferentially target lung and lymph node
stroma cells (114).

Regarding EV uptake, phagocytic processes dependent on
dynamin2 and PI3K seem to be the dominant mode of EV uptake
into recipient cells (115). However, depending on the recipient
cell type, clathrin–dynamin–caveolae-dependent endocytosis and
pinocytosis mechanisms may also operate (116, 117). In principle,
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the fusion of exosomes with the plasma membrane of recipient
cells it is difficult at a neutral pH (118). In some scenarios, TEMs
represent an alternative route of endocytosis, as reported for the
entry of some viruses (119). Moreover, TEM regulates several
fusion-dependent processes, ranging from sperm-egg fusion, to
myoblast formation or viral-induced syncytia (19). The relevance
of TEMs in exosome internalization or fusion deserves further
analyses, since a better understanding of the role of TEM in EV-
target cell binding and uptake is essential to improve the selectivity
and specificity of EV message transfer under physiological and
pathological conditions and for the optimization of modified EVs
as selective therapeutic moieties.

TETRASPANINS AND ANTIGEN PRESENTATION BY EVs
ANTIGEN PRESENTATION BY EVs
Early studies showed that immune cells such as T lymphocytes, B
cells, and DCs are able to release EVs, and those EVs secreted by
APCs were also able to present MHC–peptide complexes to specific
T cells inducing an adaptive immune response (120–122). Several
analyses addressing T cell activation have shown that EV-borne
MHC–peptide complexes can directly bind to their cognate T cell
receptor and activate primed CD4+ and CD8+ T cells (111, 123,
124) (Figure 1D). In addition, EVs captured by DCs also represent
a source of antigens from the cells they derive (Figure 1D). EV-
borne proteins are processed by DCs into peptides that associate
to MHC molecules for eventual presentation to T lymphocytes
(125–127).

The physiological state of the cells that secrete EVs is impor-
tant for the intensity of T cell activation by EVs. EVs derived from
mature DCs induce a better T cell activation than EVs derived from
immature DCs and in vivo promote effector T cells and antibody
responses (112, 123, 128, 129). EVs from mature DCs loaded with
tumor antigen can directly induce anti-tumor immune responses
of CD8+ T cells and activate naïve CD4+ T cells. In contrast, EVs
derived from immature DCs need to be processed by APCs to
induce an efficient T cell activation (130).

In some environments, EVs may also contain immunosup-
pressive molecules being able to inhibit immune cells and to
promote tolerance. For instance,EVs delivered by intestinal epithe-
lial cells have the ability to induce antigen-specific tolerance (131).
Tolerance-inducing effects of EVs have been also described in
transplant acceptance (132). Placenta, semen, milk, colostrum,
and bronchoalveolar fluids are other environments where the
presence of EVs containing immunosuppressive molecules has
been demonstrated (133–136). Tumor-derived EVs may have
either activating or inhibitory effects. EVs secreted by tumor cells
have the ability to stimulate and initiate an anti-tumor-specific
immune response by transferring tumor-specific antigens to DCs
or other APCs (137). In contrast, tumor-derived EVs inhibit NK
cell cytotoxic activity, DC differentiation from myeloid precursors,
and T cell activation resulting in a decrease in T cell prolifera-
tion, cytotoxic activity, and finally increased tumor spread (121,
138–141).

Extracellular vesicles do not only contain proteins or processed
peptides that can function as antigens but also transport miRNAs.
In fact, EVs from T, B, and dendritic immune cells contain a dif-
ferent miRNA profile than that of their parental cells (142, 143).

In addition, linked to the formation of the immune synapse (IS),
during cognate immune interactions, there is an antigen-driven
unidirectional transfer of miRNA from the T cell to the APC
(142). The delivered RNA is functional, and can lead to trans-
lation of new proteins in the recipient cell, and/or to regulation of
gene expression by miRNA (142).

Summing up, EVs can elicit antigen-specific immune responses
by different mechanisms, being able to spread antigens or MHC-
peptide complexes, or to directly interact with memory T cells.
The intensity and result of these responses depend on the matura-
tion state of the DCs that capture EVs and on the set of molecules
carried by EVs.

TETRASPANINS IN ANTIGEN PRESENTATION
Tetraspanins organized in TEMs on the surface of immune cells
play an important role in antigen presentation. They are able to
interact and recruit different molecules to TEMs forming molecu-
lar complexes involved in IS formation (144, 145). Several studies
evidence the importance of tetraspanin CD81 in the assembly of a
functional immunological synapse. CD81 is present in the central
supramolecular activation complex (c-SMAC) (146) and regulates
the maturation of the IS on the T cell via its interaction with CD3
and ICAM-1 (147), ensuring a proper and full activation of the
T cell. In addition, CD81 associates with CD4 and CD8 playing a
role in co-stimulatory signals (148, 149). Mice deficient for CD81
present a delayed humoral response with impaired T and B cell
activation (150, 151). On the T cell, CD9 and CD151 also partic-
ipate in the formation of the IS (152), in this case, by regulating
the function of beta1 integrins at the cell–cell contact.

In APCs, tetraspanins CD37, CD53, CD9, CD81, and CD82
have been documented to interact with MHC molecules (153).
Tetraspanin–MHC interactions and the recruitment of MHC–
peptide complexes in tetraspanin microdomains have been sug-
gested to promote the formation of MHC-II multimers and
enhanced antigen presentation (145, 154, 155). CD9 was suggested
to be responsible for the higher efficiency of DCs at stimulating
naïve T cells compared to other APCs, by forming specialized
clusters with MHC-II (155). The contribution of tetraspanins
in the organization of MHC clusters has been also reported for
tetraspanin CD37 (156). DCs deficient for the expression of either
CD37 or CD151 tetraspanins have a hyper-stimulatory effect in T
cells but the molecular mechanism differs for each one of these
tetraspanins. CD37 plays a role in clustering of MHC and is
involved in peptide/MHC presentation, maybe by regulating the
interaction of MHC with other tetraspanins that promote MHC
clustering such as CD9 and CD82. In contrast, CD151 mediates a
co-stimulatory activity (156).

It is therefore feasible that tetraspanins regulate the multimeric
state of MHC complexes on the EV membrane contributing to the
capacity of EVs to present antigen and activate naïve CD4+ T cells
(Figure 1D). Thus, tetraspanins, besides regulating the expression
and sorting of MHC to EVs, may also regulate the proper degree
of clustering in the surface of theses EVs necessary for eliciting an
immune response.

With the progressive knowledge in this area, many efforts
are focused on the development of proper immunotherapeutic
treatments. Cell-free vaccines are being created on the basis of
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DC-derived exosomes, which have the ability to activate CD4+,
CD8+ T cells, and NK cells. In cancer, tumor-derived exosomes
have been used to carry tumor-antigens to induce the anti-tumor
responses that would result in tumor cell death. Modulating
the antigen-presentation capacity of exosomes by tetraspanin-
targeting may have important consequences in this type of
promising immunotherapies.

CONCLUDING REMARKS
Further experimental evidences are required to fully define the
functional role of tetraspanins in the different aspects of EV
biology. However, in light of their potential role in all the
processes ranging from EV biogenesis to uptake, tetraspanin-
targeting strategies may have a great therapeutic value. Different
tetraspanin-targeting strategies have been already described in the
literature, such as specific blocking antibodies, synthetic soluble
peptides comprising the LEL sequence (14), or cytopermeable
peptides with the cytoplasmic region of tetraspanins (35). All these
experimental approaches could be envisioned as promising targets
for the use of EV in the clinical practice.
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