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Tetrodotoxin-Resistant Sodium Channels Contribute to
Directional Responses in Starburst Amacrine Cells
Nicholas W. Oesch1*, W. Rowland Taylor2

1 Neuroscience Graduate Program, Oregon Health and Sciences University, Portland, Oregon, United States of America, 2 Casey Eye Institute, Oregon Health and Sciences

University, Portland, Oregon, United States of America

Abstract

The biophysical mechanisms that give rise to direction selectivity in the retina remain uncertain. Current evidence suggests
that the directional signal first arises within the dendrites of starburst amacrine cells (SBACs). Two models have been proposed
to explain this phenomenon, one based on mutual inhibitory interactions between SBACs, and the other positing an intrinsic
dendritic mechanism requiring a voltage-gradient depolarizing towards the dendritic tips. We tested these models by
recording current and voltage responses to visual stimuli in SBACs. In agreement with previous work, we found that the
excitatory currents in the SBACs were directional, and remained directional when GABA receptors were blocked. Contrary to
the mutual-inhibitory model, stimuli that produce strong directional signals in ganglion cells failed to reveal a significant
inhibitory input to SBACs. Suppression of the tonic excitatory conductance, proposed to generate the dendritic voltage-
gradient required for the dendrite autonomous model, failed to eliminate the directional signal in SBACs. However, selective
block of tetrodotoxin-resistant sodium channels did reduce the strength of the directional excitatory signal in the SBACs. These
results indicate that current models of direction-selectivity in the SBACs are inadequate, and suggest that voltage-gated
excitatory channels, specifically tetrodotoxin-resistant sodium channels, are important elements in directional signaling. This is
the first physiological evidence that tetrodotoxin-resistant sodium channels play a role in retinal information processing.
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Introduction

Direction selective ganglion cells (DSGCs) in the retina require

GABAergic inhibition, mediated by GABAA receptors, for the

discrimination of motion direction [1,2,3,4]. The GABAergic

input to DSGCs is two to ten times larger for null direction motion

than for preferred direction motion [5,6,7,8], suggesting that

directional inhibition is a key mechanism generating directional

responses. The most likely source for this directional inhibition is

the SBAC, a radially symmetrical, inhibitory interneuron that is

both GABAergic and cholinergic [7,9,10]. It has been suggested

that the SBAC dendrites are the first point where directional

signals in the retina arise.

In support of this notion, SBAC dendritic varicosities display large

calcium transients during centrifugal stimulation, when the stimulus

moves from the cell soma towards the tips of the dendrites, whereas

calcium transients are small or absent during centripetal stimulation,

when the stimulus moves towards the soma [11,12,13]. Similarly,

voltage responses measured at the soma are larger for centrifugal

motion than for centripetal motion and these differences in the

voltage responses presumably drive the differences in calcium signals.

Recently, two mechanisms have been proposed to explain how

the directional asymmetries in the voltage responses and calcium

transients of SBACs arise. Lee & Zhou [12] demonstrated that

neighboring SBACs make reciprocal GABAergic contacts and

suggested that an anatomical asymmetry in these contacts generates

inhibition in the SBAC that is larger for centripetal than centrifugal

motion. They found that inhibition suppressed the voltage and

calcium signals during centripetal motion originating outside the

extent of the dendritic arbor. In contrast, Hausselt et al. [13]

demonstrated that directional voltage signals in the SBAC were

generated when the stimulus was restricted to the dendritic arbor of

a single SBAC, arguing that the involvement of neighboring SBACs

was not necessary. Furthermore, they found that GABAA receptor

antagonists had no effect on the directional calcium or voltage

signals they recorded [13] and they proposed that directional signals

were due to sequential activation of excitatory inputs to SBACs

superimposed on an asymmetrical voltage gradient in the dendrites

generated by tonic AMPA receptor mediated synaptic current

acting in concert with voltage-gated calcium channels.

These two proposed mechanisms are quite different, but not

mutually exclusive. Thus, while it is generally agreed that the

origin of direction selective signals lies within the SBAC, the

precise biophysical mechanisms giving rise to direction selectivity

remain elusive. In this report, we examined the directional

synaptic responses in the SBACs and tested key components of the

two proposed models and found that neither model is adequate to

explain the existence of directional signals in the SBAC.

Methods

All animal procedures were conducted in accordance with NIH

guidelines and protocol number 0735 approved by the Institu-

tional Animal Care and Use Committee at OHSU.
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Tissue Preparation and Maintenance
Dark-adapted, out-bread pigmented rabbits were surgically

anesthetized using intra-muscular 60 mg/kg Ketamine and

10 mg/kg xylazine and i.v. sodium pentobarbital (40 mg/kg)

and the right eye removed under dim-red illumination (.620 nm).

Following enucleation, animals were euthanized by anesthetic

overdose of i.v. sodium pentobarbital, followed by i.v. injection of

10 ml of 3M KCl. All subsequent manipulations were performed

under infrared illumination (.900 nm). The anterior portion of

the eye was removed, the eyecup transected just above the visual

streak, and the dorsal piece discarded. The retina was dissected

from the sclera, and a 565 mm section of central retina was

adhered, photoreceptor-side down, to a glass cover-slip coated

with poly-L-lysine (Sigma) or Cell-Tak (Becton Dickinson GmbH,

Germany). The preparation was placed in a recording chamber

(,0.5 ml volume) and continually perfused (,4 ml/min) with

oxygenated bicarbonate-buffered Ames medium [14], pH 7.4

maintained at 34–36uC. The major electrolytes in Ames medium

are (mM): 120 NaCl, 23 NaHCO3, 3.1 KCl, 1.15 CaCl2 and 1.24

MgCl2. Pharmacological agents were dissolved in oxygenated

Ames medium and perfused through the recording chamber

identically to the control Ames solution.

Electrophysiology and Light Stimulation
Patch electrodes were pulled from borosilicate glass to have a

final resistance of 4–8 MV. For extracellular recording, the

electrodes were filled with Ames medium. For voltage-clamp

recording, the electrodes were filled with the following electrolytes:

110 mM Cs-methylsulfonate, 10 mM NaCl, 5 mM Na-HEPES,

1 mM EGTA, 1 mM Na-ATP, 0.1 mM Na-GTP. For current

clamp recordings K-methylsulfonate was substituted for Cs-

methylsulfonate. Retinal neurons were visualized using differential

infrared differential interference contrast microscopy or Dodt

optics [15]. ON starburst amacrine cells (SBACs) were targeted

based on their location in the ganglion cell layer and their

comparatively small round somas. Prior to patching the SBAC we

made a small hole in the inner limiting membrane near the cell

soma, through which the patch electrode was applied to the cell.

The SBACs identity was confirmed by its physiological response

characteristics, which included a high variance noise consisting of

large fast inward currents, a biphasic light response with a fast

transient component, a sustained component, and a characteristic

decrease in noise at light termination. For ganglion cells we

targeted cells with a medium soma diameter and a crescent-shaped

nucleus [16]. The extracellular electrode was applied to the soma

under visual control through a small hole in the overlying inner

limiting membrane, and a loose patch recording was formed. After

establishing that the ganglion cell was a DSGC and determining its

preferred direction (see below), the extracellular recording

electrode was removed and an intracellular patch-electrode

applied to the same cell. During whole cell recordings current

signals were filtered at 4 kHz through the 4-pole Bessel filter of the

EPC10 dual amplifier (HEKA Elektronics, Canada), and digitized

at 10–50 kHz.

Light stimuli, generated on a mini-CRT computer monitor

(MicroBrightField, Inc, refresh rate, 60 Hz), were focused onto the

photoreceptor outer segments through a 206 (NA 0.95) Olympus

water-immersion objective. The percent stimulus contrast was

defined as C = 1006(L2Lmean)/Lmean, where L is the stimulus

intensity and Lmean is the background intensity. For SBAC

stimulation the standard moving stimulus consisted of two

1506900 mm bars moving along their long axis in opposite

directions at 900 mm/s, with each bar stimulating an opposing half

of the SBAC dendritic field. The bars enter and exit the stimulus

field from behind a mask with a rectangular aperture 150 mm wide

and 680 mm long with the long axis oriented parallel to the

direction of motion. The short edge of the aperture was offset

20 mm from the centre of the soma, and therefore the opposite

edge was 680+20 mm distant from the soma. Thus, for centrifugal

motion the edges of the rectangle first appear from behind the

mask 20 mm from the center of the soma, and disappeared 700 mm

from the soma. Because the bar is 900 mm on its long axis and

moves at 900 mm/s the leading and trailing edges were separated

in time by 1 s. For centripetal motion the stimulus direction was

simply reversed. The contrast of the bar was set to 100%. For

DSGCs the standard moving stimulus comprised a light or dark

bar, moving along its long axis at 800–1200 mm/s on the retina,

and traversed the entire width of the stimulation field. The bar’s

width was 250 mm, and its length was set to achieve a 1–2 second

separation of the leading and trailing edge responses. All light

stimuli were centered with respect to the tip of the recording

electrode, and thus also with the soma of the target cell. The

stimulus area was limited by the size of the CRT monitor, and

covered a square region 0.7 mm on a side. Since the dendritic

arbors of SBAC and DSGCs range from 200 mm to 400 mm for

SBACs [17,18] 300 mm to 400 mm for DSGCs [16], they were

fully contained within the stimulus area. Data acquisition was

triggered at a fixed time relative to the light stimulus and therefore

it was straight-forward to calculate the position of the stimulus at

any time during the response.

Analysis
Analysis was performed using custom procedures in IgorPro

(Wavemetrics, USA). For SBACs, the magnitude of the directional

asymmetry was calculated using an asymmetry index (AI), which

ranged from 0 to 1, with values closer to one indicating a stronger

asymmetry. For voltage and current measurements we defined

AI = (centrifugal2centripetal)/( centrifugal+centripetal), so that a

positive index indicates that centrifugal motion is preferred. For

the rise time, the AI was defined as AI = (centripetal2centrifugal)/

(centrifugal+centripetal), so that a positive index indicates that

centrifugal motion is faster. For DSGCs, the preferred direction of

the cells and the strength of the directional tuning were calculated

from responses to stimuli in each of 12 stimulus directions evenly

spanning 360 degrees. Responses were represented as vectors with

the angle representing the direction of stimulus motion, and length

equal to the number of action potentials or the peak amplitude of

PSPs. The preferred direction was obtained from the angle of the

resultant vector, which was the vector sum of all 12 responses. The

directional tuning index (DSI) was calculated as the normalized

length of the resultant vector. DSI can range from 0, when the

magnitude of the response is the same in all stimulus directions, to 1,

for perfect tuning when a response is produced only for a single

stimulus direction [6]. The directional tuning data is well described

by a von Mises distribution, which is the circular analogue to the

Gaussian distribution. The response R, as a function of stimulus

direction is given as, R = Rmax e(k cos((x2m)p/180))/ek, where Rmax is the

maximum response, m becomes the preferred direction in degrees,

and k is the concentration parameter, which accounts for the width

of the directional tuning.

Conductance was calculated using methods previously de-

scribed [6,8]. Briefly, light evoked synaptic currents were assumed

to arise from a sum of linear excitatory and inhibitory synaptic

inputs. Excitation is mediated by non-selective cation channels

with reversal potential, Ve = 0 mV, while inhibition is mediated by

chloride channels with reversal potential, Vi = 269 mV. Reversal

potentials were calculated from our internal and external

recording solutions. The synaptic currents obey Ohm’s law so

TTX-Resistant NaV in Retina
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that Ie = ge(t)(V2Ve), and Ii = gi(t)(V2Vi), where the inhibitory, gi(t)

and excitatory, ge(t) conductances are functions of time. The total

light evoked synaptic current is, IT = gT(t)(V2Vt(t)), where

gT = ge+gi. The observed synaptic reversal potential Vr(t) is a

weighted sum of Ve and Vi such that, Vr(t) = (ge(t )/gT(t))Ve+(gi(t)/

gT(t))Vi. The excitatory and inhibitory synaptic conductances can

be calculated from gT(t) and Vr(t) according to the equations:

ge(t) = gT(t)(Vr(t)2Vi)/(Ve2Vi) and gi(t) = gT(t)(Vr(t)2Ve)/(Vi2Ve).

To collect the data necessary to calculate the synaptic conductance

we presented centrifugal or centripetal (or preferred or null) stimuli

while holding the cell at command voltages ranging between

2100 mV and 0 mV by increments of 20 mV. We then

calculated IV relations for the net light-evoked currents every

10 ms. Each IV was fit with a line between 2100 mV and

240 mV where the IV relation was most linear. The slope gT and

intercept Vr were determined from the fit, thus producing a

discrete measurement for gT and Vr at every point.

To examine voltage-activated currents in the SBACs we applied

a family of command voltages between 2100 mV and 0 mV by

increments of 20 mV. To isolate the voltage-activated component

of the membrane current, we subtracted the linear leak current

measured between 2100 mV and 240 mV current from the IV

measured over the full voltage range.

Unless otherwise noted, the mean 6 standard deviation is

quoted throughout the paper. Significance values for comparing

pharmacological manipulations to control were generated using

the Students paired t-test, significance was considered to be

p,0.05.

Results

To examine the synaptic processes that mediate directional

signaling in the starburst amacrine cell (SBAC), we made whole-cell

voltage-clamp and current-clamp recordings from ON SBACs in

isolated whole-mount rabbit retina, and stimulated the retinal

circuitry with patterns of light projected onto the retinal

photoreceptors (see methods). In response to a 200 mm diameter

light-flash centered on the cell soma, the SBAC produced a peak

response of 11767 pA with a 10% to 90% activation time of

30610 ms (Figure 1A). In accordance with previous work, the peak

response was transient and decayed to a sustained inward current

for the duration of the light stimulus (1.5 s) [12,17,18]. At the

termination of the light flash there was a marked suppression of a

tonic inward current, and a concomitant decrease in the membrane

current variance. Current clamp recordings closely mirror the

current response, suggesting that the observed excitatory currents

predominantly drive the voltage response (Figure 1B).

SBACs respond differentially to centrifugal and
centripetal motion

To study the asymmetric response between centrifugal and

centripetal motion, we stimulated the SBAC by drifting two

opposing rectangles away from (centrifugal stimulation), or

towards (centripetal stimulation) the soma (Figure 1C & E). We

chose this stimulation paradigm because such stimuli elicit robust

directional responses from DSGCs [5,6,7,19,20].

The responses to moving stimuli were qualitatively similar to the

flash responses shown in Fig 1A; there is a transient inward current as

the stimulus enters the receptive field, a sustained inward current while

the light intensity remains elevated, and an outward current with a

concomitant reduction in current noise levels as the trailing edge of the

stimulus exits the receptive field. The most prominent asymmetry

between centrifugal and centripetal stimulation was found in the initial

transient response, which was smaller for centripetal stimulation. For

centrifugal motion the peak amplitude of the response was

2103630 pA and the 10–90% rise-time was 3867 ms (n = 30).

For the corresponding centripetal motion the peak amplitude was

266622 pA and the 10–90% rise time was 196683 ms. Both peak

amplitude and rise time were significantly different between

centrifugal and centripetal motion (p,0.001, n = 30).

Thus, during centripetal motion the peak amplitude was

reduced by 36% relative to centrifugal motion, while the rise-

time increased by 515%. These values correspond to asymmetry

indices (AIs, see Methods) of 0.2260.07 and 0.6760.14 for

amplitude and rise time respectively. The directional asymmetry

observed here, characterized by larger, faster responses for

centrifugal motion, are qualitatively similar to previous observa-

tions [11,12,13]. Current-clamp recordings indicated that the

directional asymmetry of the voltage response is also similar to the

asymmetry observed for the currents (Figure 1, AI = 0.17560.064

for amplitude and 0.63460.059 for rise time, n = 4).

Calculation of the total charge transferred during the time while

the leading edge of the stimulus traversed the cell’s receptive field,

indicates that the SBAC receives a greater amount of excitation

during centrifugal stimulation relative to centripetal stimulation.

The total charge was 24.068.7 pC for centrifugal motion versus

12.564.5 pC for centripetal motion (p,0.001, n = 30). This

difference corresponded to an AI for the current-integral of

0.33160.137. Thus, both the waveform of the currents and the

total amount of charge transfer is directional.

Excitatory conductance in the SBAC is directional, but
inhibition is absent

Lee and Zhou, [12] demonstrated that GABAergic inhibition in

response to stimulation outside the dendritic extent of the SBAC

shaped the voltage response to centripetal stimulation. To examine

the role of inhibition, we performed whole-cell voltage clamp

recordings and measured the excitatory and inhibitory conduc-

tance during centrifugal and centripetal stimuli over a range of

holding potentials (Figure 2 and see methods). Current-voltage

relations, measured near the peak of the response, (dotted lines

Figure 2A &B) were linear for both centrifugal and centripetal

stimulation (Figure 2C, see [17]). Comparing the slopes of the I-V

relations indicates that the peak light-evoked conductance is larger

during centrifugal stimulation (Figure 2D). We calculated the

excitatory and inhibitory components of the conductance based on

a reversal potential of 0 mV for excitation and 269 mV for

inhibition (Figure 2E & F, see Methods).

These measurements revealed that essentially all the current was

due to the activation of excitatory synaptic inputs, suggesting that

inhibitory synaptic input did not contribute significantly, if at all,

to the responses. Due to the possibility that the SBAC is

electrotonically large, we pharmacologically confirmed that

inhibitory receptors do not contribute to differences between

centrifugal and centripetal stimulation by applying the GABAA

receptor antagonist SR-95531 (1 mM) to block inhibitory synaptic

input (Figure 3A,B). SR-95531 did not alter the amplitude,

integral, or rise time of the current responses, or conductance

measurements (Figure 3C,D). Nor was there a significant change

in the directionality for any of these metrics (n = 5). Taken

together, the conductance measurements (Figure 2) and the results

from blocking GABAergic transmission (Figure 3), indicate that

inhibition does not shape the directional signals recorded at the

soma. Because inhibition does not appear to contribute to the

SBAC responses we will continue to report measurements of

directional differences taken from the measured inward currents,

as this provides a more direct measurement of the cell response

compared to the calculated conductance.

TTX-Resistant NaV in Retina
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NBQX blocks direction selectivity by blocking excitation
in SBACs

Even in the absence of GABAergic input to the SBAC it is clear

that centrifugal and centripetal responses remain directional

(Figure 3C). Hausselt et al. [13] observed similar results, and

proposed that a proximal to distal voltage gradient in the SBAC

dendrite created an electrical asymmetry between centrifugal and

centripetal stimulation, which acts in concert with nonlinear

conductances to generate directional responses. They proposed

that this voltage gradient was generated by a tonic excitatory input

to the SBAC dendrites [17,18]. Consistent with this theory,

previous groups have reported that quinoxaline AMPA/kainate

Figure 1. Voltage and current responses to static and moving stimuli. A, Currents recorded in response to a 200 mm spot of light centered
over the receptive field against a gray background, contrast 100%. B, Voltage response to an identical stimulus. C and E show currents in response to
centrifugal and centripetal moving stimuli, respectively (see Methods). The solid and dotted lines above the trace indicates the position along the
long axis of motion of the leading and trailing edge of the stimuli on the y-axis plotted against time. (see Methods). The shaded area over the traces
represents the time when the leading and trailing edges of the stimuli are estimated to be moving over the cells dendritic arbor. D and F, show
voltage responses to the same stimuli shown in C and E. The inset to the left is a schematic representation of a SBAC and the stimulus field showing
the scale of the stimuli relative to a representative SBAC, the stimulus field denoted by the shaded square is 700 mm on a side.
doi:10.1371/journal.pone.0012447.g001
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antagonists (CNQX, NBQX) block the tonic input to SBACs

[13,17,18], and eliminate directional responses in the DSGC [21].

However, Cohen & Miller [21] proposed that the loss of

directional selective DS responses in DSGCs in the presence of

quinoxalines was due to suppression of the excitatory drive to

starburst amacrine cells, with the result that both GABA and

acetylcholine release from these cells was blocked. To determine

the mechanism of NBQX block of direction selectivity we

measured the effects of NBQX on synaptic conductances in

SBACs.

In an effort to maximize the specificity of the NBQX effects, we

first tested a range of concentrations (250 nM, 500 nM, 750 nM,

1 mM, 2 mM) to determine the lowest effective dose that disrupted

directional responses in the DSGC. We found that the

directionality of spiking responses in DSGCs could be reliably

eliminated (19 of 19 cells) by 750 nM NBQX. To quantify the

strength of the directional tuning in the DSGC we calculated the

directional selectivity index (DSI) in the presence and absence of

750 nM NBQX (see Methods). In close agreement with previous

estimates in rabbit [6,20], DSI measured from spike responses

averaged 0.5260.12 for the ON response and 0.5560.15 for the

OFF response in control conditions (Figure 4A, N = 6). Applica-

tion of 750 nM NBQX increased the number of null direction

spikes and decreased the number of preferred direction spikes, so

that the number of spikes elicited was independent of stimulus

direction (Figure 4C). The average DSI measured in the presence

of 750 nM NBQX was reduced to 0.0760.02 for the ON response

and 0.0660.28 for the OFF response (Figure 4B, n = 6). The effect

of NBQX was reversible and repeatable (Figure 4C). Higher

concentrations of NBQX also blocked DS signals in the DSGCs,

but produced progressively more suppression of the spiking

responses (data not shown).

Is the loss of directional signals due to a reduction in the

excitatory drive to SBACs as Cohen & Miller [21] suggested or

due to a block of the directional mechanism in the SBAC as

Hausselt et al. hypothesize? To test this idea, we measured light-

evoked synaptic conductances in SBACs in the presence of

750 nM NBQX (Figure 5). We found that 750 nM NBQX

Figure 2. Conductance measurements of SBAC synaptic inputs. A,B, Currents recorded during centrifugal and centripetal stimulation,
respectively during command potentials ranging from 2100 mV to 240 mV (traces filtered, 25 Hz Gaussian). Schematic above shows command
voltage. Vertical dotted lines indicate the time point at which sample IVs shown in C were measured. C shows plots of IV at the peak responses as
indicated by the dotted line in figure A and B for centrifugal (circles symbols) and centripetal (square symbols) motion. The solid line indicates the
linear fit between 2100 mV and 240 mV. D, Total conductance measured every 10 ms for centrifugal and centripetal traces, in black and gray,
respectively. E,F, Excitatory (black traces) and inhibitory conductances (gray traces) for centrifugal and centripetal motion, respectively.
doi:10.1371/journal.pone.0012447.g002

TTX-Resistant NaV in Retina
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blocked a net inward current of 13.968.9 pA and decreased the

root mean square membrane current from 10.767.9 pA to

2.562.7 pA, consistent with the blockade of a sustained AMPA

mediated input to the SBAC (Figure 5 A & B; p,0.005, n = 8). By

examining the excitatory (Figure 5C) and inhibitory conductance

(Fig 5D) we observed that NBQX completely blocked the

sustained component of the light response for both centrifugal

and centripetal motion. The transient initial component of the

light response was slightly reduced; however, for centrifugal

stimulation this reduction was variable and failed to reach

significance (19.1623% reduction, p = 0.058, n = 8). For centrip-

etal motion the percent reduction was greater and reached

significance (34.4621.6% reduction, p = 0.012, n = 8). Because the

reduction was larger for centripetal stimulation, this increased the

directional difference of the SBAC response in the presence of

NBQX.

Thus, NBQX does not eliminate directional signals in the

SBACs, nor does it completely suppress excitatory inputs, but are

these residual inputs large enough to maintain the inhibitory drive

to the DSGCs? To answer this question, we measured excitatory

and inhibitory synaptic conductance in the DSGC in the presence

of 750 nM NBQX (Figure 6). During null-direction stimulation,

the integral of the inhibitory conductance was reduced by

9668% & 9765% for ON and OFF responses respectively

(Figure 6 D, n = 9). The corresponding reductions for preferred

direction stimulation were 96613% & 95614 for ON and OFF

responses respectively (Figure 6 C). The larger error for preferr-

ed direction measurements was due to the smaller absolute

magnitude of the preferred direction inhibition in control

conditions. Thus while NBQX blocks the transmission of the

directional signal from the SBAC to the DSGC it does not block

directional responses in the SBAC.

Our results indicate that, contrary to recent reports, neither

GABAergic inhibition nor tonic excitatory inputs are required to

generate directional excitatory currents in the SBAC [12,13].

Other explanations for the generation of directional signals in the

SBAC that are independent of inhibition, have suggested that the

small diameter of the SBAC dendrites results in electrical isolation

of the soma from the dendritic terminals [22,23,24,25,26]. This

notion raises the possibility that currents might be asymmetrical

due to differences in the activation of voltage-gated channels in the

proximal versus distal dendrites [27]. We wanted to examine this

Figure 3. GABAergic inhibition does not contribute to responses to moving stimuli. A,B, Control currents (black traces) and currents
recorded in the presence of 1 mM SR-95531 (gray traces), in response to centrifugal (A) and centripetal stimuli (B). C,D: excitatory conductance for
centrifugal (C) and centripetal (D) stimulation in control (black traces) and SR-95531 (gray traces). E,F, Inhibitory conductance for centrifugal (E) and
centripetal (F) stimulation in control (black traces) and SR-95531 (gray traces).
doi:10.1371/journal.pone.0012447.g003

TTX-Resistant NaV in Retina
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possibility by blocking voltage-gated currents that could be

shaping directional responses.

TTX-resistant sodium channels boost directional synaptic
input to the SBAC

Previous reports have suggested that directional responses in

SBACs could be enhanced by voltage-gated ion channels in the

SBAC dendrites [13,25]. There are reports of both voltage-gated

calcium and sodium currents in SBACs; however, the existence of

TTX-sensitive channels in SBACs has been disputed [13,17,18,

28,29,30,31]. More recently, a systematic study of the voltage-

gated currents in mouse SBACs found evidence for N, P and Q

type calcium currents, but did not find evidence for TTX sensitive

sodium currents [32]; however, they did not rule out the possibility

of tetrodotoxin-resistant voltage-gated sodium channels (TTX-R

VGSC), and a subsequent immunohistochemical study suggests

that TTX-R VGSC (NaV 1.8) are expressed in SBACs [33]. In

light of these previous studies, we examined the effect of ambroxol

hydrochloride, a selective TTX-R VGSC blocker [34], on SBAC

light responses to determine whether TTX-R sodium currents

contribute to directional signals.

We applied a series of depolarizing voltage steps and measured

the IV relation between 2100 and 0 mV. When the linear

component of the membrane current between 2100 and 240 mV

was subtracted (see Methods), the IVs displayed a negative slope

between 240 and 0 mV, consistent with the activation of an

inward voltage-gated current (Figure 7A). This negative conduc-

tance appeared to be mediated in part by TTX-R VGSC because

application of 200–500 mM ambroxol reduced the negative

conductance between 240 and 0 mV from 23.5160.70 to

21.7460.37 nS (P = 0.015, n = 3).

To assess the role of TTX-R channels in the SBAC response to

light stimuli, we applied ambroxol during centrifugal and centripetal

stimulation. Ambroxol decreased the peak amplitude of currents

elicited by centrifugal stimulation by 48613% (p = 0.002, n = 6),

but had no effect on the sustained component of the light response.

The peak amplitude of the centripetal response was reduced by

37620% (p = 0.008, n = 6). This larger reduction in centrifugal

  

Figure 4. NBQX blocks direction selectivity in DSGCs. A, Extracellular spike responses to sweeping bar stimuli in each of 12 directions are
shown adjacent to the stimulus angle. Each point on the polar plot shows the total number of spikes for the ON (open symbols) and OFF (closed
symbols). The solid lines indicate the best-fit von Mises distribution for the ON and OFF responses. Asymmetry in polar plot indicates directional
selectivity of the response. B, Same as A, in the presence of 750 nM NBQX. C, Spike-counts during preferred (filled circles) and null (open squares)
direction stimuli plotted against time. Gray box indicates duration of NBQX application. D, Relative reduction of preferred direction spiking. Bars are
normalized to maximal control response for ON and OFF responses. Gray bars indicate the suppression of the preferred direction spiking responses.
Error bars equal standard deviation.
doi:10.1371/journal.pone.0012447.g004
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peak amplitude meant that ambroxol significantly reduced the

directional difference between centrifugal and centripetal peak

amplitudes by 64610% (p = 0.002, n = 6), with the result that the AI

for amplitude was significantly decreased from 0.2660.07 to

0.1960.08 (p = 0.008, n = 6, Figure 7A). Despite the significant

reduction in the asymmetry, the centrifugal and centripetal

amplitudes were still significantly different from each other

(p = 0.001). These results indicate that TTX-R sodium channels

contribute to generating the directional response in SBACs;

however, they cannot completely account for directional selectivity.

In light of past differences regarding the presence of TTX-

sensitive channels in SBACs, and to control for possible non-

specific block of TTX-sensitive VGSCs by ambroxol, we tested

whether blocking the TTX-sensitive VGSCs directly would affect

the directional asymmetry in SBACs. To this end, we measured

SBAC responses in the presence of 500 nM TTX (Figure 7B).

TTX had no significant effect on voltage-activated currents in the

SBAC. In contrast to ambroxol, TTX increased the peak

amplitude of the SBAC responses by 15611% for centrifugal

and 29620% for centripetal stimuli (p = 0.027 and 0.023,

respectively, n = 5). Because both centrifugal and centripetal

response amplitudes were changed in the same direction, TTX

did not have a significant effect on the directional differences or

the AI. These data show that block of TTX-sensitive VGSCs

cannot account for the effects seen with ambroxol. The most

parsimonious explanation for the increase of the SBAC response

amplitude by TTX is that TTX suppresses the activity of spiking

amacrine cells which make inhibitory contacts with bipolar cell

terminals [35,36]. (Figure 7B).

Previous work has shown that voltage-gated calcium channels

(VGCCs) are present in SBACs [32,37] and it is possible that these

may contribute to the directional asymmetry in the SBACs

[13,25]. Because high concentrations of cadmium that completely

block VGCCs also abolish synaptic transmission and light

responses in the retina, we needed to test the effects of low

concentrations of cadmium on the SBAC responses. Previous work

has shown that low concentrations of cadmium selectively block

direction selectivity without abolishing light responses [13,30].

When we measured SBAC responses in the presence of 25–30 mM

cadmium we did not see any change in voltage-activated currents

in the presence of this concentration of cadmium, nor could we

resolve any differences in response amplitudes, rise times, or the AI

Figure 5. NBQX does not alter directionality of SBAC currents. A,B, Control currents (black traces) and currents recorded in the presence of
750 nM NBQX (black traces), in response to centrifugal (A) and centripetal stimuli (B). C,D, Excitatory conductance for centrifugal (C) and centripetal
(D) stimulation in control (black traces) and 750 nM NBQX (gray traces).E,F, Inhibitory conductance for centrifugal (E) and centripetal (F) stimulation in
control (black traces) and 750 nM NBQX (gray traces).
doi:10.1371/journal.pone.0012447.g005
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(Figure 7C) of the light evoked SBAC response. We did not

examine the effects of higher concentrations of cadmium, because

non-specific blockade of synaptic transmission confound the

interpretation of these experiments (data not shown).

Discussion

In agreement with our current measurements, previous work

has established that both voltage and current responses in SBAC

soma are direction-selective [11,12,13]; however, our data cannot

support either of the current models for SBAC direction selectivity

[11,12,13]. In addition, we show that TTX-sensitive VGSCs do

not contribute to generating SBAC directional signals; however,

the data suggests that TTX-resistant channels may play a modest

role in enhancing these directional signals.

Models of SBAC direction selectivity
One hypothesis with recent experimental support is that direct

inhibitory input from reciprocal interactions between neighboring

SBACs is responsible for generating directional asymmetries [12].

According to this hypothesis, surround inhibition mediated by

adjacent SBACs will produce directional asymmetries in the

magnitude of inhibitory inputs during centrifugal and centripetal

stimulation. However, our results show that directional responses

in SBACs are dominated by directional excitation, with little

detectable inhibitory input. This difference cannot be ascribed

simply to a difference in technique because, apart from a

difference in the strain of rabbits (the previous study used NZ

white rabbits while we have used Dutch-belted), the methods are

essentially the same. We cannot discount the possibility that a

difference in light adaptation level might cause some difference in

 

Figure 6. NBQX blocks inhibitory and most excitatory input to the DSGC. A, Current recordings during preferred direction stimulation at a
series of command potentials between 290 and 230 mVs, in control (left traces) and in the presence of 750 nM NBQX (right traces). B, Current
recordings for null direction stimulation. C, Excitatory (black trace) and inhibitory (gray trace) conductance for preferred direction stimulation in
control (left traces) and in the presence of 750 nM NBQX (right traces). D, Same as C, but for null direction stimulation evoked conductance.
doi:10.1371/journal.pone.0012447.g006
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the amount of inhibition seen in the SBACs, although this will

need further systematic analysis to test.

The lack of inhibition in the SBACs is unexpected given the

reciprocal inhibition results cited above. The SBAC dendrites are

thin, and the distal dendrites are likely to be electrotonically distant

from the recording electrode. Therefore, the inhibitory input seen

at the soma will under-estimate the actual synaptic conductance,

however, such errors will be similar in both studies and are

unlikely to account for the difference. Moreover, we occasionally

observed a light-evoked inhibitory conductance in the SBACs

when we applied the AMPA/kainate antagonist NBQX

(Figure 5D), indicating that inhibition can be resolved in the

SBACs under appropriate conditions. It is also worth noting that

under identical adaptation conditions we record robust directional

responses in DSGCs (Figure 4A), indicating that the lack of large

reciprocal GABA currents in SBACs does not preclude directional

responses in the DSGCs. Furthermore, directional calcium

responses observed in SBACs, are independent of GABAA

receptor activity Hausselt et al. [13], and consistent with this

result, we observed directional excitatory inputs when GABAA

receptors were blocked. Thus, results presented here and

previously, suggest that reciprocal inhibition is not necessary to

generate directional responses in SBACs or DSGCs.

After blocking inhibition, Hausselt et al. [13] found that

directional signals in SBACs were modulated by SBAC membrane

potential, and suggested a role for a voltage-dependant non-

linearity. Based on measurements, and compartmental modeling,

they proposed that directional discrimination relies on an

interaction between voltage-gated calcium channels in the distal

dendrites and a dendrite-to-soma voltage gradient created by a tonic

excitatory glutamatergic input [17,18]. We tested the hypothesis

that the tonic excitatory input is necessary for directional responses

in SBACs by blocking the tonic glutamatergic input, which should

dissipate the dendritic voltage gradient proposed by Hausselt et al.

[13]. Although NBQX suppressed a tonic inward current, and

blocked the sustained component of the light-response, the

directional asymmetry in excitatory responses of SBACs remained

robust. Paradoxically, NBQX did abolish directional responses in

the DSGCs, as was observed previously [21], even though the

SBACs remained directional in the presence of NBQX. One

Figure 7. Ambroxol reduces SBAC AI, but TTX or cadmium does not. A, (top row) shows the average IV relation measured 1.2 ms after the
command step to voltages between 2100 and 0 mV, under control conditions (closed squares) and drug (open circles). Error bars show standard
error. The linear portion of the IV has been subtracted leaving the negative slope portion of the IV (see Methods). The solid lines indicate the best-fit
line between 240 and 0 mV. A shows 300 mM ambroxol hydrochloride (n = 3), B shows 500 nM TTX (n = 6), and C shows 25 mM cadmium (n = 5). B
and C, (second and third rows) show the average filtered (25 Hz cutoff Gaussian) current traces in response to centrifugal and centripetal stimulation,
respectively in control conditions (black trace), and drug treatment (gray trace). Left column shows 300 mM ambroxol hydrochloride (n = 3). Middle
column shows. 500 nM TTX (n = 5). Right column shows 25 mM cadmium (n = 6).
doi:10.1371/journal.pone.0012447.g007
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explanation for this apparent contradiction comes from the

observation that NBQX blocks a tonic depolarizing current in the

SBACs. Perhaps blocking this tonic excitation hyperpolarizes the

SBACs so that that the light-evoked synaptic potentials fail to reach

threshold for synaptic release, thereby blocking forward transmis-

sion of the directional signal from the SBAC to the DSGC. In

summary, our data is in agreement with previous studies in showing

marked directional asymmetries in the responses of SBACs,

however, the results also raise some interesting discrepancies in

the current models explaining the mechanism generating the

directional signals that will require further study to fully resolve.

A possible role of TTX-Resistant sodium channels in SBAC
direction selectivity

Other models of SBAC direction selectivity have focused on the

observation that SBAC dendrites are thin and electrotonically

distant [23,24,25,38], which could allow for an asymmetrical

activation of voltage-gated conductances. Experimental [13,30]

and theoretical [25] studies, have proposed a role for voltage-gated

calcium channels in generating directional responses in the

SBACs. Based on extracellular recordings from ganglion cells in

the presence of Cd2+ (70–100 mM) and selective conotoxins,

Jensen [30,39] suggested that P or Q type calcium channels were

necessary for generating directional responses. Subsequently,

Hausselt et al. [13] found that low concentrations of cadmium

(10 mM) reduced SBAC DS without blocking synaptic transmis-

sion; yet they found that conotoxins did not have any significant

effect on the SBAC directional asymmetry, short of blocking all

light-evoked synaptic input to the cell. However, cadmium can

also block TTX-resistant voltage-gated sodium channels

[40,41,42] raising the possibility that previous results with low

concentrations of cadmium may have implicated TTX-R VGSCs.

Our pharmacological results along with recent anatomical

evidence suggesting the presence of NaV 1.8 in SBACs [33],

indicate that the tetrodotoxin-resistant sodium channel type NaV

1.8 could contribute to generating directional signals in SBACs.

NaV 1.8 is an unusual sodium channel both in its pharmacological

profile as well as its activation and inactivation kinetics. While it is

largely insensitive to the classic sodium channel blockers TTX and

QX-314, it is blocked by ambroxol hydrochloride with sensitivity

three times greater than TTX-sensitive channels [34]. To control

for effects of ambroxol on TTX-sensitive channels we also

examined the effect of TTX on directional signals in the SBAC.

TTX did alter the shape of the SBAC light responses presumably

due to effects on voltage-gated sodium channels located presyn-

aptically to the SBAC, possibly at bipolar cell terminals [43,44], or

by its effects on spiking interneurons that synapse onto bipolar cell

terminals [45]. Regardless, TTX did not have any effect on SBAC

direction selectivity, indicating that the effect of ambroxol was

specific to TTX-resistant sodium channels. Because there is no

evidence for TTX-resistant sodium channels on bipolar cell

terminals, or other interneurons [33] we conclude that the effects

of ambroxol on SBAC directional signaling were due to blockade

of TTX-resistant sodium channels on the SBAC.

NaV 1.8 channels are also kinetically distinct from TTX-

sensitive sodium channels as they have slower activation and

inactivation kinetics, a more depolarized activation threshold, and

more depolarized steady-state activation and inactivation curves.

The inactivation time constant at 0 mV is approximately 5 ms

about ten fold slower than for typical TTX sensitive currents. NaV

1.8 also has a more depolarized half maximal activation value of

approximately 215 mV compared to 227.6 to 240 mV for

TTX-sensitive currents [46,47,48]. While the activation range of

these channels is more depolarized than the voltages we recorded

from the soma of the SBAC, many studies suggest that the

dendrites of the SBAC are likely more depolarized, which may

allow for activation of NaV 1.8 channels [13] [49,50]. The

relatively slow kinetics of the TTX-R sodium channels seems well

suited to a role in the visual system, where the kinetics of the

synaptic inputs are also slow, relative to other brain regions. In

addition, the comparatively positive activation potential of NaV

1.8 gains intriguing significance because outwardly-rectifying

potassium channels are expected to limit depolarization of the

SBACs to sub-threshold voltages [26]. Moreover, Ozaita et al. [26]

found evidence for a gradient of these potassium channels in the

SBAC with the highest levels found in the soma and progressively

lower levels in the dendrites. Perhaps the lower potassium channel

density and higher local input resistance in the distal dendrites

allows the excitatory inputs to reach threshold for the TTX-R

sodium channels.
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