
Teuta: Tool Support for Performance Modeling
of Distributed and Parallel Applications�

Thomas Fahringer1, Sabri Pllana2, and Johannes Testori2

1 Institute for Computer Science, University of Innsbruck
Technikerstraße 25/7, 6020 Innsbruck, Austria

Thomas.Fahringer@uibk.ac.at
2 Institute for Software Science, University of Vienna

Liechtensteinstraße 22, 1090 Vienna, Austria
{pllana,testori}@par.univie.ac.at

Abstract. In this paper we describe Teuta, which we have developed
to provide tool support for the UML-based performance modeling of
distributed and parallel applications. Teuta features include model
checking and model traversing. Model checking is used to verify whether
the model conforms to the UML specification. In addition, Teuta
supports semantic model checking for the domain of high performance
computing. For the generation of different model representations the
model traversing is used. In addition, we present our methodology
for automatic generation of the simulation model from the UML
model of an application. This simulation model is used to evaluate
the performance of the application. We demonstrate the usefulness
of Teuta by modeling LAPW0, a distributed material science application.

Keywords: Distributed and Parallel Applications, Modeling and Simu-
lation, Performance, UML

1 Introduction

The high performance computing is usually used for solving complex problems
in science and engineering. However, effective performance-oriented program de-
velopment requires the programmer to understand the intricate details of the
programming model, the parallel and distributed architecture, and the mapping
of applications onto architectures. On the other hand, most performance tools [3,
4] provide little support at early application development stages when several de-
signs and strategies are examined by an application programmer. We anticipate
that a tool which supports the application programmer to graphically develop
the performance model of application at an early development stage would help
to influence design decisions without time-consuming modifications of the code
of an already implemented application.
� The work described in this paper is supported in part by the Austrian Science Fund

as part of Aurora Project under contract SFBF1104.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 456–463, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Teuta: Tool Support for Performance Modeling 457

ASKALON
Data Repository

Teuta
Model Building

Performance
Estimator
Simulation

ASKALON
Diagrams

Visualisation

Building Blocks
Computer

Architectures

pd
«paralleldo»*

Fig. 1. Performance Prophet architecture

In this paper we give an overview of our tool Teuta, which supports the de-
velopment of performance models for parallel and distributed applications based
on the Unified Modeling Language (UML) [5]. The UML is de facto standard
visual modeling language which is a general purpose, broadly applicable, tool
supported, industry standardized modeling language. However, by using only
the core UML, some shared memory and message passing concepts can not be
modeled in an adequate manner. In order to overcome this issue we have devel-
oped an extension of UML for the domain of high performance computing [6].

Teuta is an integral part of our performance prediction system Performance
Prophet [1]. Figure 1 depicts the architecture of Performance Prophet. The role of
Teuta is to assist the user to develop the model for an application by composing
existing building blocks. The application model is enriched with cost functions.
Thereafter, Teuta transforms the annotated model to an intermediate form based
on which the Performance Estimator of Performance Prophet evaluates the per-
formance of the application on the computer architecture selected by user.

Teuta features include model checking and model traversing. Model check-
ing is used to verify whether the model conforms to the UML specification. In
addition, Teuta supports semantic model checking for the domain of High Per-
formance Computing. Teuta makes use of model traversing for the generation of
different model representations (such as XML, C++).

Furthermore, in this paper we present our methodology for automatic gen-
eration of the simulation model from the UML model of an application. This
simulation model is used to evaluate the performance of the application. We
demonstrate the usefulness of Teuta and our methodology by modeling LAPW0,
a distributed material science application.

The rest of this paper is organized as follows. An overview of Teuta is de-
scribed in Section 2. Section 3 presents our methodology for the automatic gen-
eration of the simulation model based on the UML model of an application. A
case study is described in Section 4. Finally, some concluding remarks are made
and future work is outlined in Section 5.



458 T. Fahringer, S. Pllana, and J. Testori

Simulator

Teuta

Model
Traversing

Model
Checking

Menu

Drawing
Space

Toolbar

Model
Tree

Code
Editor

Element
Properties

User Interface

TF
(XML)

SF
(C++)

MCF
(XML)

RF
(XML)

M&CF
(XML)

ConF
(XML)

Fig. 2. The architecture of Teuta. Description of abbreviations: MCF - Model Checking
File, ConF - Configuration Files, M&CF - Model and Construct Files, SF - Simulation
File, TF - Trace File, RF - Result File.

2 An Overview of Teuta

Teuta1 is a platform independent tool for UML-based modeling of parallel and
distributed applications.

Because the application developers may work on various platforms, the tool
should be able to run on various platforms as well. Therefore, we have used
the Java language for the implementation of Teuta, based on the Model-View-
Controller (MVC) paradigm [2]. MVC is a paradigm that enforces the separation
between the user interface and the rest of the application. In this paradigm, the
model represents data and the core functionality of the application. The view is
the user interface. The controller interprets and delegates the interactions with
the view (for instance button clicks) to the model, which performs the corre-
sponding actions. The advantage of MVC is that it allows creation of indepen-
dent views (user interfaces) that correspond to a single model of an application.

It is difficult to foresee all the types of the building blocks that the user might
want to use to model his application. Therefore, we have included a basic set of
building blocks, which are described in [6,7], and made it easy to extend the tool
with the new building blocks. Teuta may be extended with new building blocks
by modifying a set of XML-based configuration files.

Figure 2 shows the architecture of Teuta, which consists of three main parts:
(i) Model checking; (ii) Model traversing; (iii) Graphical user interface (GUI).
We will describe each of these parts in the subsequent sections.

Element M&CF in Figure 2 indicates XML files which contain application
model and constructs. The application model is stored in a file, which contains
all the information which is required to display the model in the editor. All the
diagrams and modeling elements with their properties and geometric information
are stored in this file. A construct is a set of modeling elements. For instance
a set of modeling elements that represents a loop. Constructs may be used to
simplify the development of the application model.

Element ConF in Figure 2 indicates XML files which are used for configura-
tion of Teuta.
1 Teuta (Tefta): Queen of the Illyrians (231-228 BC)



Teuta: Tool Support for Performance Modeling 459

The communication between Teuta and the simulator is done via files SF,
TF, and RF (see Fig. 2). Element SF indicates the C++ representation of the
application performance model, which is generated by Teuta. Elements TF and
RF represents the trace file and result file respectively, which are generated by
the simulator.

Element MCF in Figure 2 indicates the XML file, which is used for model
checking. The following Section describes the model checking in more detail.

2.1 Model Checking

This part of Teuta is responsible for the correctness of the model. The rules for
model checking are specified by using our XML based Model Checking Language
(MCL). The model checker gets the model description from an MCL file. This
MCL file contains a list of available diagrams, modeling elements and the set of
rules that defines how the elements may be interconnected.

MCL File

UML
Rule Set

HPC Domain
Rule Set

Fig. 3. Model checking rule sets

Based on the UML Rule Set the model checker verifies whether the appli-
cation model conforms to the UML specification (see Fig 3). In addition, Teuta
supports semantic model checking for the domain of High Performance Comput-
ing (HPC). The HPC Domain Rule Set specifies whether two modeling elements
can be interconnected with each other, or nested one within another, based on
their semantics. For instance, it is not allowed to place the modeling element
BARRIER within the modeling element CRITICAL, because this would lead to
the deadlock.

2.2 Model Traversing

This component of Teuta provides the possibility to walk through the model, visit
each modeling element, and access its properties (for instance element name).
We use the model traversing for the generation of various model representations
(such as XML and C++).

The Model Traversing component of Teuta consists of three parts (i) the
Navigator, (ii) the Traverser, (iii) and the ContentHandler.

The Navigator is responsible for interpreting the input, creating the corre-
sponding object model and for the navigation in this object model.

The Traverser is responsible for traversing the object model created by the
Navigator. It walks through the diagrams of the model by calling the Navigator’s
methods. Various types of traversing strategies can be implemented, such as
depth-first or breadth-first.



460 T. Fahringer, S. Pllana, and J. Testori

The ContentHandler methods are called by the Traverser whenever the Tra-
verser begins or finishes a model, or visits an element. It is responsible for the
output of the traversing, for instance it can create another object model or write
to a file in a specific format.

2.3 Graphical User Interface (GUI)

Figure 6(a) in Section 4 depicts Teuta GUI, which consists of: menu, toolbar,
drawing space, model tree, code editor, and element properties. Because of the
limited space we are not able to describe the graphical user interface of Teuta
in detail. Therefore, in this section we describe only the support of Teuta for
constructs. A construct is a set of modeling elements. The idea is to relinquish the
user from trivial time consuming tasks, by automatic generation of constructs.
We have identified two types of constructs: (i) simple constructs that are used
frequently, such as loops; (ii) large constructs with regular structure, such as
topologies of processes.

Figure 4 shows an example of the automatic generation of topology of pro-
cesses. The user specifies the type (for instance 2D mesh) and parameters (for
instance 4 rows, 4 columns) of the process topology (see Figure 4(a)). Based
on this information Teuta generates the corresponding process topology (see
Figure 4(b)). The process topology is represented by the UML CollaborationIn-
stanceSet (see [7]). Without this support of Teuta, the user would spend a sig-
nificant amount of time to create all the modeling elements and arrange them
to represent the process topology.

(a) Specification (b) Topology of processes

Fig. 4. An example of the automatic generation of topology of processes



Teuta: Tool Support for Performance Modeling 461

ActionPlus codeRegion(1);

ActionPlus

properties

behaviour()

codeRegion
«action+»

Fig. 5. From the UML model to the simulation model

3 The Development of the Simulation Model Based on
the UML Model

Figure 5 depicts the process of transition from the model of the application
represented by UML activity diagram, to the simulation model. The simulation
model is represented in C++.

The UML element activity is stereotyped as action+. The UML stereotyping
extension mechanism makes possible to make the semantics of a core modeling
element more specific (see [6]). The element action+ is used to represent a code
region of an application. For this modeling element we have defined the class
ActionPlus. The properties of the UML modeling element action+ (for instance
the element ID) are mapped to the properties of the class ActionPlus. The per-
formance behavior of the element is defined in the method behaviour() of the
class. This method is responsible for advancing the time in the simulation clock.
This time is estimated either by a parameterized cost function or by simulating
the behavior of the element. The name of the UML modeling element, in our
example codeRegion, is mapped to the name of the instance of the class.

In the next section we present the performance modeling and evaluation of
a real-world application.

4 Case Study: LAPW0

The objective of our case study is to examine whether the tool support described
in this paper is sufficient to build a performance model for a real-world appli-
cation. The application for our study LAPW0, which is a part of the WIEN2k
package [9], was developed at Vienna University of Technology. The Linearized
Augmented Plane Wave (LAPW) method is among the most accurate methods
for performing electronic structure calculations for crystals. The code of LAPW0
Application is written by using FORTRAN90 and MPI.

The LAPW0 application consists of 100 file modules (a module is a file con-
taining source code). The modeling procedure aims to identify the more relevant
(from performance point of view) code regions. We call these code regions build-
ing blocks. A building block can be a sequence of computation steps, communi-
cation operations or input/output operations. In order to evaluate the execution
time of the relevant code regions of LAPW0 application, we have instrumented
these code regions and measured their corresponding execution times by using
SCALEA [11], which is a performance analysis tool for distributed and parallel
applications.



462 T. Fahringer, S. Pllana, and J. Testori

(a)

0

100

200

300

400

500

600

N1p4 N2p8 N4p16 N8p32
Configuration

E
xe

cu
ti

o
n

 T
im

e 
[s

ec
.]

Simulation(64)

Measurement(64)

Simulation(32)

Measurement(32)
NAT=64

NAT=32

(b)

Fig. 6. Performance modeling and evaluation of the LAPW0 application

Figure 6(a) depicts the model of LAPW0, which is developed with Teuta. Due
to the size of the LAPW0 model, we can see only a fragment of the UML activity
diagram within the drawing space of Teuta. On the right hand side of Figure 6(a)
is shown how the model of LAPW0 is enriched with cost functions by using Teuta
code editor. A cost function models the execution time of a code region.

In order to evaluate the model of LAPW0 we have transformed the high
level UML model of LAPW0 into a simulation model. Teuta automatically gen-
erates the corresponding C++ representation, which is used as input for the
Performance Estimator (see Figure 1). The Performance Estimator includes a
simulator, which models the behavior of cluster architectures. CSIM [10] serves
as a simulation engine for the Performance Estimator.

Figure 6(b) shows the simulation and measurement results for two problem
sizes and four machine sizes. The problem size is determined by the parameter
NAT, which represents the number of atoms in a unit of the material. The
machine size is determined by the number of nodes of the cluster architecture.
Each node of the cluster has four CPU‘s. One process of the LAPW0 application
is mapped to one CPU of the cluster architecture. The simulation model is
validated by comparing the simulation results with the measurement results.
We consider that this simulation model provides the performance prediction
results with the accuracy which would be sufficient to compare various designs
of the application.



Teuta: Tool Support for Performance Modeling 463

5 Conclusions and Future Work

In this paper we have described Teuta, which provides the tool support for the
UML-based performance modeling of parallel and distributed applications. We
have demonstrated the usefulness of Teuta by modeling LAPW0, which is a
distributed material science application. Based on the high level UML model of
LAPW0 application the simulation model is automatically generated by Teuta.
The simulation model is validated by comparing the simulation results with
the measurement results. We consider that this simulation model provides the
performance prediction results with the accuracy which would be sufficient to
compare various designs of the application.

Currently, we are extending Teuta for modeling Grid [8] applications.

References

1. T. Fahringer and S. Pllana. Performance Prophet. University of Vienna, Institute
for Software Science. Available online:
http://www.par.univie.ac.at/project/prophet.

2. G. Krasner and S. Pope. A cookbook for using the Model-View-Controller interface
paradigm. Journal of Object-Oriented Programming, 1(3):26–49, 1988.

3. D. Kvasnicka, H. Hlavacs, and C. Ueberhuber. Simulating Parallel Program Per-
formance with CLUE. In International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS), pages 140–149, Orlando,
Florida, USA, July 2001. The Society for Modeling and Simulation International.

4. N. Mazzocca, M. Rak, and U. Villano. The Transition from a PVM Program
Simulator to a Heterogeneous System Simulator: The HeSSE Project. In 7th Euro-
pean PVM/MPI, volume 1908 of Lecture Notes in Computer Science, Balatonfüred,
Hungary, September 2000. Springer-Verlag.

5. OMG. Unified Modeling Language Specification. http://www.omg.org, March
2003.

6. S. Pllana and T. Fahringer. On Customizing the UML for Modeling Performance-
Oriented Applications. In <<UML>> 2002, ”Model Engineering, Concepts and
Tools”, LNCS 2460, Dresden, Germany. Springer-Verlag, October 2002.

7. S. Pllana and T. Fahringer. UML Based Modeling of Performance Oriented Par-
allel and Distributed Applications. In Proceedings of the 2002 Winter Simulation
Conference, San Diego, California, USA, December 2002. IEEE.

8. S. Pllana, T. Fahringer, J. Testori, S. Benkner, and I. Brandic. Towards an UML
Based Graphical Representation of Grid Workflow Applications. In The 2nd Eu-
ropean Across Grids Conference, Nicosia, Cyprus, January 2004. Springer-Verlag.

9. K. Schwarz, P. Blaha, and G. Madsen. Electronic structure calculations of solids
using the WIEN2k package for material sciences. Computer Physics Communica-
tions, 147:71–76, 2002.

10. Herb Schwetman. Model-based systems analysis using CSIM18. In Winter Simu-
lation Conference, pages 309–314. IEEE Computer Society Press, 1998.

11. Hong-Linh Truong and Thomas Fahringer. SCALEA: A Performance Analysis
Tool for Distributed and Parallel Program. In 8th International Europar Confer-
ence(EuroPar 2002), Lecture Notes in Computer Science, Paderborn, Germany,
August 2002. Springer-Verlag.


	Introduction
	An Overview of Teuta
	Model Checking
	Model Traversing
	Graphical User Interface (GUI)

	The Development of the Simulation Model Based on the UML Model
	Case Study: LAPW0
	Conclusions and Future Work

