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Abstract: We have investigated the detailed structure of l-plane singularities of scattering amplitude saturating the 

Froissart bound. A self-consistent analysis of these singularities provides us secondary terms in the Froissart bound. These 

secondary terms lead to ghosts in the l-plane, which can only be removed by introducing an odderon singularity. 

Phenomenological implications of this analysis are also discussed. 
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INTRODUCTION 

 TOTEM and LHCf experiments at LHC [1, 2] have 
revived new interest in the high energy behaviour of 
scattering cross-sections. Measurement of high-energy cross-
sections at energies s  = 14 TeV will provide a deep 
insight into the dynamics of hadronic interactions and some 
of the most important principles of physics. 

 At present our theoretical understanding of physics at 
these energies is rather incomplete. There are a number of 
theories like soft QCD, eikonal and most important, the 
Regge theory. This theory has a remarkable history in 
explaining high-energy behaviour in terms of few 
parameters. Furthermore, with dual models like Veneziano 
representation, these theories provide a unified description of 
high-energy behaviour and low energy resonances. 

 In this paper we will investigate the high-energy 
behaviour of the Pomeranchuck singularity based on the 
most general principles of physics: 

� Unitarity and 

� Analyticity. 

 Our starting points will be the Froissart bound [3] and the 
one-dimensional dispersion relations. We will first calculate 
the l-plane singularities using the Froissart bound. Then from 
these singularities we will derive the high-energy behaviour 
of the scattering amplitude. We will show that there is an 
interesting relationship between the detailed structure of the 
l-plane singularities and the detailed structure of the high-
energy behaviour. In the language of the 60's, we are going 
to ``bootstrap'' the Pomeron. 

 For simplicity we start with spin zero kinematics where 
the t-channel Froissart-Gribov [4] representation for the 
partial wave amplitude is given by 
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 This representation via Carlson's theorem [5] provides a 
unique interpolation to the complex angular momentum 
plane. In the 60's several authors [3] including this author [6-
8] investigated the analytic properties of the partial wave 
amplitude a

l
(t)  in the complex angular momentum plane 

and showed that a
l
(t)  was a meromorphic function with 

moving poles at l = (t) . 

 In this paper we will assume Froissart bound for A
s
(t, s)  
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where N  is a large number. We can now write 
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 Here (t)  is the Pomeranchuck trajectory with (0) = 1  
and Re (t) 1 . Detailed structure of (t)  will be discussed 
later on. 

 In eq. (4) expanding Q
l
(z)  for large z  we obtain 
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 The above integration is performed in the domain 
l > (t) . The resulting representation eq. (6) now provides 
an analytic continuation of A(l, t)  in the entire l -plane with 
simple, double and triple moving poles at l = (t) . A(l, t)  
also has the usual fixed poles at l = 1, 2,… . For the other 
part B(l, t)  we expand A

s
(t, s)  in a Taylor series 
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and use representation of Q
l
(z)  at z ~ 1  to obtain 
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where (z) = (z) / (z)  and  is Euler's constant. This 
representation B(l, t)  is an analytic function except for fixed 
poles at l = 1, 2,… . 

 Now using the singularities of eq. (4) in terms of a single, 
double and a triple pole we can calculate the asymptotic 
behaviour of A(s, t)  via the Sommerfeld-Watson transform 
i.e. 
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1
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where the contour is clock-wise and the signature factor is 
included in the definition of a(l, t) . 

 Taking the residue of poles in eq.(9) we get 
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evaluated at l = (t) , where primes denote differential with 
respect to l  and evaluated at l = (t)  and 
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 At this point the high energy behaviour of the scattering 
amplitude as given by eq.(8) has a pathology. We call this 
``odderon anomaly''. This comes from the XY P  term in 
eq.(8) which in its full form can be written as 
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 The first term in eq. (14) is the usual Pomeron term with 
positive signature. And the second term is the odd-signature 
Pomeron (odderon). All terms in eq. (14) are well behaved at 
(0) = 1  except the odderon term, which has a ghost. 

Conventional ghost killing mechanisms like the Chew 
mechanism [9] or Gell-Mann mechanism [10] do not work 
here. The basic idea behind ghost-killing mechanism is that 
when (0) = 1  the pole residue develops a zero at this point 
removing the ghost. This idea cannot work here because if 
X  develops a zero at (0) = 1  a large number of of terms 
also vanish because they also have the same residue. This 
also removes the most important term 

XYP ~ s (t ) 2
log

s

s0

 (15) 

which is our assumption regarding the asymptotic behaviour. 

 However, we can remove the ghost by introducing an 
additional term in eq. (2) i.e. 
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such that 

(0) = (0)  (17) 

 With this new term we can recalculate the singularities 
and then using the Sommerfeld-Watson [3] transform we get 
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evaluated at l = (t)  and 
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 Thus using the optical theorem which is also based on 
unitarity 

TOT =
8
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the total cross-section can be written as 
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where we have used the trajectory  
(t) = (0) + t =1+ t . 

 We note that in eq. (22) there is no odderon contribution, 
however for small values of t  both Pomeron and odderon 
will contribute. We also note that factorisation property [11-
17] will not hold for eq. (22). 

 In eq. (16), for simplicity, we have assumed same 
parameters for Pomeron [ p

(t)]  and Odderon [
o
(t)]  

trajectories. However, in general these two trajectories could 
have different parameters. In perturbative QCD, for example, 
Pomeron and Odderon are connected with different 
diagrams, double-gluon and triple-gluon exchanges, 
respectively [18-21]. Consequently their parameters are 
different. 

 These generalized QCD parameters can easily be 
accommodated in the present scheme. All that is needed to 
remove Odderon anomaly is the condition that 

o
(0) =

p
(0) = 1  together with eq. (17). 

 We will now discuss nature of Pomeranchuck trajectory. 
For our analysis all we need to assume is that for Pomeron 
Re (t) 1  and (0) = 1 . There are several examples of 
such trajectories like 

(t) = 1 t  (25) 

and 

(t) = 1 1 log(1+ 2t
2 ).  (26) 

 It should be noted that this parameterization is valid only 
near t ~ 0 . The p-p total cross-section will also get a 
contribution from secondary trajectories. From the point of 
view of duality there are three Veneziano amplitudes 
V (s, t) , V (s,u)  and V (t,u) . As s-channel is exotic only 
V (t,u)  will contribute. Here there are two types of mesons 
normal (QQ ) trajectories like A

2
 and the baryonium 

trajectories (QQQQ ) [22-28]. As so far no baryonium are 
found one expects baryonium trajectories will have a smaller 
slope compared to (QQ ) trajectories. Thus such trajectories 
will only contribute for large t . 

 A detailed phenomenological analysis of p p(p p)  
and 

±
p  have been carried out by several authors. 

Donnache [29] has used a form 

TOT
= Xs +Ys  

where the first term is the Pomeron contribution and the 
second term is conventional A

2
 trajectories. 

 Block and Halzen [29] have used a form in terms of lab 
energy  

± = c0 + c1 log
m

+
p

m

μ 1

±
m

1

.  (27) 

 These authors make a consistent fit these cross-sections. 
Both these forms can be obtained from our eq. (26). 
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