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Abstract

This monograph surveys the technology and empirics of text analytics
in finance. I present various tools of information extraction and basic
text analytics. I survey a range of techniques of classification and pre-
dictive analytics, and metrics used to assess the performance of text
analytics algorithms. I then review the literature on text mining and
predictive analytics in finance, and its connection to networks, covering
a wide range of text sources such as blogs, news, web posts, corporate
filings, etc. I end with textual content presenting forecasts and predic-
tions about future directions.

S. R. Das. Text and Context: Language Analytics in Finance. Foundations and
Trends R© in Finance, vol. 8, no. 3, pp. 145–261, 2014.
DOI: 10.1561/0500000045.
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What is Text Mining?

Howard: You know, I’m really glad you decided to
learn Mandarin.
Sheldon: Why?
Howard: Once you’re fluent, you’ll have a billion
more people to annoy instead of me.

“The Tangerine Factor”
The Big Bang Theory, Season 1, Episode 17

If you consider all the data in the universe, only some of it is in
numerical form. There is certainly a lot more text.1 If you read a finan-
cial news article, the quantity of text vastly outnumbers the quantity of
numbers. Until recently, financial analysis was just based on numbers.
Usage of text required human coding of attributes into numerical form
before yielding to analysis. This was a slow process, and not exhaustive,
given how much textual data is at hand. We are entering the age of

1We may also consider images, sound clips, and videos as data, in which case,
numerical data comprises a very small portion of human expression and experience.
See Mayew and Venkatachalam [2012] for the use of speech analysis in deciphering
the emotive content of voice communications by managers of firms.

2
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Big Text, and this monograph describes the current landscape of text
analytics.

Text is versatile. It contains nuances and behavioral expression that
is not possible to convey using numbers. Behavioral economics makes
a case for considering these nuances that permeate human activity, in
economics and finance. Advances in computer science have made text
mining possible, and finance is replete with applications, and offers
substantial payoffs for profit-making ideas using text mining tools.

There are several benefits to enhancing quantitative financial anal-
ysis with text mining analytics. First, text contains emotive content
that may be useful in assessing sentiment in markets. There are several
articles in mainstream journals that deal with this topic, both theoret-
ical and empirical [for example, Admati and Pfleiderer, 2001, DeMarzo
et al., 2003, Antweiler and Frank, 2004, 2005, Das and Chen, 2007,
Tetlock, 2007, Tetlock et al., 2008, Mitra et al., 2008, Leinweber and
Sisk, 2010].

Second, text contains opinions and connections that may be har-
vested and assessed for trading rules, or to corroborate other news,
or for risk assessment. Many papers examine these issues as well, and
present the benefits of such analysis, as in Das et al. [2005], Das and
Sisk [2005], Godes et al. [2005], Li [2006], Hochberg et al. [2007].

Third, many facts do not lend themselves to quantitative expres-
sion. They may be intrinsically qualitative and better expressed in the
form of text. Of course, most qualitative phenomena may be expressed
as numerical quantities on a discrete support, but such abstraction re-
sults in a loss of holistic meaning. For example, a trading algorithm
may examine a news report to determine a buy or sell signal, and text
mining tools can use past data on news and trading outcomes to deter-
mine the best course of action in a seamless, efficient manner. Coding
text using quantitative variables, i.e., dummy variables for the vari-
ous attributes of text is clunky, spawns too many variables, and is less
accurate.

Fourth, numbers tend to aggregate and summarize underlying phe-
nomena, of infinite variety, and the nuances are better expressed in
text, which is disaggregated. Numbers are not raw, original data, but



4 What is Text Mining?

quantifications of characteristics of markets, often first expressed in tex-
tual form. For this reason, it is likely that text (such as news streams)
contains information that is more timely than numerical financial infor-
mation, and better suited to predictive analytics. There is evidence that
textual information may be used to predict markets, as in Antweiler
and Frank [2004], Tetlock [2007], Leinweber and Sisk [2010]. Analyzing
large bodies of text enables operationalization of the wisdom of the
crowds as discussed in the excellent book by Surowiecki [2004].

The benefits of text mining are easy to see without defining it for-
mally, but it’s time to attempt a formal definition. Text mining is the
large-scale, automated processing of plain text language in digital form
to extract data that is converted into useful quantitative or qualitative
information. Hence, text mining is automated on big data that is not
amenable to human processing within reasonable time frames. It entails
extracting data that is converted into information of many types. Text
mining may be simple as in key word searches and counts. Or it may
require language parsing and complex rules for information extraction.
It may be applied to structured text, such as the information in forms
and some kinds of web pages, or it may be applied to unstructured text,
a much harder endeavor. Text mining is also aimed at unearthing un-
seen relationships in unstructured text as in meta analyses of research
papers, see Van Noorden [2012].2

A subfield of text mining is “news analytics.” Wikipedia defines it
as - “... the measurement of the various qualitative and quantitative
attributes of textual (unstructured data) news stories. Some of these
attributes are: sentiment, relevance, and novelty. Expressing news sto-
ries as numbers permits the manipulation of everyday information in a
mathematical and statistical way. News analytics are used in financial
modeling, particularly in quantitative and algorithmic trading. Further,
news analytics can be used to plot and characterize firm behaviors over
time and thus yield important strategic insights about rival firms. News
analytics are usually derived through automated text analysis and ap-

2See the article by Gary Belsky, “Why Text Mining may be The Next Big
Thing” in TIME:
http://business.time.com/2012/03/20/why-text-mining-may-be-the-next-big-
thing/print/.
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plied to digital texts using elements from natural language processing
and machine learning such as latent semantic analysis, support vector
machines, ‘bag of words’, among other techniques.”

In the ensuing chapters we will examine several topics in financial
text mining. In Chapter 2 we examine how text is extracted from var-
ious web sites and services. Chapter 3 deals with the basics of text
analytics such as dictionaries, lexicons, mood scoring, and summariza-
tion of text. This is followed by the analytics of text classification in
Chapter 4. The performance of text analytic algorithms is assessed us-
ing a range of metrics in Chapter 5. A survey of the empirical literature
on text mining in finance and the commercialization of textual analyt-
ics is discussed in Chapter 6. Finally, we end with a look at the future
of text analytics in Chapter 7.
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