
CODATACODATA
II

SS
UU

Oswald, C and Sivaselvan, B. 2018. Text and Image Compression
based on Data Mining Perspective. Data Science Journal, 17:
12, pp. 1–12, DOI: https://doi.org/10.5334/dsj-2018-012

RESEARCH PAPER

Text and Image Compression based on Data Mining
Perspective

C. Oswald and B. Sivaselvan
Department of Computer Science and Engineering, Indian Institute of Information Technology, Design and Manufacturing,
Kancheepuram, Chennai, IN

Corresponding author: C. Oswald (oswald.mecse@gmail.com)

Data Compression has been one of the enabling technologies for the on-going digital multime-
dia revolution for decades which resulted in renowned algorithms like Huffman Encoding, LZ77,
Gzip, RLE and JPEG etc. Researchers have looked into the character/word based approaches
to Text and Image Compression missing out the larger aspect of pattern mining from large
databases. The central theme of our compression research focuses on the Compression perspec-
tive of Data Mining as suggested by Naren Ramakrishnan et al. wherein efficient versions of
seminal algorithms of Text/Image compression are developed using various Frequent Pattern
Mining(FPM)/Clustering techniques. This paper proposes a cluster of novel and hybrid efficient
text and image compression algorithms employing efficient data structures like Hash and Graphs.
We have retrieved optimal set of patterns through pruning which is efficient in terms of data-
base scan/storage space by reducing the code table size. Moreover, a detailed analysis of time
and space complexity is performed for some of our approaches and various text structures are
proposed. Simulation results over various spare/dense benchmark text corpora indicate 18%
to 751% improvement in compression ratio over other state of the art techniques. In Image
compression, our results showed up to 45% improvement in compression ratio and up to 40% in
image quality efficiency.

Keywords: Apriori algorithm; Clustering; Compression Ratio; Frequent Pattern Mining; Huffman
Encoding; Lossy Compression; Run Length Encoding

1 Introduction
Frequent Pattern Mining(FPM) is a non-trivial phase of Association Rule Mining(ARM) and is formally
defined as follows: Let I = {i1, i2, i3, …, in} be a set of items, and a transaction database TD = 〈T1, T2, T3, …, Tm〉,
where Ti(i ∈ [1…m]) is a transaction containing a set of items in I. The support of a pattern X, where X ⊆ I, is
the number of transactions containing X in TD. X is frequent if it’s support satisfies a user-defined minimum
support(min_supp = α). Apriori which is a seminal algorithm in FPM uses the property that, “All nonempty
subsets of a frequent itemset/pattern must also be frequent” to mine the frequent itemsets (Agarwal and
Srikant, 1994). All possible frequent patterns in the Transaction Database are mined by FPM algorithms.

Compression, Approximation, Induction, Search and Querying are the different perspectives of Data
Mining identified by Naren Ramakrishnan et al. (Ramakrishnan and Grama, 1999). In this research, we
explore the compression perspective of Data Mining. The World Wide Web, which has changed our lives
drastically, involves data in various forms. Mediums that involve huge data transfer rely on compression and
decompression approaches to enhance the efficiency of the data transfer process. Data can be of various
forms namely text, image, audio, video etc. The real challenge lies in efficiently storing the huge amount of
data in a condensed form and reducing their transfer time. The main aim of compression algorithms is to
reduce the storage space of large volumes of data and the time taken for their transfer. Compression is of
two types namely lossless and lossy. Lossless encoding focus on compressing the source message without a
single bit loss in the compressed form(without loss of information) and exactly reconstructing the original
data from the compressed data. Some of the popular techniques are Huffman Encoding, DEFLATE, LZ77,

https://doi.org/10.5334/dsj-2018-012
mailto:oswald.mecse@gmail.com

Oswald and Sivaselvan: Text and Image Compression based on Data Mining PerspectiveArt. 12, page 2 of 12

Lempel-Ziv-Welch(LZW), LZ78, Prediction by Partial Matching(PPM), ZIP, Run Length Encoding(RLE), BWT,
etc (David, 2004; Huffman, 1952). Huffman Encoding, a seminal algorithm for lossless data compression,
developed by David A. Huffman, involves assigning variable code length to characters based on their prob-
ability of occurences (Huffman, 1952). In this method, lossless decoding is done using the property that the
codes generated are prefix codes.

Lossy Compression is a class of data encoding method that uses inexact approximations. It finds extensive
applications in the transfer and storage of multimedia data like Image, Audio and Video where slight data
loss might not be noticed by the end user. It achieves better compression ratio compared to lossless com-
pression. MPEG, MP3, JPEG, JBIG, PGF, WMA etc. are a few techniques based on this principle (David, 2004).
The JPEG image compression provides excellent compression rates at good quality. However, sometimes the
reconstructed image of the JPEG algorithm has a blocky appearance.

This work focuses on efficient Data Mining approaches to Text and Image compression. The process of
Data Mining focuses on generating a reduced(smaller) set of patterns(knowledge) from the original data-
base, which can be viewed as a compression technique. FPM is incorporated in Huffman Encoding to come
up with an efficient text compression setup. Moreover, the concept of clustering is employed in our knowl-
edge engineering based compression approaches where clustering works on an objective function which
results in high intra similarity within the clusters and less inter similarity with other clusters. The rest of the
paper is organized as follows. Related studies are given in Section 2, Formal presentation of the problem
and proposed algorithms are given in Section 3. Section 4 explains a detailed theoretical analysis of various
text characterization along with time and space complexity analysis. Details of the datasets, Results and
Performance discussion are given in Section 5 and Section 6 concludes with further research directions.

2 Related Work
Some of the major class of algorithms in statistical based encoding include Shannon-Fano Encoding, Huff-
man Encoding, Dynamic Huffman, Canonical Huffman, Adaptive Huffman, LDMC, Arithmetic Encoding(AE),
PAQ, Context Tree Weighting, and RLE etc. (David, 2004). They yield good compression ratio at the cost of
extra memory and many of them are too slow to be practical. Redundancies in patterns of texts comprising
of more than one character are not exploited. Sliding window based algorithms include Lempel-Ziv(LZ77),
LZ78, LZR, LZHuffman, LZSS, LZB, SLH, LZO, LZH and Statistical Lempel-Ziv etc. (David, 2004). Variants of
LZ77 work on the assumption that patterns in the input data occur close together which may not be true in
all the cases. For effective compression, the sliding window size must be large. This would lead to less space
efficiency. Dictionary approaches may contain more strings and might allow for longer matches but at the
cost of longer pointers(and thus bigger tokens) and slower time for dictionary search (Ziv & Lempel, 1978;
David, 2004). Many of these above mentioned methods suffer from the limitations of poor compression, and
time inefficiency and miss out the bigger picture by relying only on character/word level encoding. These
encoding schemes do not focus on recurring patterns of text and focuses only on individual characters in
the text. Diogo et al. came up with an efficient genomic sequence compression where both reference-free
and referential compression is allowed. D Köppl et al., showed Lempel-Ziv 77- and the 78-factorization of a
text of length n can be computed in linear time. All these recent techniques have not approached the prob-
lem of Text Compression with the perspective of Data Mining which does not give optimal set of patterns
(Köppl and Sadakane, 2016; Pratas et al., 2016). Oswald et al. (Oswald et al., 2015a, b; Oswald and Sivaselvan,
2017; Oswald et al., 2016) have shown that text compression by Frequent Pattern Mining(FPM)/Clustering
technique is better than conventional Huffman encoding(CH). Lossy image compression techniques include
JPEG, JPEG2000, Chroma Subsampling, Transform Coding, Fractal Compression, Vector Quantization, Block
Truncation etc (Wallace, 1991). Recent works in Image Compression include Clustering/Segmentation/Frac-
tal compression based approaches. Clustering based techniques of image compression include noticeable
reduction in quality and overhead in the compressed size.

Frequent Pattern Mining Algorithms(FPM) find applications in several Data Mining tasks such as ARM,
Classification, Clustering etc. Apriori, one of the first algorithms for ARM is very commonly used which uses
a level wise approach to mine patterns (Agarwal and Srikant, 1994). A detailed review of these FPM algo-
rithms can be found in (Han et al., 2007). In Clustering, the most well-known partitioning algorithm is the
k-means approach which is good in terms of its simplicity and ease of implementation. Some of the partition-
ing algorithms are k-medoids, Partitioning Around Medoids(PAM), Clustering LARge Applications(CLARA),
Clustering Large Applications based upon RANdomized Search(CLARANS), etc. (Kaufman and Rousseeuw,
2008). AGNES(AGglomerative NESting), BIRCH, DIANA(DIvisive ANAlysis) are a few algorithms in Hierarchical
clustering and the advantage of these methods is the reduced computational time.

Oswald and Sivaselvan: Text and Image Compression based on Data Mining Perspective Art. 12, page 3 of 12

3 Frequent Pattern Mining/Clustering based Text Compression Algorithms
Our initial contribution started with Frequent Pattern Mining based text compression and gradually with
graceful transitions towards efficient versions of them. Later the clustering approach to text compression
evolved to observe the performance of compression with respect to frequent phrase based clustering. Finally
our most time efficient version of text compression using an hybrid approach was developed.

3.1 Preliminaries and Problem Definition
In this work, a sequence (pattern) is considered to be the character/s in an ordered and contiguous manner
w.r.t the index. Consider the text ‘adracapadra’ where ‘ara’ is a sequence in conventional terms but in our
work, ‘adra’ is only considered as a sequence. Subsequence we mean a proper-subsequence which means a
portion of the sequence with contiguous characters by dropping at least 1 character. For example, if ‘adra’
is a sequence, then ‘adr’, ‘dra’ and ‘ad’ etc. are subsequences but ‘da’ or ‘ara’ cannot be subsequences. We
define the absolute frequency(fabs) of a pattern p in T, to be |{p|p ⊑ T}|, which is the number of occurrences of
p as a sequence in T. P denotes the set of all patterns with their respective absolute frequency fabs which con-
tains both frequent patterns and candidate patterns of length 1. We also came up with a concept of modified
frequency(fmod) of a pattern p′ which is defined as, {p′|p′ ⊑ T}|, which denotes the number of times p′ occur
in an non-overlapping manner in text T(T is stored as an array A). The patterns with modified frequency con-
stitute set P′ where fmod ≤ fabs and |P′| ≤ |P|. fmod eliminates the problem of overlapping characters between
sequences in T which acted as a major factor in bringing an efficient compression. An example is given
below to demonstrate the computation of fabs and fmod for a sample text T = abcab abc ababc with min_supp
α = 3. Let abc be a pattern p with fabs = 3, and ab, a, space and . with fabs = 5, 7, 3 and 1 respectively. Now the
fmod of abc will be 3, ab will be 5–3 = 2, a will be 7–(3 + 2) = 2, space will be 3 and . will be 1 respectively.

A formal definition of Frequent Pattern based Data Compression(Data refers to Text or Image or Video)
problem is, “Given an input file T(for Image and Video, input is the text file after conversion from their cor-
responding format) of size z, we need to generate the set(P) of all patterns(frequent and candidate) with its
respective fabs(≥α) in T. Compression is applied over P′, which is constructed from P, to generate the file T′
of size z′ where z′ << z.”

3.2 Frequent Pattern based Huffman Encoding(FPH) – Initial
The algorithm mines the patterns in the text through the process of Frequent Pattern Mining and thereby
encodes each of those patterns using Huffman Encoding (Oswald et al., 2015b). To generate the frequent
patterns, FPM is employed using Apriori algorithm and modified for its efficient level wise pruning strategy,
wherein infrequent patterns are eliminated at level i and redundant patterns at level i are pruned at level
i+1. Algorithms like FP growth and its successors involve expensive operations for checking redundant pat-
terns because we need to wait till the complete construction of the data structure where the entire set of
frequent patterns are generated. The redundant patterns at level k + 1 refer to those phrases(sequence of
characters) generated at level k, where its superpattern at level k + 1 has the same fabs. But in Apriori, as and
when the levels are constructed, the frequent patterns are generated. T is scanned once to generate frequent

patterns of length 1 to maximum of n
min_sup
  , where n is the number of characters in the text. Huffman

encoding is applied over the frequent patterns to generate a compressed text T′.

3.3 FPH – Array Split(AS)
FPH-AS has better compression ratio than FPH-Initial because of the introduction of a novel pattern count-
ing mechanism which is the modified frequency (Oswald et al., 2015a). Let us consider H to be set of all
sequences and L be the set of proper-subsequences from S. If this overlapping count is not updated, it will
increase the cardinality of P in which many of the patterns having this overlap count will not be used in the
encoding process. fmod eliminates the issue of overlapping characters between sequences in T and the issue of
generating a huge code table size leading to a poor compression ratio. This enables us to give preference to
lengthier patterns for encoding thus reducing code table size. We introduce a novel strategy using recursive
splitting up of arrays to find fmod of patterns to store in P′ where P′ is used to encode T.

3.4 FPH using an efficient Hash Structure – Hash Based(HB)
In this approach, through the concept of fmod, the final optimal set of patterns used for encoding process are
mined and this reduces the code table size (Oswald and Sivaselvan, 2017). The input text is taken as a hash
data structure, implemented using separate chaining, which minimizes the time to generate patterns in an
efficient way. ASCII values are taken as keys, for the location of 1-length characters. The input text is scanned

Oswald and Sivaselvan: Text and Image Compression based on Data Mining PerspectiveArt. 12, page 4 of 12

only once and the indices of the characters are added to their respective separate hash chains. The hash func-
tion is given as, H(x) = y, where x is location of a character from text T and y – the ASCII value of character at
x, to which the index is hashed. Time for computation of fabs also has been reduced when compared with the
previous approach using the modified Apriori technique. Also, computation of fmod is done in constant time
in this approach which brings down the compression time in a significant way. Patterns with fmod are stored
in P′ where P′ is used to encode T.

3.5 Word based Text Compression Using Frequent Sequence Mining and Universal
Huffman Encoding(UHE)
According to a statistics, we need at most 20–21 bits if we want to denote each word with a unique binary
code. Therefore if we consider a text with n-words, we need only around (n * 21) bits for encoding whereas,
the conventional ASCII approach would take (n * 40) bits on an average to store the same text (Bochkarev
et al., 2012; The Global Language Monitor, 2015). A major motivation for choosing a word based approach
is the fact that patterns(sequences) of words conform to the semantics(grammar) of the language which
might increase the probability of finding longer and meaningful patterns which can be directly encoded
using Huffman Encoding instead of encoding character by character. Words also have statistical patterns
like, few words always being followed by a set of words which give rise to word bi-grams, word tri-grams or
in general word n-grams, giving rise to frequent word patterns which can be exploited for achieving better
text compression. Frequent word based encoding is more meaningful for applications involving texts such
as programming codes, English literature novels, technical writings etc. The process of word based text com-
pression Using Frequent Sequence Mining is given below.

1. Scan the input text and find the fabs of each word in the input text T. Let this be set C1.
2. Generate the Frequent sequences considering word as the atomic unit. Let the set of frequent

sequences be L.
3. Construct the Huffman tree with the set L ∪ C1 for encoding. Decoding is done as per the conven-

tional Huffman strategy.

Universal Huffman Encoding(UHE). We propose a novel and efficient text compression approach by mak-
ing the compression of any word level text in a universal manner for corpora across domains which is the
Universal Huffman Tree based encoding. The major contribution of the work is in terms of avoidance of
code table communication to the decoding phase. Using Universal Huffman Tree we can compress any text
without building a new tree every time for each input and this reduces the code table size to a great extent.
Let the input text be T and the output be Universal Huffman Tree(U). Let UR be the right sub tree of U. i.e.
the Frequent Word Sequence Huffman Tree and UL be the left sub tree i.e. Character Huffman Tree. Firstly,
encode all the sequences in text(T) which are present in UR and then encode the remaining words in text(T)
with Character Huffman Tree UL. The advantages include one can hard code the tree in the decoder software
and the need to communicate the tree to the decoder along with the encoded text can thus be avoided.
It reduces the space constraints on the tree and one can concentrate on optimizing the encoding length
rather than code table size. Further, to find the right number of word patterns to fit into the right sub tree
of the Universal Huffman Tree, a heuristic approach is proposed: We know that Average Code length per
character(ACLPC) using Conventional Huffman is around 4.26 and average length of English word is 5.23
where ACLPC is defined as the fraction of Encoding length by the total number of characters in the corpus.
This denotes average code length per word in case of Conventional Huffman would be around 4.26 × 5.23 =
22.26 bits per word. Therefore, we need to make sure that the codes given to the words/frequent sequences
in the right sub tree (Frequent word sequence Huffman tree) are ≤22 bits.

3.6 Graph based Arithmetic78(GA78)
Even though, FPH algorithms does better on compression ratio, reduction of time to compress to a great
extent is still a challenging research. A novel algorithm for mining sequential patterns(word/s) using a graph
and hybridization of non-Huffman based compression algorithms is the main focus of this work (Oswald et
al., 2017). The significant contribution to this work lies in bringing down the number of scans to 1 through
a graph construction to mine the final set of patterns for encoding. This is achieved by eliminating the two
level process of mining the final set of patterns with fmod which was seen in the previous versions of FPH.
More over it applies a hybrid mechanism involving other encoding algorithms as a level to perform better
compression. LZ78 is used since it does not use any search buffer, look-ahead buffer, or sliding window as

Oswald and Sivaselvan: Text and Image Compression based on Data Mining Perspective Art. 12, page 5 of 12

like LZ77. It stores the patterns within the dictionary as tokens and nothing is deleted from the diction-
ary which is a merit over LZ77. One more level of compression with Arithmetic encoding yielded higher
compression ratio because the approach of Arithmetic coding overcomes the problem of assigning integer
codes to the individual symbols by assigning one(normally long) code to the entire input file. Let us assume
Text(T): I_like_data_I_like_data_I_like_ _ _ _like_ _ _ _iiit_iiit_iiit. and absolute minimum support α = 2. The
encoder of GA78 and the graph representation of T are given in Figures 1 and 2. The graph Graph G = (V, E)
is constructed such that V being the set of vertices represent the set of words {q1, q2, …, qx} and E, the edge set
represents the set of indices(sequence numbers). A sequence Number Seq# of an edge is the position of
the words qi, qj in T such that (qi, qj) are contiguous in T where qj is successor node. Final set of patterns mined
are included in set P where Set P contains patterns of the form 〈pattern, frequency, occurrence_position〉
and Infreqwords is of the form 〈pattern, seq#〉.

3.7 Clustering based Huffman Encoding(CBH)
Reducing the computation time to mine patterns by switching over to data clustering yielded us higher
compression rates compared to FPH methods in few datasets. Also the problem of handling the elimination
of redundant patterns is avoided in this method. The seminal Hierarchical Clustering technique has been
modified in such a way that optimal number of words (patterns which are sequence of characters with a
space as suffix) are obtained. An important aspect of this approach is the employment of cosine similarity
measure to find the similarity between the partitions to place them in the right cluster. This approach made
the most similar words to get clustered into one cluster which helped in reducing the generation of new
codes thus reducing the code table size. For the input file T, the total number of words is W and the number
of unique words is w(w ≤ W) where a word ID for each unique word is assigned. T containing W words is
partitioned equally into x partitions where for every partition pi[1 ≤ i ≤ x], the unique words contained in it

Encode T with modified

 LZ78 to get T’

Input Text T

Construct Graph G(V, E)

E - Sequence, V- Words

Construct P - 3 Tuple Pattern

Construct P’ - Frequent patterns +

Standalone Infrequent patterns

Encode T’ with Arithmetic

 Encoding

Encode T’ to get T’’

Figure 1: Flow Chart of GA78.

13

12

11

iiit_ iiit.

8, 10

9

2, 5

3, 6

I_ like_ data_

1, 4, 7

_ _ _

Figure 2: Graph of text T for GA78.

Oswald and Sivaselvan: Text and Image Compression based on Data Mining PerspectiveArt. 12, page 6 of 12

are found. A partition frequency vector matrix fp of size x × w is constructed, where pi is the partition and qy[1
≤ y ≤ w] is a unique word id with word y contained in partition pi. This matrix helps in finding the clusters
which contains the final set of words for encoding. The detailed algorithm and its working can be found in
Oswald and Sivaselvan (2016).

3.7.1 Time Complexity Analysis of CBH
It has been observed that to find the number of unique words it takes O(W) time. The time consumed by
scanning the total number of words W is |T| = n which gives O(W) = O(n). We divide the words into x parti-
tions which takes O(W). For forming frequency vector of x partitions, it takes ()

W
x OW

x
  where x is the num-

ber of partitions.
The complexity of calculating the cosine similarity of each pair of partitions is similar to inser-

tion of entries in the table with the newly formed cluster, which takes T(n) = O(x – 1) + O(x – 2) +
O(x – 3) + … + O(1) = O(x2). —(a)

Time taken to scan the table subsequently to find maximum cosine value is O(x2) + O((x – 1)2) +
O((x – 2)2) + … + O(32) = O(x3). —(b)

The deletion of entries in the cosine similarity table with at least one element from the newly
formed cluster is similar to computing the complexity in scanning through the table to find if such
an entry exists. Let us assume updation and deletion of cluster frequency vectors is done in O(1).
Then, O(x2) + O((x – 1)2) + O((x – 2)2) + … + O(32) = O(x3). —(c)

To retain only the non zero elements in cluster frequency vectors which is equal to finding the
complexity of scanning all w columns of each partition of size 2, it takes O(w) × 2 = O(w). Since
w ≤ W, O(w) = O(n). —(d)

Huffman codes are generated, which takes O(wlogw) [we get at most w words with non zero
frequencies]. —(e)

Encoding T takes O(w) time, since for each word in T, we scan both clusters and find the cluster to which
the word belongs to. We scan corresponding code table to find the Huffman code for a word which con-
sumes O(y) = O(w)[y ≤ w]. Total time taken for T is O(W × w) = O(W2). —(f)

For decoding, it takes O(W × w) = O(W2). —(g)
Finally, the time complexity of the Clustering based Huffman approach is (a) + … + (g) = O(x3) = O(n3).

3.7.2 Space Complexity Analysis of CBH
The space consumed to maintain the count of each word in T is O(W). It takes O(x) to maintain the
count of words in each partition. Initial space required for x partition frequency vectors is O(x × w).
O(x2) space is taken by Cosine similarity table in worst case and to maintain code tables c1 and c2,
O(wlogw) is required since the number of bits required to represent the code is at most logw. To decode
the entire encoded text, O(W × (logw + 1)) = O(W × logw) is taken since 1 or 0 is added to Huffman code
of length at most logw to indicate whether a word belongs to cluster 1 or 2. Finally, the space complex-
ity of the Clustering based Huffman approach is O(W) + O(x) + O(x2) + O(x2) + O(WlogW) + O(WlogW)
= O(x2) = O(n2).

4 Characterization of Text Structures
The generic function with respect to pattern growth for variation in α, incorporating α, k and |P| is given

as (, ,) .kf k P P  . In any text T, when the minimum support increases, |P| and length of the pattern k
decreases. In order to come up with an efficient and effective compression setup for text, it is important
to understand the inherent nature of texts. Different type of texts have its own uniqueness in its content
according to various applications. Analysing the text structure plays a crucial role in the efficiency of pat-
terns mined with respect to its frequency of occurence, length etc. Our knowledge engineering approach
to text compression is analysed by characterizing various text forms proposed. The various text forms we
propose are as follows:

1. Given T1: ∀ci, ci ≠ ci+1 where ci, ci+1 ⊑ T1, 1 ≤ i, i+1 ≤ n and i ≠ i+1 e.g., T1 = as4x2Mtl and |T| = 256
[All characters in T are unique].

2. Given T2: ∀ci, ∀cj, (ci = ci+1 ∨ cj = cj+1) ∨ (ci = cj ∧ ci+1 = cj+1) where ci, ci+1, cj, ci+1 ⊑ T2, 1 ≤ i, i + 1, j, j +
1 ≤ n and j > i + 1 E.g., absdd477abs and |T| = n2.

3. Given T3: ∀ci, ci = ci+1 where ci, ci+1 ⊑ T3, 1 ≤ i, i + 1 ≤ n and i ≠ j E.g., aaaaaaa and |T3| = n.

Oswald and Sivaselvan: Text and Image Compression based on Data Mining Perspective Art. 12, page 7 of 12

4.1 Time and Space Complexity of various text structures for FPH approach
We have taken the FPH-HB approach for a detailed study on the time complexity impacted on various text
structures. Since FPH-HB has an efficient mechanism in mining the patterns along with computing the fre-
quencies among other FPH approaches, it sounds better to choose it. We have chosen the text structure T1
which can be taken as the base for other text structures as well.

Time complexity Analysis of Text Structure T1

a) Hash Table Creation: The number of unique characters in T is m and the number of chains
formed in the hash table is m. The number of indices accessed in T is n. So the total time com-
plexity is T(n) = O(nm). Since m ≤ n – 1, T(n) = O(n × (n – 1)) = O(n2).

b) Frequent Pattern Generation: The basic operation is comparing suffix of pattern a with prefix
of pattern b. |L1| = n when all the characters in T are unique. The count of patterns in L1, L2, L3
and ()n

kL k     are n, (n – 1), (n – 2) and (n – (k – 1)) and the number of comparisons are n2,
(n – 1)2, (n – 2)2 and (n – (k – 1))2 respectively. k value chosen for few datasets in a specified range
achieves the best compression ratio Cr than the conventional Huffman Encoding when tested.
The total number of comparisons is derived below.

 

/
2 2 2 2

1

3 3

() [((1))] (1) ((/ 1))

() O

n

k

T n n k n n n n

T n k








        

 



Since nk    , it implies that n ≤ kα + Δ, where 0 ≤ Δ ≤ k – 1 and Δ denotes the number of characters required
to get size n. When n = k α, Δ = 0. When n > α k, 1 ≤ Δ ≤ k – 1. Δ is negligible when compared with nα.

The time complexity using T2 and T3 are T(n) = O(k3α3) which is contributed by the generation of the
frequent sequences. The Space Complexity for all the text structures, it is given as O(n2) = O(k2α2) which is
contributed by the frequent pattern generation process.

5 Frequent Sequence Mining/Clustering based Image Compression Algorithms
Our first approach was towards a data clustering based Image Compression and then on a hybrid data clus-
tering with a frequent sequence mining approach towards image compression.

5.1 Closed Frequent Sequence Mining(CFSM) approach to Image Compression
CFSM IC-ver.1 This work is based on clustering similar pixels in the image and thus using cluster identifiers
in image compression. Redundant data in the image is effectively handled by replacing the DCT phase of
conventional JPEG through a mixture of k-means Clustering and Closed Frequent Sequence Mining (Yan
et al., 2003; Kadimisetty et al., 2016). To optimize the cardinality of pattern(s) in encoding, efficient prun-
ing techniques have been used through the refinement of Conventional Generalized Sequential Pattern
Mining(GSP) algorithm. At each level, we execute an additional step to prune out all non-closed sequences
which assures that only closed frequent sequences are carried forward. This method has proved to be effec-
tive in achieving higher compression ratio than the conventional JPEG with a negligible loss of quality.

CFSM IC-ver.2 This approach yields an improvement in Image quality without sacrificing on compres-
sion ratio than the approach A where the DCT phase in JPEG is replaced with a combination of CFSM
and k-means clustering to handle the redundant data effectively. This method focuses mainly on applying
k-means clustering in parallel to all blocks of each component of the image to reduce the compression time.
Conventional GSP algorithm is refined to optimize the cardinality of patterns through a novel pruning strat-
egy, thus achieving good reduction in the code table size which can be seen from Kadimisetty et al. (2016).

6 Simulation Results and Discussion of the Proposed Text and Image
Compression algorithms
i) Performance of C

r
 and Time of Text Compression Algorithms

Simulation is performed on an Intel core i5-3230M CPU 2.26 GHz with 4GB Main Memory and 500GB Hard
disk on Ubuntu 13.04 OS Platform. Using C++ 11 standard, MatLab code, Python proposed algorithms are
implemented. Calgary, Canterbury and Amazon Reviews etc. falls under text whereas SIPI for Images are
the benchmark datasets which the algorithms have been tested over (Calgary, n.d.; SIPI Image Data, 1977;
Amazon Reviews Dataset, 2014). The compression ratio Cr is defined as the ratio of the uncompressed size of
Text over compressed size of Text.

Oswald and Sivaselvan: Text and Image Compression based on Data Mining PerspectiveArt. 12, page 8 of 12

Table 1 and Figure 3 depicts the Cr for various α values of our approaches for text compression and other
existing alternatives. The sum of the code table size (CTS) and the encoded text size (ES) post FPH compres-
sion denotes the compressed size. As a result of reduced frequent patterns at higher α values, degraded
compression is observed. Overall, our GA78 and FPH-HB performs better in terms of compression ratio for
majority of the datasets followed by UHE, FPH-AS, LZ78, AE and CH. Since alphabet is a sequence dataset, it
cannot be tested for UHE and LZ78 as they involve only word based text structures. It is observed for bible
corpus that FPH-HB performs better than AE by 35%, GA78 by 7.3%, LZ78 by 27%. The reason for FPH algo-
rithms doing better than others is that these algorithms does not generate frequent patterns to compress
the text. Even though the code table size of FPH is higher than these competitors, the encoded size of these
algorithms are very high which yields lower Cr. The introduction of fmod leads to the optimal set of frequent
patterns which reduces the code table size in FPH-HB whereas in GA78, because of the graph approach
which directly mines the required patterns, the code table size is reduced.

The compression ratio of our approach is 416.66 in alphabet dataset, which is very high as compared
to its competitors. This is due to the fact that even though the original count of patterns are more, P′ is
less due to the dense nature of the dataset where only 4 patterns occur repeatedly. From the discussion
above, it is very clear that FPH and GA78 achieve better Cr than CH. LZ78 and AE performs word based
compression which is not effective when compared with frequent pattern based approach. Moreover, in
these approaches, some of the patterns are not used in the encoding process even though they have a
code in the code table. The primary merit of our FPH approaches lies in the frequent pattern based min-
ing of patterns which in turn helps us in mining lengthier patterns with optimal count. Sequence datasets
like gene/protein sequences, debruijn sequence, alphabet, disease data give significant results with FPH
approaches along with other conventional datasets. Even though GA78 and UHE mines words, it mines the
lengthier word sequences which yields low code table size leading to a high compression ratio. Sequence

Table 1: Simulation results of various Text Corpora.

Corpus/
Size (kB)

Compression Ratio C
r

Time(sec)
FPH-

AS/CH
FPH-
HB/

UHE GA78 LZ78 AE gzip FPH-
AS/CH

FPH-
HB/

GA78 LZ78 AE gzip

alphabet/
98

242.13
1.67

416.66 – 92.25 – 1.67 302.15 29485
0.1

18.01 0.06 – 0.06 12.87

bible/
3953

2.83
1.82

2.86 2.65 2.65 2.06 1.84 1.91 24272
34.37

1123 29.05 6.23 0.78 24.21

Reviews/
102,399

4.97
1.61

2.52 2.54 2.79 2.51 1.61 1.8 1442.6
1600

3710 248.43 29.29 11.92 5.65

plrabn12/
470

2.25
2.19

2.24 2.38 1.93 1.42 1.75 2.2 84.72
5.63

47.47 3.62 1.74 0.08 3.5

world192/
2415

2.37
1.58

2.48 2.15 2.59 1.97 1.59 1.75 16509.5
50.53

613.89 0.36 4.81 0.72 16.32

0 0.2 0.4 0.6 0.8 1
1.8

2

2.2

2.4

2.6

2.8

3

Minimum Support(%)

C
o

m
p

re
ss

io
n

 R
at

io

Conventional Huffman
FPH−AS
FPH−HB
UHE
GA78
LZ78
AE
gzip

Figure 3: min_supp vs Compression ratio for bible.

Oswald and Sivaselvan: Text and Image Compression based on Data Mining Perspective Art. 12, page 9 of 12

datasets cannot be simulated with GA78 and UHE because of the problem in handling space character. In
our FPH approaches, |P| reduces thereby reducing code table size on increasing α however, the increase
in ES of input data nullifies the advantage of code table size reduction. The condition that P′ containing
patterns with k > 1 and fmod > 0 increases |P′| which in turn increases CTS, even though ES decreases. Other
datasets also exhibit the similar trend. Moreover, in such cases where the dataset is sparse and contains less
amount of frequent patterns, our proposed methods may not do better than the conventional competing
methods. When the support value is too high, it will adversely affect the compression ratio by generating
huge number of frequent patterns which will increase the code table size. Also, when support is too less
beyond a particular threshold it behaves like the conventional Huffman strategy as there will be shortage
in the frequent patterns of length >1.

ii) Performance of time with α value of Text Compression Algorithms
Figure 4 denotes the time taken by our approaches for various α values and it is observed that our GA78
approach does better than FPH because of the absence of level wise mining strategy. Also, GA78 mines
only the optimal set of frequent patterns in a single pass of the text which reduces the time significantly to
compress the text. GA78 is efficient than CH, FPH-AS and FPH-HB by 15.79%, 99% and 97% respectively.
FPH-HB yields reduction in compression time because of the hash structure, which helps drastically in locat-
ing the pattern to find both of its frequencies. Such observations are seen in all datasets involved for test-
ing. Due to the absence of the fmod concept in FPH-AS, it had a longer time for creating the code table even
though encoding time is less. The encoding time in CH increases, because of the need to encode individual
symbols. The pattern generation time for P through Apriori increases because of the m scans in T where m
is the maximum length of the frequent patterns generated which is O(n)3. Even though Apriori has time
overhead, we had a polynomial reduction of O(n) due to non overlapping count (fmod). This polynomial time
reduction is achieved using the hash data structure in FPH-HB which helps in efficiently locating the pattern
in T. In the worst case, |P| ≤ n and |P′| ≤ n. GA78 is around 10 times faster than the proposed FPH-HB and
around 1200 times faster than proposed FPH-AS. FPH-AS and FPH-HB finds all possible patterns in T which
are overlapping and redundant, causing a time overhead. P has to be pruned to get the final and optimal set
of patterns required for compression which is achieved by GA78.

iii) Performance of |P′| with α value
At some higher support values for few datasets |P′| = |P| or |P′| is not much lesser than |P|, because the origi-
nal count of pattern itself reduces drastically which almost retains the same count in |P′| as well. |P| and |P′|
converge in the CH strategy since 1-length characters are mostly present. In all the corpus tested, maximum
reduction in |P′| is obtained at the α value where the maximum Cr is obtained. Alphabet dataset in FPH
approach shows great improvement by reducing the pattern base from |P| to |P′| by 99.9% at α = 0.64%
where the maximum Cr attained. Bible corpus shows a reduction by 13.42% at α = 0.01% and similar obser-
vations can be seen in other corpora as well. At α = [0.01%, 1%], CTS is more than ES in bible corpora and

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

4

Minimum Support(%)

C
o

m
p

re
ss

io
n

 T
im

e(
se

c)

Conventional Huffman
FPH−AS
FPH−HB
GA78
LZ78
AE
gzip

Figure 4: min_supp vs time for bible.

Oswald and Sivaselvan: Text and Image Compression based on Data Mining PerspectiveArt. 12, page 10 of 12

this is because |P′| (in FPH) >> |P′| in CH. When comparing code table size of FPH with GA78, they are
almost of equal size where FPH-AS has more code table size in some dense datasets like Amazon Reviews.

iv) Performance of Image Compression Algorithms
Figure 7a represents the input Lena image and 7b, 7c and 7d represents the decompressed images at
k = 8, 15 and 24. The image compression algorithms are tested on various benchmark images like Lena,
Peppers, Baboon of 512 × 512 size in bmp format. The results are shown for Lena and Peppers images whose
pixel values lie in the range 0 to 255. Number of clusters k and minimum support α control the compression
ratio and k alone affects the quality of the image. Hence the results are observed by varying the parameters
k and α to study their effects on compression. Image quality is substantiated by using the metrics like PSNR
(Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index). PSNR is defined using the Mean Square
Error (MSE) which measures the average of errors where they are defined as follows.

1 1 2

100 0

1
[(,) (,)] and 20log

M N J

x y

MAX
MSE J x y J x y PSNR

MN MSE

 

 
   

Here M, N are the dimensions of the image indicating the number of rows and columns. J(x, y) and J’(x, y)
indicate the pixel value of the original image and the decompressed image at location (x, y) respectively.
MAXJ denotes the maximum possible pixel value of the image J. PSNR will be high if the average of errors
MSE is low.

It can be observed from Figure 5 that as k increases Cr decreases in our approach. |P| is more in IC-ver.1
and IC-ver.2 which gives low compression ratio whereas JPEG has a Cr of 4.85 and GIF has 3.48 which are
lower than IC-ver.1 and IC-ver.2. The reason being the absence of mining lengthier and frequent patterns in
both GIF and JPEG. This is because of the increase in the number of clusters which decreases the cardinality
of lengthier closed frequent sequences and thus increasing the size of compressed image. For example, Lena
image in IC-ver.1 has Cr = [4.09, 2.18] for k ∈ [8, 24] where we observe that at k ≤ 10, better compression ratio
is achieved. A similar trend is observed for other standard images as well. On an average, our approaches
exhibit a compression efficiency of 20 to 25% in the selected range of k for Lena and Peppers. We infer from
Figure 6 that in our approaches that as k increases, PSNR increases and hence an image with significant
good quality is produced. This is due to grouping of pixels into more closely related clusters when k is high,
leading to a high PSNR in our algorithms. Also, the construction of more cluster identifiers to represent
the pixels merits our approach which is not the case with low k values. IC-ver.2 has a high PSNR value than
IC-ver.1 because of the increase in the number of blocks per component.

7 Conclusions and Future Work
This paper presented various novel and optimal text and image compression algorithms employing various
concepts from FPM in the conventional encoding strategies. We addressed the problem of mining very large
and optimal set of patterns using compressed pattern sets employing novel pattern pruning strategy which

8 10 12 14 16
2

2.5

3

3.5

4

4.5

5

5.5

k

C
o

m
p

re
ss

io
n

 R
at

io

IC−ver.1
IC−ver.2
JPEG
GIF

Figure 5: k vs Compression ratio for Lena.

Oswald and Sivaselvan: Text and Image Compression based on Data Mining Perspective Art. 12, page 11 of 12

has contributed to improvements in time factor by an order of magnitude. Proposed text compression algo-
rithms achieved high compression ratios, with a reduction in code table size whereas without compromis-
ing image quality. Our demonstration of various text structures along with time complexity have shown a
wider aspect of looking at mining optimal patterns. For future work, we shall focus on the scope of applying
various itemsets like Closed Frequent Itemsets, Maximal Frequent Itemsets, etc. Further research will also
address the issue of time to reduce encoding in large size images.

Competing Interests
The authors have no competing interests to declare.

References
Agarwal, R and Srikant, R. 1994. Fast algorithms for mining association rules in large databases. In: Bocca,

JB, Jarke, M and Zaniolo, C (eds.), VLDB’94, Proceedings of 20th International Conference on Very Large
Data Bases, 487–499, September 12–15, 1994, Santiago de Chile, Chile, Morgan Kaufmann.

Amazon reviews dataset. 2014. http://jmcauley.ucsd.edu/data/amazon/ Accessed: 2017-06-03.
Bochkarev, VV, Shevlyakova, AV and Solovyev, VD. 2012. Average word length dynamics as indicator of

cultural changes in society. arXiv preprint, arXiv:1208.6109.
Calgary. Calgary compression corpus datasets. corpus.canterbury.ac.nz/descriptions/.
David, S. 2004. Data Compression: The Complete Reference. Second edn.
Han, J, Cheng, H, Xin, D and Yan, X. 2007. Frequent pattern mining: current status and future directions.

Data Mining and Knowledge Discovery, 15(1): 55–86. DOI: https://doi.org/10.1007/s10618-006-0059-1
Huffman, DA. 1952. A method for the construction of minimum redundancy codes. proc. IRE, 40(9): 1098–

1101. DOI: https://doi.org/10.1109/JRPROC.1952.273898
Kadimisetty, A, Oswald, C, Sivaselvan, B and Alekhya, K. 2016. Lossy image compressiona frequent

sequence mining perspective employing efficient clustering. In: India Conference (INDICON), 2016 IEEE
Annual, IEEE, 1–6.

8 10 12 14 16
34

36

38

40

42

44

46

k

P
S
N
R

IC−ver.1

IC−ver.2

Figure 6: k vs PSNR for Lena.

(a) Input Lena (b) k = 8 (c) k = 15 (d) k = 24

Figure 7: (a) Lena Input Image (b), (c) and (d) are decompressed images at k = 8, k = 15 and k = 24 respec-
tively at α = 46%.

http://jmcauley.ucsd.edu/data/amazon/
http://www.corpus.canterbury.ac.nz/descriptions/
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1109/JRPROC.1952.273898

Oswald and Sivaselvan: Text and Image Compression based on Data Mining PerspectiveArt. 12, page 12 of 12

Kaufman, L and Rousseeuw, PJ. 2008. In: Partitioning Around Medoids (Program PAM). John Wiley & Sons,
Inc., 68–125.

Köppl, D and Sadakane, K. 2016. Lempel-ziv computation in compressed space (lz-cics). In: Data Compres-
sion Conference (DCC), 2016, IEEE, 3–12. DOI: https://doi.org/10.1109/DCC.2016.38

Oswald, C, Akshay Vyas, V, Arun Kumar, K, Vijay Sri, L and Sivaselvan, B. 2016. Hierarchical clustering
approach to text compression. In: Advanced Computing, Networking, and Informatics, XX–YY. Springer.

Oswald, C, Ghosh, AI and Sivaselvan, B. 2015a. Knowledge engineering perspective of text compres-
sion. In: 2015 Annual IEEE India Conference (INDICON), IEEE, 1–6. DOI: https://doi.org/10.1109/INDI-
CON.2015.7443683

Oswald, C, Ghosh, AI and Sivaselvan, B. 2015b. An efficient text compression algorithm-data mining
perspective. In: Mining Intelligence and Knowledge Exploration, 563–575. Springer. DOI: https://doi.
org/10.1007/978-3-319-26832-3_53

Oswald, C, Kumar, IA, Avinash, J and Sivaselvan, B. 2017. A graph-based frequent sequence mining
approach to text compression. In: International Conference on Mining Intelligence and Knowledge Explo-
ration, 371–380. Springer.

Oswald, C and Sivaselvan, B. 2017. An optimal text compression algorithm based on frequent pattern min-
ing. Journal of Ambient Intelligence and Humanized Computing, Jul 2017. DOI: https://doi.org/10.1007/
s12652-017-0540-2

Pratas, D, Pinho, AJ and Ferreira, PJ. 2016. Efficient compression of genomic sequences. In: Data Compres-
sion Conference (DCC), 2016, IEEE, 231–240. DOI: https://doi.org/10.1109/DCC.2016.60

Ramakrishnan, N and Grama, A. 1999. Data mining: From serendipity to science – guest editors’ introduc-
tion. IEEE Computer, 32(8): 34–37. DOI: https://doi.org/10.1109/2.781632

Sipi image data. 1977. http://sipi.usc.edu/database/ Accessed: 2016-01-03.
The global language monitor. 2015. http://www.languagemonitor.com/number-of-words/number-of-

words-in-the-english-language-1008879/ Accessed: 2016-01-15.
Wallace, GK. 1991. The jpeg still picture compression standard. Commun. ACM, 34(4): 30–44. April 1991.

DOI: https://doi.org/10.1145/103085.103089
Yan, X, Han, J and Afshar, R. 2003. Clospan: Mining closed sequential patterns in large datasets. In: In SDM,

SIAM, 166–177. DOI: https://doi.org/10.1137/1.9781611972733.15
Ziv, J and Lempel, A. 1978. Compression of individual sequences via variable-rate coding. Information The-

ory, IEEE Transactions on, 24(5): 530–536. DOI: https://doi.org/10.1109/TIT.1978.1055934

How to cite this article: Oswald, C and Sivaselvan, B. 2018. Text and Image Compression based on Data Mining
Perspective. Data Science Journal, 17: 12, pp. 1–12, DOI: https://doi.org/10.5334/dsj-2018-012

Submitted: 18 March 2018 Accepted: 08 May 2018 Published: 07 June 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/
licenses/by/4.0/.

 OPEN ACCESS
Data Science Journal is a peer-reviewed open access journal published by Ubiquity
Press.

https://doi.org/10.1109/DCC.2016.38
https://doi.org/10.1109/INDICON.2015.7443683
https://doi.org/10.1109/INDICON.2015.7443683
https://doi.org/10.1007/978-3-319-26832-3_53
https://doi.org/10.1007/978-3-319-26832-3_53
https://doi.org/10.1007/s12652-017-0540-2
https://doi.org/10.1007/s12652-017-0540-2
https://doi.org/10.1109/DCC.2016.60
https://doi.org/10.1109/2.781632
http://sipi.usc.edu/database/
http://www.languagemonitor.com/number-of-words/number-of-words-in-the-english-language-1008879/
http://www.languagemonitor.com/number-of-words/number-of-words-in-the-english-language-1008879/
https://doi.org/10.1145/103085.103089
https://doi.org/10.1137/1.9781611972733.15
https://doi.org/10.1109/TIT.1978.1055934
https://doi.org/10.5334/dsj-2018-012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	2 Related Work
	3 Frequent Pattern Mining/Clustering based Text Compression Algorithms
	3.1 Preliminaries and Problem Definition
	3.2 Frequent Pattern based Huffman Encoding(FPH) - Initial
	3.3 FPH - Array Split(AS)
	3.4 FPH using an efficient Hash Structure - Hash Based(HB)
	3.5 Word based Text Compression Using Frequent Sequence Mining and Universal Huffman Encoding(UHE)
	3.6 Graph based Arithmetic78(GA78)
	3.7 Clustering based Huffman Encoding(CBH)
	3.7.1 Time Complexity Analysis of CBH
	3.7.2 Space Complexity Analysis of CBH

	4 Characterization of Text Structures
	4.1 Time and Space Complexity of various text structures for FPH approach

	5 Frequent Sequence Mining/Clustering based Image Compression Algorithms
	5.1 Closed Frequent Sequence Mining(CFSM) approach to Image Compression

	6 Simulation Results and Discussion of the Proposed Text and Image Compression algorithms
	7 Conclusions and Future Work
	Competing Interests
	References
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

