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Article

Text Classification for
Organizational Researchers:
A Tutorial

Vladimer B. Kobayashi1, Stefan T. Mol1,
Hannah A. Berkers1, Gábor Kismihók1

and Deanne N. Den Hartog1

Abstract
Organizations are increasingly interested in classifying texts or parts thereof into categories, as
this enables more effective use of their information. Manual procedures for text classification
work well for up to a few hundred documents. However, when the number of documents is larger,
manual procedures become laborious, time-consuming, and potentially unreliable. Techniques
from text mining facilitate the automatic assignment of text strings to categories, making classi-
fication expedient, fast, and reliable, which creates potential for its application in organizational
research. The purpose of this article is to familiarize organizational researchers with text mining
techniques from machine learning and statistics. We describe the text classification process in
several roughly sequential steps, namely training data preparation, preprocessing, transformation,
application of classification techniques, and validation, and provide concrete recommendations at
each step. To help researchers develop their own text classifiers, the R code associated with each
step is presented in a tutorial. The tutorial draws from our own work on job vacancy mining. We
end the article by discussing how researchers can validate a text classification model and the
associated output.

Keywords
text classification, text mining, random forest, support vector machines, naive Bayes

Text data are pervasive in organizations. Digitization (Cardie & Wilkerson, 2008) and the ease of

creating online information (e.g., e-mail messages; Berry & Castellanos, 2008) contributes to the

vast quantities of text generated each day. Embedded in these texts is information that may improve

our understanding of organizational processes. Thus, organizational researchers increasingly seek
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ways to organize, classify, label, and extract opinions, experiences, and sentiments from text (Pang

& Lee, 2008; Wiebe, Wilson, & Cardie, 2005). Up until recently, the majority of text analyses in

organizations relied on time consuming and labor-intensive manual procedures, which are imprac-

tical and less effective for voluminous collections of documents especially when resources are

limited (Kobayashi et al., 2018). Hence, automatic (or computer-assisted) strategies are increas-

ingly employed to accelerate the analysis of text (Berry & Castellanos, 2008).

Similar to content analysis (Duriau, Reger, & Pfarrer, 2007; Hsieh & Shannon, 2005; Scharkow,

2013) and template analysis (Brooks, McCluskey, Turley, & King, 2015), a common objective of

text analysis is to assign text to predefined categories. Manually assigning large collections of text to

categories is costly and may become inaccurate and unreliable due to cognitive overload. Further-

more, idiosyncrasies among human coders may creep into the labeling process resulting in coding

errors. One workaround is to code only part of the corpus as opposed to coding all documents.

However, this comes at the expense of possibly omitting relevant information, which may lead to

bias and a degradation of the internal and external validity of the findings. Another option is to hire

multiple human coders, but this adds cost (e.g., cost of hiring and training coders) and effort

pertaining to determining interrater reliability and consensus seeking (Sheng, Provost, & Ipeirotis,

2008). A final (and more affordable) option is to solicit the help of the public to label text, for

instance through the Amazon Mechanical Turk platform (Buhrmester, Kwang, & Gosling, 2011).

However, this may be effective only in labeling objective information (e.g., names of people, events,

etc.) since it is often difficult to establish consistency on subjective labels (e.g., sentiments; Wiebe,

Wilson, Bruce, Bell, & Martin, 2004). Hence, automatic text analysis procedures that reliably,

efficiently, and effectively assign text elements to classes are both necessary and advantageous

especially in dealing with a massive corpus of text.

This article focuses on automatic text classification for several reasons. First, although text

classification (henceforth TC) has been applied in various fields, such as in political science (Atte-

veldt, Kleinnijenhuis, Ruigrok, & Schlobach, 2008; B. Yu, Kaufmann, & Diermeier, 2008), occu-

pational fraud (Holton, 2009), law (Gonçalves & Quaresma, 2005), finance (Chan & Chong, 2017;

Chan & Franklin, 2011; Kloptchenko et al., 2004), and personality research (Shen, Brdiczka, & Liu,

2013), so far its uptake in organizational research is limited. Second, the use of TC is economical

both in terms of time and cost (Duriau et al., 2007). Third, many of the techniques that have been

developed in TC, such as sentiment analysis (Pang & Lee, 2008), genre classification (Finn &

Kushmerick, 2006), and sentence classification (Khoo, Marom, & Albrecht, 2006) seem particularly

well suited to address contemporary organizational research questions. Fourth, the acceptance and

broader use of TC within the organizational research community can stimulate the development of

novel TC techniques.

Tutorials or review-tutorials on TC that have been published so far (Harish, Guru, & Manjunath,

2010; Li & Jain, 1998; Sebastiani, 2002) were targeted mainly toward researchers in the field of

machine learning and data mining. This has resulted in a skewed focus on technical and methodo-

logical details. In this article our goal is to balance the discussion among techniques, theoretical

concepts, and validity concerns to increase the accessibility of TC to organizational researchers.

Below we first discuss the TC process, by pointing out key concerns and providing concrete

recommendations at each step. Previous studies are cited to enrich the discussion and to illustrate

different use cases. The second part is a hands-on tutorial using part of our own work as a running

example. We applied TC to automatically extract nursing job tasks from nursing vacancies to

augment nursing job analysis (Kobayashi, Mol, Kismihók, & Hesterberg, 2016). The findings from

this study were used in the EU-funded Pro-Nursing (http://pro-nursing.eu) project which aimed to

understand, among others, how nursing tasks are embedded in the nursing process. We also address

validity assessment because the ability to demonstrate the validity of TC outcomes will likely be

critical to its uptake by organizational researchers. Thus, we discuss and illustrate how to establish
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validity for TC outcomes. Specifically, we address assessing the predictive validity of the classifier

and triangulating the output of the classification with other data sources (e.g., expert input and output

from alternative analyses).

Text Classification

TC is defined as the automatic assignment of text to one or more predefined classes (Li & Jain, 1998;

Sebastiani, 2002). Formally, the task of TC is stated as follows. Given a set of text and a set of

categories, construct a model of the form: Y ¼ f ðX ; yÞ þ e from a set of documents with known

categories. In the preceding formula, X is a suitably chosen text representation (e.g., a vector), y is

the set of unknown parameters associated with the function f (also known as the classifier or

classification model) that need to be estimated using the training data, and e is the error of the

classification. The error is added to account for the fact that f is just an approximation to the true but

unknown function h such that Y ¼ hðX Þ. Hence, the smaller e is, the more effective the classifier f is.

The Y term usually takes numerical values indicating the membership of text to a particular cate-

gory. For example, when there are only 2 categories, such as in classifying the polarity of relations

between political actors and issues, as either positive or negative (Atteveldt et al., 2008), Y can take

the values ofþ1 and�1, respectively signifying positive and negative sentiment. We further discuss

how to deal with each part of the formula, such as how to choose X and f , below. Once the

classification model has been constructed it is then used to predict the category of new text (Aggar-

wal & Zhai, 2012).

An ideal classifier would mimic how humans process and deduce meaning from text. However,

there are still many challenges before this becomes reality. Natural languages contain high-level

semantics and abstract concepts (Harish et al., 2010; Popping, 2012) that are difficult to articulate in

computer language. For instance, the meaning of a word may change depending on the context in

which it is used (Landauer, Foltz, & Laham, 1998). Also, lexical, syntactic, and structural ambi-

guities in text are continuing challenges that would need to be addressed (Hindle & Rooth, 1993;

Popping, 2012). Another issue is dealing with typographical errors or misspellings, abbreviations,

and new lexicons. Strategies for dealing with ambiguities all need to be explicated during classifier

development. Before a classifier is deployed it thus needs several rounds of training, testing, fine-

tuning (of parameters), and repeated evaluation until acceptable levels of performance and validity

are reached. The resulting classifier is expected to approximate the performance of human experts in

classification tasks (Cardie & Wilkerson, 2008), but for a large corpus its advantage is that it will be

able to do so in a faster, cheaper, and more reliable manner.

TC: The Process

The TC process consists of six interrelated steps, namely (a) text preprocessing, (b) text represen-

tation or transformation, (c) dimensionality reduction, (d) selection and application of classification

techniques, (e) classifier evaluation, and (f) classifier validation. As with any research activity,

before starting the TC process, we begin by formulating the research question and identifying text

of interest. Here, we assume that classes are predefined and that the researcher has access to, or can

gather, documents with known classes, that is, the training data. For example, in a study about

identifying disgruntled employee communications, researchers used posts from intracompany dis-

cussion groups. Subsequently, using criteria on employee disgruntlement, two people manually

classified 80 messages into either disgruntled or nondisgruntled communication (Holton, 2009).

Another study focused on the detection of personality of users from their email messages. Research-

ers first administered a 120-item questionnaire to 486 users to identify their personalities after which

their email messages over a 12-month period were collected (Shen et al., 2013). Compared to the
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study on disgruntlement, it is more straightforward to label the associated text in this latter study

because the labels are based on the questionnaire. Researchers are often faced with the decision of

how many documents to label, an issue we will return to in the “Other TC issues” section below.

Once the training dataset has been compiled, the next step is to preprocess the documents.

Text Preprocessing for Classification

The purpose of preprocessing is to remove irrelevant bits of text as these may obscure meaningful

patterns and lead to poor classification performance and redundancy in the analysis (Uysal & Gunal,

2014). During preprocessing we first apply tokenization to separate individual terms. Terms may be

words, punctuation marks, numbers, tags, and other symbols (e.g., an emoticon). In written English,

terms are usually separated by spaces.

Punctuations and numbers, if deemed irrelevant to the classification task at hand are removed,

although in some cases these may be informative and thus retained (exclamation marks or emoti-

cons, for instance, may be indicative of sentiment). Dictionaries or lexicons are used to apply

spelling correction, and to resolve typos, and abbreviations. Words that are known to have low

information content such as conjunctions and prepositions are typically deleted. These words are

called stopwords (Fox, 1992), examples of pre-identified stopwords in the English language are

“and,” “the,” and “of” (see http://www.ranks.nl/stopwords for different lists stopwords in various

languages). When the case of the letters is irrelevant it is advisable to transform all upper case letters

into lower case.

During preprocessing stemming, which is defined as the process of obtaining the base or stem

form of words (Frakes, 1992; Porter, 1980), is also commonly applied. A key assumption in stem-

ming is that words that have similar root forms are identical in meaning. Stemming is performed by

removing suffixes that may not correspond to an actual base form of the word (Willett, 2006). For

example, the words calculate, calculating, calculated will be rewritten to calculate although the

actual base form is calculate (Toman, Tesar, & Jezek, 2006). If one wants to recover the actual base

form then one can use lemmatization instead of stemming. However, lemmatization is more chal-

lenging than stemming (Toman et al., 2006) and the added complexity of applying lemmatization

may offset its benefits. Both lemmatization and stemming leads to a loss of inflection information in

words (e.g., tense, gender, and voice). Inflection information may be important in some applications,

such as in identifying the sentiment of product reviews, since as it turns out, most negative reviews

are written in the past tense (Dave, Lawrence, & Pennock, 2003). Stemming and lemmatization are

part of a broad class of preprocessing techniques called normalization (Dave et al., 2003; Toman

et al., 2006). The aim of normalization is to merge terms that express the same idea or concept under

a single code called a template. For example, another normalization strategy is to use the template

POST_CODE to replace all occurrences of postcodes in a collection of documents. This can be

useful when it is important to consider if a document does or does not contain a postcode (i.e.,

contains an address), but the actual postcode is irrelevant.

A practical question is: what preprocessing techniques to apply for a given text? The answer is

largely determined by the nature of text (e.g., language and genre), the problem that we want to

address, and the application domain (Uysal & Gunal, 2014). Any given preprocessing procedure

may be useful for a specific domain of application or language but not for others. Several empirical

studies demonstrated the effect of preprocessing on classification performance. For example, stem-

ming in the Turkish language does not seem to make a difference in classification performance when

the size of the training data set is large (Torunoğlu, Çakırman, Ganiz, Akyokuş, & Gürbüz, 2011). In

some applications stemming even appears to degrade classification performance, particularly in the

English and Czech languages (Toman et al., 2006). In the classification of English online news, the

impact of both stemming and stopword removal is negligible (Song, Liu, & Yang, 2005). In general,
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the classification of English and Czech documents benefits from stopword removal but may suffer

from word normalization (Toman et al., 2006). For the Arabic language, certain classifiers benefit

from stemming (Kanaan, Al-Shalabi, Ghwanmeh, & Al-Ma’adeed, 2009). In spam email filtering,

some words typically seen as stopwords (e.g., “however” or “therefore”) were found to be partic-

ularly rare in spam email, hence these should not be removed for this reason (Méndez, Iglesias,

Fdez-Riverola, Dı́az, & Corchado, 2006).

Recommendation. In using English documents, our general recommendation is to apply word toke-

nization, convert upper case letters to lower case, and apply stopword removal (except for short text

such as email messages and product titles; Méndez et al., 2006; H.-F. Yu, Ho, Arunachalam,

Somaiya, & Lin, 2012). Since the effects of normalization have been mixed, our suggestion is to

apply it only when there is no substantial degradation on classification performance, since it can

increase classification efficiency by reducing the number of terms. When in doubt whether to

remove numbers or punctuations (or other symbols), our advice is to retain them and apply the

dimensionality reduction techniques discussed in the below section on text transformation.

Text Transformation (X )

Text transformation is about representing documents so that they form a suitable input to a classi-

fication algorithm. In essence, this comprises imposing structure on a previously unstructured text.

Most classification algorithms accept vectors or matrices as input. Thus the most straightforward

way is to represent a document as a vector and the corpus as a matrix.

The most common way to transform text is to use the so-called vector space model (VSM) where

documents are modeled as elements in a vector space (Raghavan & Wong, 1986; Salton, Wong, &

Yang, 1975). The features in this representation are the individual terms found in the corpus. This

somehow makes sense under the assumption that words are the smallest independently meaningful

units of a language. The size of the vector is therefore equal to the size of the vocabulary (i.e., the set

of unique terms in a corpus). Hence, we can represent document j as Xj ¼ ð x1
j x2

j � � � xM
j Þ

where M is the size of the vocabulary, and the element xi
j is the weight of term i in document j.

Weights can be the count of the terms in a document (xi
j ¼ TFðj; iÞ) or, when using binary weighting,

a 1 (presence of a term) or 0 (absence of a term). Applying the transformation to the entire corpus

will lead to a document-by-term matrix (DTM), where the rows are the documents, the columns are

the terms, and the entries are the weights of the terms in each document.

Other weighting options can be derived from basic count weighting. One can take the logarithm

of the counts to dampen the effect of highly frequent terms. Here we need to add 1 to the counts so

that we avoid taking the logarithm of zero counts. It is also possible to normalize with respect to

document length by dividing each count by the maximum term count in a given document. This is to

ensure that frequent terms in long documents are not overrepresented. Apart from the weights of the

terms in each document, terms can also be weighted with respect to the corpus. Common corpus-

based weights include the inverse document frequency (IDF), which assesses the specificity of terms

in a corpus (Algarni & Tairan, 2014). Terms that occur in too few (large IDF) or in too many (IDF

close to zero) documents have low discriminatory power and are therefore not useful for classifi-

cation purposes. The formula for IDF is: IDFðiÞ ¼ log N
df ðiÞ

� �
, where df ðiÞ stands for the document

frequency of term i, that is, the number of documents containing term i. Document- and corpus –

based weights may also be combined so that that the weights simultaneously reflect the importance

of a term in a document and its specificity to the corpus. The most popular combined weight measure

is the product of term frequency (TF) and the IDF (xi
j ¼ TFðj; iÞ � IDFðiÞ) (Aizawa, 2003).
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Although the VSM ignores word order information, it is popular due to its simplicity and effec-

tiveness. Ignoring word order means losing some information regarding the semantic relationships

between words. Also, words alone may not always express true atomic units of meaning. Some

researchers improve the VSM by adding adjacent word pairs or trios (bigrams and trigrams) as

features. For example, “new” followed by “york” becomes “new york” in a bigram. Although this

incorporates some level of word order information, it also leads to feature explosion thereby

increasing noise and redundancy. Also, many bigrams and trigrams do not occur often, thus their

global contributions to the classification are negligible and will only contribute to sparsity and

computational load. A workaround is to use only the most informative phrases (e.g., frequent

phrases; Scott & Matwin, 1999). Strategies for selecting key phrases include the noun phrase (Lewis,

1992) and key phrase (Turney, 1999) extraction algorithms. However, this does add additional

complexity in the analysis, which may again not result in a significant improvement in the classi-

fication. Studies have consistently shown that using bigrams only marginally improved classifica-

tion performance and in some cases degraded it, whereas the use of trigrams typically yielded

improvement (Dave et al., 2003; Ragas & Koster, 1998). Using syntactic phrases typically does

not improve performance much compared to single term features (Moschitti & Basili, 2004; Scott &

Matwin, 1999). Thus, the recommendation is to rely on single term features rather than phrases

unless there is a strong rationale to use phrases.

Text transformation plays a critical role in determining classification performance. Inevitably

some aspects of the text are lost in the transformation phase. Thus, when resulting classification

performance is poor, we recommend that the researcher reexamines this step. For example, while

term-based features are popular, if performance is poor one could also consider developing features

derived from linguistic information (e.g., parts of speech) contained in text (Gonçalves & Quaresma,

2005; Kobayashi et al., 2017; Moschitti & Basili, 2004) or using consecutive characters instead of

whole words (e.g., n-grams; Cavnar & Trenkle, 1994).

Reducing dimensionality. Even after preprocessing, transformation through VSM is still likely to

result in a large feature set. Too large a number of features is undesirable because it may increase

computational time and may degrade classification performance, especially when there are many

redundant and noisy features (Forman, 2003; Guyon & Elisseeff, 2003; Joachims, 1998). The size

of the vector and hence the size of feature set is referred to as the dimensionality of the VSM

representation. When possible, one should reduce dimensionality either by selectively eliminating

features or by creating latent features from existing ones without sacrificing classification per-

formance (Burges, 2010; Fodor, 2002; van der Maaten, Postma, & van den Herik, 2009). A

reduced feature set has advantages such as higher efficiency and in some cases, improved clas-

sification performance.

One way to eliminate features is to first assign scores to each feature and then remove features

by setting a cutoff value. This is called thresholding (Lan, Tan, Su, & Lu, 2009; Salton & Buckley,

1988). Weights from the transformation steps are sometimes used to score features. An example is

to remove rare terms, that is, terms with high IDF or low DF since they are noninformative for

category prediction or not influential in global performance. In some cases, rare terms are noise

terms (e.g., misspellings).

Another group of strategies to score features is to make use of class membership information in

the training data. These methods are called supervised scoring methods. Examples of these methods

are mutual information (MI), chi-squared (CHI), Gini index (GI), and information gain (IG; Yang &

Pedersen, 1997). Supervised scoring methods are expected to be superior to unsupervised ones

(e.g., DF), although in some cases DF thresholding has yielded performance comparable to super-

vised scoring methods such as CHI and GI (Yang, 1999) and even exceeded the performance of MI.
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An alternative to scoring methods is to create latent orthogonal features by combining existing

features. Methods that construct new features from existing ones are known as feature transforma-

tion methods. Techniques include principal component analysis (PCA; Sirbu et al., 2016; Zu,

Ohyama, Wakabayashi, & Kimura, 2003), latent semantic analysis (LSA; Landauer et al., 1998),

and nonnegative matrix factorization (Zurada, Ensari, Asl, & Chorowski, 2013). These methods

construct high level features as a (non)linear combination of the original features with the property

that the new features are uncorrelated. They operate on the DTM by applying a matrix factorization

method. The text is scored (or projected) on the new features, or factors, and these new features are

used in the subsequent analysis. LSA improves upon the VSM through its ability to detect synonymy

(Landauer et al., 1998). Words that appear together and load highly on a single factor may be

considered to be synonyms.

Recommendation. Our recommendation is start with the traditional VSM, that is, transform the

documents into vectors using single terms as features. For the unsupervised scoring, compute the

DF of each term and filter out terms with very low and very high DF, customarily those terms

belonging to the lower 5th and upper 99th percentiles. For the supervised scoring try CHI and IG and

for the feature transformation try LSA and nonnegative matrix factorization. Compare the effect on

classification performance of the different feature sets generated by the methods and choose the

feature set that yields the highest performance (e.g., accuracy). We also suggest to try combining

scoring and transformation methods. For example, one can first run CHI and perform LSA on the

terms selected by CHI. Note that the quality of the feature set (and that of the representation) is

assessed based on its resulting classification performance (Forman, 2003).

For LSA and nonnegative matrix factorization, we need to decide how many dimensions to retain.

For LSA, Fernandes, Artı́fice, and Fonseca (2017) offered this formula as a rough guide

K ¼ N

1

1þlogðNÞ
10

� �
, where N is the size of the corpus, K is the number of dimensions to retain and

the logarithm is base 10. For example, if there are 500 documents, then retain approximately 133

latent dimensions. In the case of nonnegative matrix factorization, an upper bound for choosing K is

that it must satisfy this inequality ðN þMÞK < NM , where M is the number of original features

(Tsuge, Shishibori, Kuroiwa, & Kita, 2001). Hence if there are 500 documents and 1,000 terms, K

should not be greater than 333. Of course, one has to experiment with different sizes of dimension-

ality and select the size that yields the maximum performance. For example, the formula gave 133

dimensions for 500 documents but one may also try experimenting values within +30 around 133.

Application of TC Algorithms (f )

The transformed text, usually the original DTM or the dimensionality reduced DTM, serves as input

to one or more classification techniques. Most techniques are from the fields of machine learning

and statistics. There are three general types of techniques: (a) geometric, (b) probabilistic, and (c)

logical (Flach, 2012).

Geometric algorithms assume that the documents can be represented as points in a hyperspace,

the dimensions of which are the features. This means that distances between documents and lengths

of the documents can be defined as well. In this representation, nearness implies similarity. An

example of a geometric classifier is K-nearest neighbors in which classification is done by first

finding the closest K documents (using a distance measure) from the training data (Jiang, Pang, Wu,

& Kuang, 2012) then the majority class of the K closest documents is the class to which the new

document is assigned. The parameter K is chosen to be an odd number to prevent ties from occurring.

Another geometric classifier is support vector machines (Joachims, 1998) in which a hyperplane is
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constructed that provides the best separation among the text in each class. The hyperplane is

constructed in such a way that it provides the widest separation between the two nearest observations

of each class.

Probabilistic algorithms compute a joint probability distribution between the observations (e.g.,

documents) and their classes. Each document is assumed to be an independent random draw from

this joint probability distribution. The key point in this case is to estimate the posterior probability

PðYmjX Þ. Classification is achieved by identifying the class that yields the maximum posterior

probability for a given document. The posterior probability is estimated in two ways. Either one

can marginalize the joint distribution PðX ; YmÞ, or one may compute PðX jYmÞ and PðYmÞ sepa-

rately and apply Bayes theorem. Both naive Bayes (Eyheramendy, Lewis, & Madigan, 2003) and

logistic regression (J. Zhang, Jin, Yang, & Hauptmann, 2003) are examples of probabilistic

algorithms.

The third type of algorithm is the logical classifier, which accomplishes classification by means

of logical rules (Dumais, Platt, Heckerman, & Sahami, 1998; Rokach & Maimon, 2005). An

example of such a rule in online news categorization is: “If an article contains any of the stemmed

terms “vs”, “earn”, “loss” and not the words “money”, “market open”, or “tonn” then classify the

article under category “earn” (Rullo, Cumbo, & Policicchio, 2007). The rules in logical models are

readable and thus facilitate revision, and, if necessary, correction of how the classification works. An

example of a logical classifier is a decision tree (Rokach & Maimon, 2005).

Naive Bayes and support vector machines are popular choices (Ikonomakis, Kotsiantis, &

Tampakas, 2005; Joachims, 1998; Li & Jain, 1998; Sebastiani, 2002). Both can efficiently deal

with high dimensionality and data sparsity, though in naive Bayes appropriate smoothing will need

to be applied to adjust for terms which are rare in the training data. The method of K-nearest

neighbor works well when the amount of training data is large. Both logistic regression and

discriminant analysis yield high performance if the features are transformed using LSA. The

performance of decision trees has been unsatisfactory. A number of researchers therefore recom-

mend the strategy of training and combining several classifiers to increase classification perfor-

mance, which is known as ensemble learning (Breiman, 1996; Dietterich, 1997; Dong & Han,

2004; Polikar, 2012). This kind of classification can be achieved in three ways. The first is using a

single method and training it on different subsets of the data. Examples include bagging and

boosting, which both rely on resampling. Random forest is a combination of bagging and random

selection of features that uses decision trees as base learners. Gradient boosted trees, a technique

that combines several decision trees, has been shown to significantly increase performance as

compared with that of individual decision trees (Ferreira & Figueiredo, 2012). The second is using

a single method but varying the training parameters such as, for example, using different initial

weights in neural networks (Kolen & Pollack, 1990). The third is using different classification

techniques (naive Bayes, decision trees, or SVM; Li & Jain, 1998) and combining their predictions

using, for instance, the majority vote.

Recommendation. Rather than using a single technique, we suggest applying different methods, by

pairing different algorithms and feature sets (including those obtained from feature selection and

transformation) and choosing the pair with the lowest error rate. For example, using the DTM

matrix, apply SVM, naive Bayes, random forest bagging, and gradient boosted trees. When feature

transformation has been applied (e.g., LSA and nonnegative matrix factorization), use logistic

regression or discriminant analysis. When the training data are large (e.g., hundreds of thousands

of cases), use K-nearest neighbors. Rule-based algorithms are seldom used in TC, however, if

readability and efficiency are desired in a classifier, then these can be trialed as well.
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Evaluation Measures

Crucial to any classification task is the assessment of the performance of classifiers using evaluation

measures (Powers, 2011; Yang, 1999). These measures indicate whether a classifier models the

relationship between features and class membership well, and may thus be used to indicate the extent

to which the classifier is able to emulate a human coder. The most straightforward evaluation

measure is the accuracy measure, which is calculated as the proportion of correct classifications.

Accuracy ranges from 0 to 1 (or 0 to 100 when expressed as a percentage). The higher the accuracy

the better the classifier (1 corresponds to perfect classification). However, in case of imbalanced

classification (i.e., when there is one class with only a few documents) and/or unequal costs of

misclassification, accuracy may not be appropriate. An example is detecting career shocks (cf.

Seibert, Kraimer, Holtom & Pierotti, 2013) in job forums. Since it is likely that only a small fraction

of these postings pertain to career shocks (suppose .05), a classifier can still have a high accuracy

(equal to .95) even if that classifier classifies all discussion as containing no career shocks content.

Alternative measures to accuracy are precision, recall, F-measure (Powers, 2011), specificity, break-

even point, and balanced accuracy (Ogura, Amano, & Kondo, 2011). In binary classification, classes are

commonly referred to as positive and negative. Classifiers aim to correctly identify observations in the

positive class. A summary table which can be used as a reference for computing these measures is

presented in Figure 1. The entries of the table are as follows: TP stands for true positives, TN for true

negatives, FP for false positives (i.e., negative cases incorrectly classified into the positive class), and FN

for false negatives (i.e., positive cases incorrectly classified into the negative class). Hence the five

evaluation measures are computed as follows: precision ¼ TP
TPþFP

, recall ¼ TP
TPþFN

, specificity ¼ TN
TNþFP

,

F � measure ¼ 2�recall�precision

recallþprecision
, and Bal:Accu ¼ TP

TPþFP
þ TN

TNþFN

� �
=2.

The breakeven point is the value at which precision ¼ recall. F-measure and balanced accuracy

are generally to be preferred in case of imbalanced classification, because they aggregate the more

basic evaluation measures.

Evaluation measures are useful to compare the performance of several classifiers (Alpaydin,

2014). Thus, one can probe different combinations of feature sets and classification techniques to

determine the best combination (i.e., the one which gives the optimal value for the evaluation

measure). Apart from classification performance, one can also take the parsimony of the trained

classifier into account by examining the relative size of the different feature sets, since they deter-

mine the complexity of the trained classifier. In line with Occam’s razor, when two classifiers have

the same classification performance, the one with the lower number of features is to be preferred

(Shreve, Schneider, & Soysal, 2011).

Evaluation measures are computed from the labeled data. It is not advisable to use all labeled data

to train the classifier since this might result in overfitting which is the case when the classifier is good

at classifying the observations in the training data but performs poorly on new data. Hence, part of

the labeled data should be set aside for evaluation so that we can assess the degree to which the

classifier is able to predict accurately in data that were not used for training.

Predicted Classes

Positive Negative

True Classes
Positive TP FN
Negative FP TN

Figure 1. Confusion matrix as a reference to compute the evaluation measures. Note: FN ¼ false negative;
FP ¼ false positive; TN ¼ true negative; TP ¼ true positive.
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Cross-validation can be applied by computing not only one value for the evaluation measure but

several values corresponding to different splits of the data. A systematic strategy to evaluate a

classifier is to use k-fold cross-validation (Kohavi, 1995). This method splits the labeled dataset

into k parts. A classifier is trained using k � 1 parts and evaluated on the remaining part. This is

repeated until each of the k parts has been used as test data. Thus for k equals 10, there are 10

partitions of the labeled data and corresponding 10 values for a given measure, the final estimate is

just the average of the 10 values. Another strategy is called bootstrapping, which is accomplished by

computing an average of the evaluation measures for N bootstrap samples of the data (sampling with

replacement).

Recommendation. Since accuracy may give misleading results when classes are imbalanced we

recommend using measures sensitive to this, such as F-measure or balanced accuracy (Powers,

2011). For the systematic evaluation of the classifier we advise using k-fold cross validation and

setting K to 5 or 10 when data are large, as this ensures sufficient data for the training. For smaller

data sets, such as fewer than 100 documents, we suggest bootstrapping or choosing a higher K for

cross-validation.

Model Validity

Figure 2 illustrates that a classification model consists of features and the generic classification

algorithm (Domingos, 2012). Thus the validity of the classification model depends both on the

choice of features and the algorithm.

Many TC applications use the set of unique words as the feature set (i.e., VSM). For organiza-

tional researchers this way of specifying the initial set of features may seem counterintuitive since

features are constructed in an ad hoc and inductive manner, that is, without reference to theory.

Classification Model 

Classification 
Algorithm 

Pre-labelled 
Documents 

D
oc

um
en

ts
 

Unlabeled 
Documents 

Classified Documents 

Features

wij’s 

Research questions 
and identification of 
documents of interest 

D
oc

um
en

ts
 

New Features 

Wij’s 
+ 

Figure 2. Diagrammatic depiction of the text classification process.
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Indeed, specifying the initial set of features, scoring features, transforming features, evaluating

features, and modifying the set of features in light of the evaluation constitutes a data-driven

approach to feature construction and selection (Guyon, Gunn, Nikravesh, & Zadeh, 2008). The

validity of the features is ultimately judged in terms of the classification performance of the resulting

classification model. But this does not mean that researchers should abandon theory based

approaches. If there is prior knowledge or theory that supports the choice of features then this can

be incorporated (Liu & Motoda, 1998). Theory can also be used as a basis for assigning scores to

features such as using theory to rank features according to importance. Our recommendation,

however, would be to have theory complement, as opposed to restrict, feature construction, because

powerful features (that may even be relevant to subsequent theory building and refinement) may

emerge inductively.

The second component, the classification algorithm, models the relationship between features

and class membership. Similar to the features, the validity of the algorithm is ultimately determined

from the classification performance and is also for the most part data driven. The validity of both the

features and the classification algorithm establishes the validity of the classification model.

A useful strategy to further assess the validity of the classification model is to compare the

classifications made by the model with the classification of an independent (group of) human

expert(s). Usually agreement between the model and the human expert(s) is quantified using mea-

sures of concordance or measures of how close the classification of the two correspond to one

another (such as Cohen’s kappa for interrater agreement where one “rater” is the classifier). Using

expert knowledge, labels can also be checked against standards. For example, in job task extraction

from a specific set of job vacancies one can check with experts or job incumbents to verify whether

the extracted tasks correspond to those tasks actually carried out on the job and whether specific

types of tasks are under or over represented.

Once model validity is established one may start applying the classification model to unlabeled

data. However, the model will still need to be reevaluated from time to time. When the performance

drops below an acceptability threshold, there are four possible solutions: (a) add more features or

change existing features, (b) try other classification algorithms, (c) do both, and/or (d) collect more

data or label additional observations.

Other Issues in TC

In this section we discuss how to deal with multiclass classification, where there is an increased

likelihood of classes being imbalanced, and provide some suggestions on determining training size

and what to do when obtaining labeled data is both expensive and difficult.

Multiclass classification. Multiclass classification pertains to dealing with more than 2 categories. The

preprocessing and representation parts are the same as in the binary case. The only changes are in the

choices of supervised feature selection techniques, classification techniques and evaluation mea-

sures. Most supervised feature selection techniques can be easily generalized to more than 2 cate-

gories. For example, when calculating CHI, we just need to add an extra column to the two-way

contingency table. Most techniques for classification we discussed previously have been extended to

multiclass classification. For example, techniques suited for binary classification problems (e.g.,

SVM) are extended to the multiclass case by breaking the multiclass problem into several binary

classification problems in either one-against all or one-against-one approaches. In the former

approach we build binary classifiers by taking each category as the positive class and merging the

others into the negative class. Hence, if there are K categories, then we build K binary classifiers. For

the latter approach, we construct a binary classifier for each pair of categories resulting to
KðK�1Þ

2

classifiers. Since several classifiers are built, and thus there are several outputs, final category
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membership is obtained by choosing the category with the largest value for the decision function for

the one-against-all case or by a voting approach for the one-against-one case (Hsu & Lin, 2002).

The four evaluation measures can also be extended to classifications with more than two classes

by computing these measures per category, the same as in one-against-all, and averaging the results.

An example is the extension of F-measure called the macro F-measure which is obtained by

computing the F-measure of each category, and then averaging them.

Imbalanced classification. By and large, in binary classification, when the number of observations in

one class represents less than 20% of the total number of observations then the data can be seen as

imbalanced. The main danger of imbalanced classification is that we may train a classifier with a

high accuracy even if it fails to correctly classify the observations in the minority class. In some

cases, we are more interested in detecting the observations in the minority class. At the same time

however, we also want to avoid many false detections.

Obvious fixes are to label more observations until the classes are balanced as was done by

Holton (2009), or by disregarding some observations in the majority class. In cases where clas-

sification problems are inherently imbalanced and labeling additional data is costly and difficult,

another approach is to oversample the minority class or to undersample the majority class during

classifier training and evaluation. A strategy called the synthetic minority oversampling technique

(SMOTE) is based on oversampling but instead of selecting existing observations in the minority

class it creates synthetic samples to increase the number of observations in the minority class

(Chawla, Bowyer, Hall, & Kegelmeyer, 2002). Preprocessing and representation remain the same

as in balanced classes. The parts that make use of class membership need to be adjusted for

imbalanced data.

There are options for supervised dimensionality reduction for imbalanced classification such as

those provided by Ogura et al. (2011). For the choice of classification techniques, those discussed

previously can be used with minor variations such as adjusting the costs of misclassification, which

is known as cost-sensitive classification (Elkan, 2001). Traditional techniques apply equal costs of

misclassification to all categories, whereas, for cost-sensitive classification we can assign large cost

for incorrect classification of observations in the minority class. For the choice of evaluation

measures, we suggest using the weighted F-measure or balanced accuracy. One last suggestion is

to treat imbalanced classification as an anomaly or outlier detection problem where the observations

in the minority class are the outliers (Chandola, Banerjee, & Kumar, 2009).

Size of the training data. A practical question that often arises is how many documents one should

label to ensure a valid classifier. The size of the training dataset depends on many considerations

such as the cost and limitations associated with acquiring prelabeled documents (e.g., ethical and

legal impediments) and the kind of learning framework we are using. In the probably approximately

correct (PAC) learning framework, which is perhaps the most popular framework for learning

concepts (such as the concept of spam emails or party affiliation) training size is determined by

the type of classification technique, the representation size, the maximum error rate one is willing to

tolerate, and the probability of not exceeding the maximum error rate. Under the PAC learning

framework, formulae have been developed to determine the lower bound for the training size, an

example being the one by Goldman (2010): O 1
e log2

1
dþ

VCDðCÞ
e

� �
, where E is the maximum error

rate, 1� d indicates the probability that the error will not exceed e, and VCDðCÞ of the classifier C.

VCD stands for Vapnik-Chervonenski dimension of the classifier C which can be interpreted as the

expressive power of the classifier which depends on the representation size and the form of the

classifier (e.g., axis parallel rectangle, closed sets, or half-spaces). As an illustration suppose we

want to learn the concept of positive sentiment from English text, we then represent each document

as a vector of 50,000 dimensions (number of commonly used English words) and our classification
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technique constructs a hyperplane that separates positive and negative observations (e.g., SVM

using ordinary dot product as kernel). If we want to ensure with probability 0.99 that the error rate

will not exceed 0.01, then the minimum training size is: 1
0:01

log2
1

0:01
þ 50001

0:01
¼ 5000764. This means

we would need at least 5 million documents. Here we calculated the VCD of C using the formula

d þ 1, where d is the dimensionality of the representation, since we consider classifiers that con-

struct hyperplane boundaries (half-space) in 50,000 dimensions. Of course, in practice dimension-

ality reduction can be applied still get adequate representation. If one would manage to reduce

dimensionality to 200 then the lower bound for the training size is dramatically reduced to 20,765.

We can tweak this lower bound by adjusting the other parameters.

Although formulae provide theoretical guarantees, determining training size is largely empiri-

cally driven and involves a good deal of training, evaluation, and validation. To give readers an idea

of training sizes as typically found in practice, Table 1 provides information about the training data

sizes for some existing TC studies.

Suggestions when labeled data are scarce. In many classification problems, labeled data are costly or

difficult to obtain. Fortunately, even in this case, principled approaches can be applied. In practice,

unlabeled data are plentiful and we can apply techniques to make use of the structure and patterns in

the unlabeled data. This approach of using unlabeled data in classification is called semisupervised

classification (Zhu, 2005). Various assumptions are made to make semisupervised classification

feasible. Examples are the smoothness assumption which says that observations near each other are

likely to share the same label, and the cluster assumption which states that if the observations form

clusters then observations in the same cluster are likely to share the same label (Zhu, 2005).

Another approach is to use classification output to help us determine which observations to label.

In this way, we take a targeted approach to labeling by labeling those observations which are most

likely to generate better classifiers. This is called active learning in the machine learning literature

(Settles, 2010). Active learning is made possible because some classifiers give membership prob-

abilities or confidence rather than a single decision as to whether to assign to one class or not. For

example, if a classifier assigns equal membership probabilities to all categories for a new observa-

tion then we call an expert to label the new observation. For a review of active learning techniques

we refer the reader to Fu, Zhu, and Li (2013).

Tutorial

We developed the following tutorial to provide a concrete treatment of TC. Here we demonstrate TC

using actual data and codes. Our intended audience are researchers who have little or no experience with

TC. This tutorial is a scaled down version of our work on using TC to automatically extract job tasks from

job vacancies. Our objective is to build a classifier that automatically classifies sentences into task or

nontask categories. The sentences were obtained from German language nursing job vacancies.

We set out to automate the process of classification because one can then deal with huge numbers

(i.e., millions) of vacancies. The output of the text classifier can be used as input to other research or

tasks such as job analysis or the development of tools to facilitate personnel decision making. We

used the R software since it has many ready-to-use facilities that automate most TC procedures. We

provide the R annotated scripts and data to run each procedure. Both codes and data can be down-

loaded as a Zip file from Github; the URL is https://github.com/vkobayashi/textclassificationtutor

ial. The naming of R scripts are in the following format: CodeListing (CL) <number>.R and in this

tutorial we referenced them as CL <number>. Thus, CL 1 refers to the script CodeListing_1.R. Note

that the CL files contain detailed descriptions of each command, and that each command should be

run sequentially.
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All the scripts were tested and are expected to work on any computer (PC or Mac) with R,

RStudio, and the required libraries installed. However, basic knowledge including how to start R,

open R projects, run R commands, and install packages in RStudio are needed to run and understand

the codes. For those new to R we recommend following an introductory R tutorial (see, for example,

DataCamp [www.datacamp.com/courses/free-introduction-to-r] or tutorialspoint [www.tutorial

spoint.com/index.htm] for free R tutorials).

This tutorial covers each of the previously enumerated TC steps in sequence. For each step we

first explain the input, elaborate the process, and provide the output, which is often the input for the

subsequent step. Table 2 provides a summary of the input, process, and output for each step in this

tutorial. Finally, after downloading the codes and data, open the text_classification_tutorial.Rproj

file. The reader should then run the codes for every step as we go along, so as to be able to examine

the input and the corresponding output.

Preparing Text

The input for this step consists of the raw German job vacancies. These vacancies were obtained

from Monsterboard (www.monsterboard.nl). Since the vacancies are webpages, they are in hyper-

text markup language (HTML), the standard markup language for representing content in web

documents (Graham, 1995). Apart from the relevant text (i.e., content), raw HTML pages also

contain elements used for layout. Therefore, a technique known as HTML parsing is used to separate

the content from the layout.

In R, parsing HTML pages can be done using the XML package. This package contains two

functions, namely, htmlTreeParse() that parses HTML documents and xpathSApply() that

extracts specific content from parsed HTML documents. CL 1 (see the annotations in the file for

further details as to what each command does), installs and loads the XML package, and applies the

htmlTreeParse() and xpathSApply() functions. In addition, the contents of the HTML file

sample_nursing_vacancy.html in the folder data are imported as a string object and stored in

the variable htmlfile. Subsequently, this variable is provided as an argument to the

htmlTreeParse() function. The parsed content is then stored in the variable rawpagehtml,

which in turn is the doc argument to the xpathSApply() function which searches for the tags in

the text that we are interested in. In our case this text can be found in the div tag of the class

content. Tags are keywords surrounded by angle brackets (e.g., <div> and </div>). The

xmlValue in the xpathSApply() function means that we are obtaining the content of the HTML

element between the corresponding tags. Finally the writeLines() function writes the text

content to a text file named sample_nursing_vacancy.txt (in the folder parsed).

To extract text from several HTML files, the codes in CL 1 are put in a loop in CL 2. The function

htmlfileparser() in CL 2 accepts two arguments and applies the procedures in CL 1 to each

HTML file in a particular folder. The first argument is the name of the folder and the second argument

is the name of the destination folder where the extracted text content is to be written. Supposing these

html files are in the folder vacancypages and the extracted text content is to be saved in the folder

parsedvacancies, these are the arguments we provide to htmlfileparser(). Expectedly, the

number of text files generated corresponds to the number of HTML files, provided that all HTML

files are well-defined (e.g., correct formatting). The text files comprise the output for this step.

Preprocessing Text

The preprocessing step consists of two stages. The first identifies sentences in the vacancies, since

the sentence is our unit of analysis, and the second applies text preprocessing operations on the

sentences. We used sentences as our unit of analysis since our assumption is that the sentence is the
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right resolution level to detect job task information. We did not use the vacancy as our unit of

analysis since a vacancy may contain more than one task. In fact if we chose to treat the

vacancy as the unit of analysis it would still be important to identify which of the sentences

contain task information. Another reason to select sentence as the unit of analysis is to mini-

mize variance in document length. Input for the first stage are the text files generated from the

previous step, and the output sentences from this stage serve as input to the second stage. CL 3

contains functions that can detect sentences from the parsed HTML file in the previous section

(i.e., sample_nursing_vacancy.html).

The code loads the openNLP package. This package contains functions that run many popular

natural language processing (NLP) routines including a sentence segmentation algorithm for the

German language. Although the German sentence segmenter in openNLP generally works well, at

times it may fail. Examining such failures in the output can provide ideas for the inclusion of new

arguments in the algorithm. For example, if the segmenter encounters the words bzw. and inkl.

(which are abbreviations of “or” and “including” respectively in German) then the algorithm will

treat the next word as the start of a new sentence. This is because the algorithm has a rule that when

there is a space after a period the next word is the start of a new sentence. To adjust for these and

other similar cases, we created a wrapper function named sent_tokens(). Another function

sent_split()searches for matches of the provided pattern within the string and when a match

is found it separates the two sentences at this match. For example, some vacancies use bullet points

or symbols such as “|” to enumerate tasks or responsibilities. To separate these items we supply the

symbols as arguments to the function. Finally, once the sentences are identified the code writes the

sentences to a text file where one line corresponds to one sentence.

For multiple text files, the codes should again be run in a loop. One large text file will then be

generated containing the sentences from all parsed vacancies. Since we put all sentences from all

vacancies in a single file, we attached the names of the corresponding text vacancy files to the

sentences to facilitate tracing back the source vacancy of each sentence. Thus, the resulting text file

containing the sentences has two columns: the first column contains the file names of the vacancies

from which the sentences in the second column were derived.

After applying sentence segmentation on the parsed vacancy in sample_nursing_vacancy.txt, the

sentences are written to the file sentencelines_nursing_vacancy.txt located in the folder

sentences_from_sample_vacancy. The next task is to import the sentences into R so that additional

preprocessing (e.g., text cleaning) can be performed. Other preprocessing steps that may be applied

are lower case transformation, punctuation removal, number removal, stopword removal, and

stemming. For this we use the tm package in R. This package automatically applies word

tokenization, so we do not need to create separate commands for that.

The sentences are imported as a data frame in R (see CL 4). Since the sentence is our unit of

analysis, hereafter we refer to these sentences as documents. The first column is temporarily ignored

since it contains only the names of the vacancy files. Since the sentences are now stored in a vector

(in the second column of the data frame), the VectorSource() function is used. The source determines

where to find the documents. In this case the documents are in mysentences[,2]. If the documents are

stored in another source, for example in a directory rather than in a vector, one can use DirSource().

For a list of supported sources, invoke the function getSources(). Once the source has been set, the

next step is to create a corpus from this source using the VCorpus() function. In the tm package,

corpus is the main structure for managing documents. Several preprocessing procedures can be

applied to the documents once collected in the corpus. Many popular preprocessing procedures

are available in this package. Apart from the existing procedures, users can also specify their

own via user-defined functions. The procedures we applied are encapsulated in the

transformCorpus()function. They include number, punctuation, and extra whitespace removal,

and lower case conversion. We did not apply stemming since previous work recommends not to use
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stemming for short documents (H.-F. Yu et al., 2012). The output consists of the cleaned sentences

in the corpus with numbers, punctuation, and superfluous whitespaces removed.

Text Transformation

CodeListing 5 details the structural transformation of the documents. The input in this step is the

output from the preceding step (i.e., the cleaned sentences in the training data). To quantify text

characteristics, we use the VSM because this is the simplest and perhaps most straightforward

approach to quantify text and thus forms an appropriate starting point in the application of TC (Frakes

& Baeza-Yates, 1992; Salton et al., 1975). For this transformation, the DocumentTermMatrix()
of the tm package has a function that may be used to build features based on the individual words

in the corpus.

The DocumentTermMatrix() function transforms a corpus into a matrix where the rows are

the documents, the columns are features, and the entries are the weights of the features in each

document. The default behavior of the DocumentTermMatrix() function is to ignore terms with

less than 3 characters. Hence, it is possible that some rows consist entirely of 0’s because after

preprocessing it may be the case that in some sentences all remaining terms have less than 3

characters. The output in this step is the constructed DTM. This matrix is then used as a basis for

further analysis. We can further manipulate the DTM, for instance by adjusting the weights.

We mentioned previously that for word features one can use raw counts as weights. The idea of

using raw counts is that the higher the count of a term in a document the more important it is in that

document. The DocumentTermmatrix() function uses the raw count as the default weighting

option. One can specify other weights through the weighting option of the control argument.

To take into account documents sizes, for example, we can apply a normalization to the weights

although in this case it is not an issue because sentences are short.

Let us assign a “weight” to a feature that reflects its importance with respect to the entire corpus

using the DF. Another useful feature of DF is that it provides us with an idea of what the corpus is

about. For our example the word with the highest DF (excluding stopwords) is plege (which

translates to “care”) which makes sense because nursing is about the provision of care. Terms that

are extremely common are not useful for classification.

Another common text analysis strategy is to find keywords in documents. The keywords may be

used as a heuristic to determine the most likely topic in each document. For this we can use the

TF-IDF measure. The keyword for each document is the word with the maximum TF-IDF weight

(ties are resolved through random selection). The codes in CL 6 compute the keyword for each

document. For example, the German keyword for Document 4 is aufgabenschwerpunkte which

translates in English to “task focal points.”

The final DTM can be used as input to dimensionality reduction techniques or directly to the

classification algorithms. The process from text preprocessing to text transformation culminated in

the DTM that is depicted in Figure 3.

Dimensionality Reduction

Before running classification algorithms on the data, we first investigate which among the features

are likely most useful for classification. Since the initial features were selected in an ad hoc manner,

that is, without reference to specific background knowledge or theory, it may be possible that some

of the features are irrelevant. In this case, we applied dimensionality reduction to the DTM.

LSA is a commonly applied to reduce the size of the feature set (Landauer et al., 1998). The

output of LSA yields new dimensions which reveal underlying patterns in the original features. The

new features can be interpreted as new terms that summarize the contextual similarity of the original
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Vacancy and the associated HTML file

Document by Term Matrix

Text Content

Sentences

Für unser GDA Wohnstift Hannover-Waldhausen mit über 109 Appartements für Senioren suchen wir 
zur Unterstützung unseres  eine 
Pflegefachkraft (m/w)in Teilzeit, zunächst befristet auf 1 Jahr,
mit der Option auf Verlängerung
Die Gesellschaft für Dienste im Alter mbH (GDA) ist ein führender Betreiber von 11 
Seniorenwohnanlagen in Deutschland und seit 40 Jahren erfolgreich tätig.
Sie sind ein mutiger, aufrechter Verfechter von Bewohnerinteressen?
Für Sie ist Alltagsgestaltung eine Kernaufgabe Ihrer täglichen Arbeit, neben Behandlungs - und 
Grundpflege?

data_10054 Für unser GDA Wohnstift Hannover-Waldhausen mit über 109 Appartements für 
Senioren suchen wir zur Unterstützung unseres  eine
data_10054 Pflegefachkraft (m/w)in Teilzeit, zunächst befristet auf 1 Jahr,
data_10054 mit der Option auf Verlängerung
data_10054 Die Gesellschaft für Dienste im Alter mbH (GDA) ist ein führender Betreiber von 
11 Seniorenwohnanlagen in Deutschland und seit 40 Jahren erfolgreich tätig.
data_10054 Sie sind ein mutiger, aufrechter Verfechter von Bewohnerinteressen?
data_10054 Für Sie ist Alltagsgestaltung eine Kernaufgabe Ihrer täglichen Arbeit, neben 
Behandlungs- und Grundpflege?

HTML Parsing

Sentence segmentation

Transformation

Figure 3. Illustration of text preprocessing from raw HTML file to document-by-term matrix.
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terms. Thus, LSA partly addresses issues of synonymy and in some circumstances, polysemy (i.e.,

when a single meaning of a word is used predominantly in a corpus). In R, the lsa package contains

a function that runs LSA.

To illustrate LSA we need additional vacancies. For illustrative purposes we used 11 job vacan-

cies (see the parsedvacancies folder). We applied sentence segmentation to all the vacancies and

obtained a text file containing 425 sentences that were extracted from the 11 vacancies (see the

sentences_from_vacancies folder). After applying preprocessing and transforming the sentences in

sentenceVacancies.txt into a DTM, we obtained 1079 features and retained 422 sentences. We

selected all sentences and ran LSA on the transposed DTM (i.e., the term-by-document matrix; see

CL7). We applied normalization to the term frequencies to minimize the effect of longer sentences.

Documents and terms are projected onto the constructed LSA space in the projdocterms
matrix. The entries in this matrix are readjustments of the original entries in the term-by-

document matrix. The readjustments take into account patterns of co-occurrence between terms.

Hence, terms which often occur together will roughly have the same values in documents where they

are expected to appear. We can apply the cosine measure to identify similar terms. Similarity is

interpreted in terms of having the same pattern of occurrence. For example, terms which have the

same pattern of occurrence with sicherstellung can be found by running the corresponding

commands in CL 8.

The German word sicherstellung (which means “to guarantee” or “to make sure” in

English) is found to be contextually similar to patientenversorgunng (patient care) and

reibungslosen (smooth or trouble-free) because these two words appeared together with

sicherstellung (to guarantee) in the selected documents. Another interesting property of LSA

is that it can uncover similarity between two terms even though the two terms may never be found to

co-occur in a single document. Consider for example the word koordinierung (coordination), we

find that kooperative (cooperative) is a term with which it is associated even though there is not

one document in the corpus in which the two terms co-occur. This happens because both terms are

found to co-occur with zusammenarbeit (collaboration), thus when either one of the terms occurs

then LSA expects that the other should also be present. This is the way LSA addresses the issue of

synonymy and polysemy. One can also find the correlation among documents and among terms by

running the corresponding commands in CL 8.

Since our aim is to reduce dimensionality, we project the documents to the new dimensions.

This is accomplished through the corresponding codes in CL 8. From the LSA, we obtain a total of

107 new dimensions from the original 1,079 features. It is usually not easy to attach natural

language interpretations to the new dimensions. In some scenarios, we can interpret the new

dimension by examining the scaled coefficients of the terms on the new dimensions (much like

in PCA). Terms with higher loadings on a dimension have a greater impact on that dimension.

Figure 4 visualizes the terms with high numerical coefficients on the first 6 LSA dimensions (see

CL 8 for the relevant code). Here we distinguish between terms found to occur in a task sentence

(red) or not (blue). In this way, an indication is provided of which dimensions are indicative for

each class (note that distinguishing between tasks and nontasks requires the training data, which is

discussed in greater detail below).

Another approach that we could try is to downsize the feature set by eliminating those features

that are not (or less) relevant. Such techniques are collectively called filter methods (Guyon &

Elisseeff, 2003). They work by assigning scores to features and setting a threshold whereby features

having scores below the threshold are filtered out. Both the DF and IDF can be used as scoring

methods. However, one main disadvantage of DF and IDF is that they do not use class membership

information in the training data. Including class membership (i.e., through supervised scoring

methods) ought to be preferred, as it capitalizes on the discriminatory potential of features (Lan

et al., 2009).
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For supervised scoring methods, we need to rely on the labels of the training data. In this example,

the labels are whether a sentence expresses task information (1) or not (0). These labels were

obtained by having experts manually label each sentence. For our example, experts manually

assigned labels to the 425 sentences. We applied three scoring methods, namely, Information Gain,

Gain ratio, and Symmetric Uncertainty (see CL 12). Due to the limited number of labeled docu-

ments, these scoring methods yielded less than optimal results. However, they still managed to

detect one feature that may be useful for identifying the class of task sentences, that is, the word

zusammenarbeit (collaboration), as this word most often occurred in task sentences. The output

from this step is a column-reduced matrix that is either the reduced version of the DTM or the matrix

with the new dimensions. In our example we applied LSA and the output is a matrix in which the

columns are the LSA dimensions.

Classification

The reduced matrix from the preceding section can be used as input for classification algorithms.

The output from this step is a classification model which we can then use to automatically classify

sentences in new vacancies. We have mentioned earlier that reducing dimensionality is an
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empirically driven decision rather than one which is guided by specific rules of thumb. Thus, we will

test whether the new dimensions lead to improvement in performance as compared to the original set

by running separate classification algorithms, namely support vector machines (SVMs), naive

Bayes, and random forest, on each set. These three have been shown to work well on text data

(Dong & Han, 2004; Eyheramendy et al., 2003; Joachims, 1998).

Accuracy is not a good performance metric in this case since the proportion of task sentences in

our example data is low (less than 10%). The baseline accuracy (computed from the model which

assigns all sentences to the dominant class), would be 90% which is high, and thus difficult to

improve upon. More suitable performance metrics are the F-measure (Ogura et al., 2011; Powers,

2011) and balanced accuracy (Brodersen, Ong, Stephan, & Buhmann, 2010). We use these two

measures here since the main focus is on the correct classification of task sentences and we also want

to control for misclassifications (nontask sentences put into the task class or task sentences put into

the nontask class).

In assessing the generalizability of the classifiers, we employed 10 times 10 fold cross-validation.

We repeated 10 fold cross-validation 10 times because of the limited training data. We use one part

of the data to train a classifier and test its performance by applying the classifier on the remaining

part and computing the F-measure and balanced accuracy. For the 10 times 10 fold cross-validation,

we performed 100 runs for each classifier using the reduced and original feature sets. Hence, for the

example we ran about 600 trainings since we trained 6 classifiers in total. All performance results

reported are computed using the test sets (see CL 10).

From the results we see how classification performance varies across the choice of features,

classification algorithms, and evaluation measures. Figure 5 presents the results of the cross-

validation. Based on the F-measure, random forest yielded the best performance using the LSA

reduced feature set. The highest F-measure obtained is 1.00 and the highest average F-measure is

0.40 both from random forest. SVM and naive Bayes have roughly the same performance. This

suggests that among the three classifiers random forest is the best classifier using the LSA reduced

feature set, and F-measure as the evaluation metric. If we favor the correct detection of task

sentences and we want a relatively small dimensionality then random forest should thus be favored

over the other methods. For the case of using the original features, SVM and random forest exhibit

comparable performance. Hence, when using F-measure and the original feature set, either SVM or

random forest would be the preferred classifier. The low values of the F-measures can be accounted

for by the limited amount of training data. For each fold, we found that there are about 3-4 task

sentences, thus a single misclassification of a task sentence leads to sizeable reduction in precision

and recall which in turn results in a low F-measure value.

When balanced accuracy is the evaluation measure, SVM and random forest consistently yield

similar performance when using either the LSA reduced feature set or the original feature set,

although, random forest yielded a slightly higher performance compared to SVM using the LSA

reduced features set. This seems to suggest that for balanced accuracy and employing the original

features, one can choose between SVM and random forest, and if one decides to use the LSA feature

set then random forest is to be preferred. Moreover, notice that the numerical value for balanced

accuracy is higher than F-measure. Balanced accuracy can be increased by the accuracy of the

dominant class, in this case the nontask class.

This classification example reveals the many issues that one may face in building a suitable

classification model. First is the central role of features in classification. Second is how to model the

relationship between the features and the class membership. Third is the crucial role of choosing an

appropriate evaluation measure or performance metric. This choice should be guided by the nature

of the problem, the objectives of the study, and the amount of error we are willing to tolerate. In our

example, we assign equal importance to both classes, and we therefore have slight preference for

balanced accuracy. In applications where the misclassification cost for the positive class is greater
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than that for the other class, the F-measure may be preferred. For a discussion of alternative

evaluation measures see Powers (2011).

Other issues include the question of how to set a cutoff value for the evaluation measure to judge

whether a model is good enough. A related question is how much training data are needed for the

classification model to generalize well (i.e., how to avoid overfitting). These questions are best

answered empirically through systematic model evaluation, such as by trying different training sizes

and varying the threshold, and then observing the effect on classifier performance. One strategy is to

treat this as a factorial experiment where the choices of training size and evaluation measures are

considered as factor combinations. In addition, one has to perform repeated evaluation (e.g., cross-

validation) and validation. Aside from modeling issues there are also practical concerns such as the

cost of acquiring training data and the interpretability of the resulting model. Classification models

with high predictive performance are not always the ones that yield the greatest insight. Insofar as

the algorithm is to be used to support decision making, the onus is on the researcher to be able to

explain and justify its workings.

Classification for Job Information Extraction

For our work on job task information extraction three people hand labeled a total of 2,072 out of

60,000 sentences. It took a total of 3 days to label, verify and relabel 2,072 sentences. From this total,
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132 sentences were identified as task sentences (note that the task sentences were not unique). The

proportion of task sentences in vacancy texts was only 6%. This means that the resulting training

data are imbalanced. This is because not all tasks that are part of a particular job will be written in the

vacancies, likely only the essential and more general ones. This partly explains their low proportion.

Since labeling additional sentences will be costly and time-consuming we employed a semisu-

pervised learning approach called label propagation (Zhu & Ghahramani, 2002). For the transfor-

mation and dimensionality reduction we respectively constructed the DTM and applied LSA. Once

additional task sentences were obtained via semisupervised learning we ran three classification

algorithms, namely, SVM, random forest, and naive Bayes. Instead of choosing a single classifier

we combined the predictions of the three in a simple majority vote. For the evaluation measure we

used the Recall measure since we wanted to obtain as many task sentences as possible. Cross-

validation was used to assess the generalization property of the model. The application of classifi-

cation resulted to identification of 1,179 new task sentences. We further clustered these sentences to

obtain unique nursing tasks since some sentences pointed to the same tasks.

Model Reliability and Validity

We set out to build a classification model that can extract sentences containing nursing tasks from

job vacancies. Naturally, a subsequent step is to determine whether the extracted task sentences

correspond to real tasks performed by nurses. An approach to establish construct validity is to use an

independent source to examine the validity of the classification. Independent means that the source

should be blind from the data collection activity, initial labeling procedure, and model building

process. Moreover, in case ratings are obtained, these should be provided by subject matter experts

(SMEs), that is, individuals who have specialist knowledge about the application domain. If found to

be sufficiently valid the extracted sentences containing job tasks may then be used for other purposes

such as in job analysis, identifying training needs or developing selection instruments.

We enlisted the help of SMEs, presented them the task sentences predicted by the text classifier,

and asked them to check whether the sentences are actual nursing tasks or not so as to be able to

compute the precision measure. Specifically, we compute precision as the ratio of the number of

sentence tasks confirmed as actual nursing tasks to the total number of sentences tasks predicted by

the model. We reran the classification algorithm in light of the input from the experts. The input is

data containing the correct label of sentences which were misclassified by the classifier. We per-

formed this in several iterations until there was no significant improvement in precision. This is

necessarily an asymmetric approach since we use the expert knowledge as the “ground truth.”

A more elaborate approach would be to compare the extracted tasks from vacancies to tasks

collected using a more traditional job analysis method, namely a task inventory. The task inventory

would consist of interviews and observations with SMEs to collect a list of tasks performed by

nurses. Based on this comparison, a percentage of tasks would be found in both lists, a percentage of

unique tasks would only be found in the task inventory, and a percentage of unique tasks would only

be found in the online vacancies. A high correspondence between the list of tasks collected by text

mining and the list of tasks collected in the task inventory (which would be considered to accurately

reflect the nursing job) could be taken as evidence for convergent validity. Conversely, one could

establish discriminant validity, or a very low correspondence with so-called bogus tasks that are

completely unrelated to the nursing job.

We apply the less elaborate approach by first training a classification model, making predictions

using the model, and presenting the task sentences to an SME. The expert judged whether the

sentences are actual nursing tasks or not. The precision measure was used to give an indication

of the validity of the model. The first round of validation resulted in a precision of 65% (precision

range: 0% to 100%) and we found out that some of the initial labels we assigned did not match the
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labels provided by the independent expert (that is some of the labels in the initial labels were judged

to be erroneous by the expert). In light of this, we adjusted the labels and conducted a second round

of validation in which precision increased to 89%. This indicates that we gained classification

validity in the classification model. A total of 91 core tasks were validated. Table 3 contains

validated tasks under the basic care and medical care clusters. In practice, it is difficult to obtain

100% precision since forcing a model to give high precision comes at the expense of sacrificing its

recall. High precision and low recall imply the possibility that many task sentences will be dismissed

though we can put more confidence on the sentences that are labeled as a task. As a last note, TC

models are seldom static, that is, as new documents arrive, we have to continually assess the

performance of the model on new observations and adjust our model if there is significant degrada-

tion in performance.

Conclusion

This article provided an overview of TC and a tutorial on how to conduct actual TC on the problem

of job task information extraction from vacancies. We discussed and demonstrated the different

steps in TC and highlighted issues surrounding the choices of features, classification algorithms, and

evaluation metrics. We also outlined ways to evaluate and validate the resulting classification

models and prediction from these models. TC is an empirical enterprise where experimentation

with choices of representation, dimensionality reduction, and classification techniques is standard

practice. By building several classifiers and comparing them, the final classifier is chosen based on

repeated evaluation and validation. Thus TC is not a linear process; one has to revisit each step

iteratively to examine how choices in each step affects succeeding steps. Moreover, classifiers

evolve in the presence of new data. TC is a wide research field and there are many other techniques

Table 3. Basic Care and Medical Care Core Nursing Tasks Extracted From Nursing Vacancies by Applying
Text Classification.

Task German Translation Task Cluster

Monitoring the patients’ therapy Überwachung der Therapie des Patienten Basic care
Caring for the elderly Pflege von älteren Menschen Basic care
Providing basic or general care Durchführung der Allgemeinen Pflege Basic care
Providing palliative care Durchführung von Palliativpflege Basic care
Caring for mentally ill patients Pflege von psychisch kranken Menschen Basic care
Caring for children Pflege von Kindern Basic care
Assisting at intake of food Hilfe bei der Nahrungsaufnahme Basic care
Supporting of rehabilitation Unterstützung der Rehabilitation Basic care
Providing holistic care Durchführung ganzheitlicher Pflege Basic care
Accompanying patients Begleitung von Patienten Basic care
Assisting at surgical interventions Assistenz bei operativen Eingriffen Medical care
Doing laboratory tests Durchführung von Labortests Medical care
Participating in resuscitations Beteiligung an Reanimationsmaßnahmen Medical care
Conducting ECG Durchführung von EKG Medical care
Collecting blood Durchführung der Blutabnahme Medical care
Preparing and administer intravenous drugs Vorbereitung und Verabreichung von intravenösen

Medikamenten
Medical care

Assisting at diagnostic interventions Assistenz bei diagnostischen Maßnahmen Medical care
Operating the technical equipment Bedienung der technischen Geräteschaften Medical care
Assisting at endoscopic tests Assistenz bei endoskopischen Maßnahmen Medical care
Assisting at examination Assistenz bei Untersuchungen Medical care
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that were not covered here. An exciting new area is the application of deep learning techniques for

text understanding (for more on this we refer the reader to Maas et al., 2011; Mikolov, Chen,

Corrado, & Dean, 2013; X. Zhang & LeCun, 2015).

TC models are often descriptive as opposed to explanatory in nature, in the sense that they

capture the pattern of features and inductively relate these to class membership (Bird, Klein, &

Loper, 2009). This contrasts with explanatory models whose aim is to explain why the pattern in

features leads to the prediction of a class. Nevertheless, the descriptive work can be of use for

further theory building too as the knowledge of patterns can be used as a basis for the development

of explanatory models. For example, in the part about feature selection we found out that the word

sicherstellung (to guarantee or to make sure) is useful in detecting sentences containing nursing

tasks. Based on this we can define the concept of “task verb,” that is, a verb that is indicative of a

task in the context of job vacancy. We could then compile a list of verbs that are “task verbs” and

postulate that task verbs pair with noun or verb phrases to form task sentences. Further trials could

then be designed to validate this concept and establish the relationship between features and

patterns. In this way, we are not only detecting patterns but we also attempt to infer their properties

and their relationship to class membership.

Whether a descriptive model suffices or whether an explanatory model is needed depends on the

objectives of a specific study. If the objective is accurate and reliable categorization (e.g., when one

is interested in using the categorized text as input to other systems) then a descriptive model will

suffice although the outcomes still need to be validated. On the other hand, if the objective is to

explain how patterns lead to categorization or how structure and form lead to meaning then an

explanatory model is required.

In this article we tried to present TC in such a manner that organizational researchers can

understand the underlying process. However, in practice, organizational researchers will often

work with technical experts to make choices on the algorithms and assist in tweaking and tuning

the parameters of the resulting model. The role of organizational researchers then is to provide the

research questions, help select the relevant features, and provide insights in light of the classifi-

cation output. These insights might lead to further investigation and ultimately to theory devel-

opment and testing.

Finally, we conclude that TC offers great potential to make the conduct of text-based organiza-

tional researches fast, reliable, and effective. The utility of TC is most evident when there is a need to

analyze massive text data, in fact in some cases TC is able to recover patterns that are difficult for

humans to detect. Otherwise, manual qualitative text analysis procedures may suffice. As noted, the

increased use of TC in organizational research will likely not only contribute to organizational

research, but also to the advancement of TC research, because real problems and existing theory

can further simulate the development of new techniques.
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