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ABSTRACT
Classification algorithms and document representation ap-
proaches are two key elements for a successful document
classification system. In the past, much work has been con-
ducted to find better ways to represent documents. How-
ever, most of the attempts rely on certain extra resources
such as WordNet, or they face the problem of extremely high
dimension. In this paper, we propose a new document repre-
sentation approach based on n-multigram language models.
This approach can automatically discover the hidden seman-
tic sequences in the documents under each category. Based
on n-multigram language models and n-gram language mod-
els, we put forward two text classification algorithms. The
experiments on RCV1 show that our proposed algorithm
based on n-multigram models alone can achieve the simi-
lar or even better classification performance compared with
the classifier based on n-gram models but the model size
of our algorithm is much smaller than that of the latter.
Another proposed algorithm based on the combination of n-
multigram models and n-gram models improves the micro-
F1 and macro-F1 values from 89.5% to 92.6% and 87.2% to
91.1% respectively. All these observations support the va-
lidity of our proposed document representation approach.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation; I.5.4 [Pattern Recognition]:
Applications—Text processing

General Terms
Algorithms, Performance, Experimentation

Keywords
N-Gram models, N-Multigram models, Document Represen-
tation, Text Classification
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1. INTRODUCTION
With the rapid explosion of text in digital form, auto-

matic text classification (TC) has been a hot research topic.
As a specific type of pattern classification tasks, TC has
two essential aspects. One is the classification algorithm
and the other is document representation. During the past
decades, a large number of categorization algorithms have
been proposed for TC such as näıve bayes [16], k-nearest
neighbor [28], support vector machines [9], boosting [24] and
rule learning algorithms [25]. However, the performance of
the classification systems also tightly depends on the docu-
ment representation.

Document representation refers to the selection of appro-
priate features to represent documents. A bag-of-word rep-
resentation scheme is widely used in text classification due
to its simplicity and efficiency [23]. Under this scheme, doc-
uments are represented by bags of terms, each term being
an independent feature of its own. A document can be rep-
resented as a vector. Each item in the vector corresponds to
an individual term and its value can be defined as a binary
indicator or the absolute frequency or more elaborated mea-
sures like TF*IDF [23]. Although bag-of-words has been ap-
plied in many Information Retrieval (IR) fields, it has many
shortcomings. For example, it can not reflect the relation-
ship between words, such as the order in which the terms
appear in the document and the syntax etc. Also, it can not
distinct the senses of a single word under different context
even if the senses are totally different.

One way to address the above problems is to use features
with coarser granularity, such as phrases to replace or aug-
ment single words. Intuitively, phrases can reduce the uncer-
tainty of the meaning of single words. For example, in “Java
Script”, the meaning of the word “Java” can only be “a type
of programming language” instead of “island of Indonesia”.
Some researchers manage to get phrases through the back-
ground knowledge base in form of simple ontologies such as
WordNet [17], while others apply Natural Language Pro-
cessing (NLP) methods together with some heuristic rules
to generate phrases [13]. Part of these approaches can ob-
tain certain improvement of the classification performance,
but others do not work. Another way to address the draw-
backs of bag-of-words representation is to use sense-based
features instead of word-based features [11]. To detect the
senses of a word, some extra resources, such as WordNet are
needed. There are also some other approaches which rep-
resent documents through hidden concepts discovered from
the documents or use language models, such as n-gram mod-
els [3, 1, 21].
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Most of the above methods either need extra resources
which may not be available for some text classification tasks,
or they need very large space for models. In this paper,
we enrich the document representation approaches for text
classification purposes by applying a language model named
n-multigram [6]. Our proposed approach is supposed to
overcome the disadvantages of the previous document repre-
sentation schemes. n-multigram can automatically discover
the hidden semantic sequences in the documents under each
category. A sequence is a frequently-occurring pattern in a
given collection which consists of several continuous words
in documents. It is not required to be a meaningful phrase,
although it always turns out to be. The lengths of the dis-
covered sequences are not necessarily same as in n-gram
which makes it more flexible. The sequences are discovered
through an Expectation-Maximization algorithm together
with Viterbi training. In the training process, the vocab-
ulary of the sequences and their probabilities are updated
iteratively to maximize the likelihood of the training data.

Based on n-multigram models we put forward a text clas-
sifier and compare it with the classifiers based on n-gram
models. The experiments on a subset of RCV1 dataset show
that the classifier based on n-multigram models can achieve
similar or even better performance compared to the clas-
sifier based on n-gram models in terms of both micro-F1
and macro-F1. However, the model size of our algorithm is
much smaller than that of the latter. Another classifier we
put forward is based on the combination of the n-multigram
models and the n-gram models. This classifier improves the
micro-F1 value from 89.5% to 92.6% and the macro-F1 value
from 87.2% to 91.1%.

The rest of this paper is organized as follows: In Section 2,
we present the related work on text representation. Then we
give some detailed descriptions about the language models
including n-gram models and n-multigram models in Section
3. In Section 4, we present the baseline classifier based on n-
gram models together with our proposed classifiers based on
n-multigram models and the combination of n-gram models
and n-multigram models. Section 5 describes the experi-
ments on RCV1 as well as some discussions. Finally, we
conclude our work in Section 6.

2. RELATED WORKS
Much work has been conducted to find out effective ap-

proaches to represent document for text classification. We
classify them into four groups: 1) Represent a document by
phrases [2, 18, 13]; 2) Use the senses of words to represent
a document [11, 22]; 3) Augment document representation
by hidden concepts in a document [3]; 4) Employ language
models, such as n-gram models [1, 21].

[2] and [18] represent documents by extracted phrases.
The phrase extraction depends on the background knowl-
edge embedded in existing ontologies such as WordNet, the
MeSH (Medical Subject Headings) Tree Structure Ontology.
In [2], Stephan et al. studied the representation approach on
three data corpus and the experimental results proved the
effectiveness of the approach. By extracting phrases based
on a large publicly available knowledge base called the Uni-
fied Medical Language System (UMLS), Yetisgen-Yildiz and
Pratt came to the same conclusion as in [2] on a dataset
composed of medicine documents [18].

In [13], Lewis used syntactic parsing to create indexing
phrases. These phrases correspond to pairs of words in one
of several specified syntactic relationships in the original
document (e.g. verb and head noun of subject, noun and
modifying adjective, etc.). The sparseness of the phrases,
that is, the large number of different phrases and the low
frequency of occurrence of individual phrases makes it hard
to estimate the relative frequency of phrases, which further
limits the contribution of the syntactic phrase representa-
tion. What is more, a syntactic phrase representation is
highly redundant (there are large numbers of phrases with
essentially the same meaning), and noisy (since redundant
phrases are not assigned to the same set of documents). To
address these weaknesses, Lewis tried to cluster the phrases
to recognize groups of redundant phrases and replace them
with a single one. While the phrase clusters can improve per-
formance, the improvement is not significant. Lewis ascribes
the poor performance to the formation of phrases through
syntactic parsing and the poor semantics of the phrases. In
this paper, we propose a fully automatic approach to gener-
ate semantic phrases. We do not limit the length of a phrase
to two as Lewis did and there is no constraint on the rela-
tionship between the words in the phrases. The discovered
phrases are supposed to indicate the document content more
precisely than single words.

Another attempt for document representation is to use
sense-based features instead of word-based features [11, 22].
While words are immediately observable within a document,
senses (meanings) are hidden. For instance, when the word
“apple” appears in a document, it is not obvious whether it
means a kind of fruit or an IT company. Therefore, a proce-
dure is needed for recovering the senses from the words used
in a specific context, which itself is a hot research problem:
Word Sense Disambiguation [4, 8]. In [11], Kehagians et al.
worked on a subset of the annotated Brown Corpus in which
the sense of each word in the document is known. The sense
space is defined by WordNet.

Kehagians et al. compared four document representation
approaches. The first approach named Word Boolean(WB)
is to represent a document by a vector in which each item
is 0 or 1 to indicate whether the term appears in the doc-
ument. The second approach named Word Frequency(WF)
represents a document by a vector with each item being the
number of times the word appear in the document. The
other two approaches named Sense Boolean(SB) and Sense
Frequency(SF) are computed in an exactly analogous man-
ner to WB and WF, making use of senses rather than words.
By testing the four representation approaches with several
algorithms, the authors conclude that the sense-based repre-
sentation approaches do not present an attractive alternative
to word-based approaches.

Instead of converting each word to its sense and repre-
senting a document by the senses, Ramakrishnan and Bhat-
tacharyya represent a document by a vector of ranked synsets
[22]. More information about synsets can be found in [17].
To get the ranked synsets, they construct a semantic graph
for each document based on the words in the document and
the synsets in WordNet as well as the lexical relations be-
tween the synsets. After that, some graph-based ranking
algorithms such as pagerank [20] are employed to rank the
synsets. The experiments on the 20 Newsgroups dataset
show that the representation approach based on certain rank-
ing algorithms can improve the classification performance.
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Cai and Hofmann proposed to use concept-based docu-
ment representation generated through Probabilistic Latent
Semantic Analysis (pLSA) to supplement word- or phrase-
based features [3]. The overall approach can be decomposed
into three stages: In the unsupervised learning stage, pLSA
is used to derive concepts and to create semantic document
representations over these concepts. In the second step,
weak hypotheses are constructed based on both term fea-
tures and concept features. The third stage is the combina-
tion stage, which uses AdaBoost to combine weak hypothe-
ses and to integrate term-based and concept-based informa-
tion. The experiments on two standard document collec-
tions from different domains support the validity of their
approach.

Last but not least existing work to represent the docu-
ments is by language models, specifically speaking, by n-
gram models, which can exploit the relationship between
words. N-gram models model the language with the proba-
bility distribution of one word coming after the previous n-1
words. N-gram models can not only represent documents,
it can also be directly used to classify documents as shown
in [1, 21].

Although the approaches given above can make up for the
bag-of-words representation scheme to some extent, there is
still much space for improvement: (1) for the first two kinds
of approaches, most of them need extra resources such as
WordNet, which limit their generalization. For example,
we can depend on WordNet to handle collections in En-
glish. However, there are many collections in some languages
which have no counterparts of WordNet. (2) in the first two
kinds of approaches, the phrases are generated without con-
sidering the labels of the documents. So the ability to dis-
criminate documents between categories for the purpose of
classification can be improved. (3) a complex framework is
needed to leverage the concept-based document representa-
tion in [3]. What is more, the concepts are extracted with-
out considering the category information, which is actually
useful for classification. (4) n-gram can improve the classifi-
cation performance as shown in [21, 1]. However, the size of
the vocabulary of grams in n-gram is huge due to the com-
bination. Then a large amount of training data are needed
to obtain a creditable model.

3. N-GRAM AND N-MULTIGRAM MODELS
Language can be viewed as a stream of words put out by a

source. Due to the syntactic and semantic constraints, the
words are not independent. Many language models have
been proposed to catch the characteristics of natural lan-
guages. In this part, we will describe two kinds of lan-
guage models which can serve as document representation
approaches. In the next part, we would introduce two text
classifiers based on these models separately together with a
novel classifier based on the combination of the two kinds of
models.

3.1 n-gram models
N-gram models are a kind of widely used language models.

It assumes that the probability of one word in a document
depends on its previous n−1 words. Given a word sequence
W = w1w2, . . . , wT , the probability of W can be calculated
as follows by the chain rule of probability:

p(W ) =
T

Π
i=1

p(wi|w1...wi−1) (1)

Under n-gram models’ assumption, the only words rele-
vant to predicting p(wi|w1...wi−1) are the previous n-1 words,
so p(s) can be written as:

p(W ) =
T

Π
i=1

p(wi|wi−n+1...wi−1) (2)

p(wi|wi−n+1...wi−1) can be estimated from a corpus with
Maximum Likelihood criteria. That is:

p(wi|wi−n+1...wi−1) =
c(wi−n+1...wi)

c(wi−n+1...wi−1)
(3)

where c(·) denotes the number of occurrence.
In real-world applications, p(wi|wi−n+1...wi−1) is often

under-estimated due to the data sparseness in a training
data set. For example, many grams are assigned zero prob-
ability when they do not appear in the training data. This is
unreasonable since the zero count may be generated because
of the insufficient data. To solve this problem, some mecha-
nisms are indispensable to assign non-zero probability of po-
tentially missing n-grams. The widely used methods include
linear interpolation or back-off estimators. Linear interpo-
lation involves an EM procedure to optimize the weight for
each component [5]. Back-off models are relatively simple
and are used in this paper, as employed by [21].

In back-off models, the smoothing function is as follows:

p(wi|wi−n+1...wi−1)

=

�
�
p (wi|wi−n+1...wi−1), if c(wi−n+1...wi) > 0
β(wi−n+1...wi−1) × p(wi|wi−n+2...wi−1) otherwise

(4)
where

�
p (wi|wi−n+1...wi−1) =

discounted c(wi−n+1...wi)

c(wi−n+1...wi−1)
(5)

is the discounted probability and β(wi−n+1...wi−1) is a nor-
malization constant calculated to be:

β(wi−n+1...wi−1)

=

1 − �
x:c(wi−n+1...wi−1x)>0

�
p(x|wi−n+1...wi−1)

1 − �
x:c(wi−n+1...wi−1x)>0

�
p(x|wi−n+2...wi−1)

(6)

An n-gram is first matched against the language model
to see if it has been observed in the training corpus. If
that fails, the n-gram is then reduced to an n-1-gram by
shortening the context by one word. The discounted prob-
ability (5) can then be computed using different smooth-
ing approaches. A properly smoothing method can not only
help prevent zero probabilities, but also improve the estima-
tion accuracy of the language model. The standard smooth-
ing approaches include linear smoothing [19, 27], absolute
smoothing [19], Good-Turing smoothing [10] and Witten-
Bell smoothing [27]. In this paper, we just consider the last
two methods for simplicity.
Good-Turing smoothing: Good-Turing smoothing dis-
counts the frequency of r by GTr = (r + 1)nr+1/nr where
nr denotes the number of events which occur exactly r times
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in training data [19]. The discounted probability is calcu-
lated as [10]:

�
p(wi|wi−n+1...wi−1) =

GTc(wi−n+1...wi)

c(wi−n+1...wi−1)
(7)

Witten-Bell smoothing: Witten-Bell smoothing is very
similar to Laplace smoothing [15], except it reserves prob-
ability mass for out of vocabulary (OOV) values, whereas
Laplace smoothing does not. Here the discounted probabil-
ity is calculated as:

�
p (wi|wi−n+1...wi−1)

=
c(wi−n+1...wi)

c(wi−n+1...wi−1) +D(wi−n+1...wi−1)
(8)

whereD(wi−n+1...wi−1) is the number of distinct words that
can follow wi−n+1...wi−1 in the training data [27]. In the
uni-gram model, this corresponds to the size of vocabulary.

3.2 n-multigram models
While in n-gram models, the statistical dependencies be-

tween words are of fixed length n along the whole sentence,
in n-multigram models, the dependencies are of variable
lengths. n-multigram models assume that a sentence is a
concatenation of independent variable-length sequences of
words and the number of words in each sequence is not neces-
sarily same but is at most n. The parameters of n-multigram
models consist of the probability of each sequence. An es-
timation of the set of parameters from a training corpus W
can be obtained through a Maximum Likelihood (ML) esti-
mation from incomplete data [7], where the observed data
is the string of words W, and the unknown data is the seg-
mentation S underlying the string of words. Thus iterative
ML estimation of the parameters can be computed through
an EM algorithm. The algorithm is given in Algorithm 1.

Algorithm 1 : EM algorithm for parameter estimation

Step1: Collect all possible sequences from the training
text; remove the sequences appearing strictly less than a
given number of times c0 to avoid overfitting; calculate
their initial probability as their relative frequency;

Step2a: E-step: to segment the training data into se-
quences according to the estimated probability distribu-
tion;

Step2b: M-step: to estimate the probability distribution
from the segmentation; sequence probabilities falling un-
der a threshold p0 are set to 0, except those of length 1
which are assigned a minimum probability p0;

Step2c: go to step2a if the likelihood of the training
text can be improved or the number of iterations has not
reached the predefined number K;

In Algorithm 1, Step 1 initializes the parameters; Step2a
is the E-step of the EM algorithm which focuses on the seg-
mentation of training text into sequences. When segmenting
the text, we need to calculate the likelihood; Step2b is the
M-step which estimates the parameters from the segmenta-
tion obtained in Step2a. Now we give the explanation of the
key components of this algorithm.

Likelihood Calculation: Let W = w1w2...wT denote a
string of words, and S denote a possible segmentation which
contains q sequences of words: S = s1s2...sq . The n-multigram

computes the joint likelihood L
′
(W,S) of the text stream

associated with the segmentation S as the product of the
probabilities of the successive sequences:

L
′
(W,S) =

�
t=1..q

p(st) (9)

Denoting as S the set of all possible segmentations of W
into sequences of words, the likelihood of W is :

L(W,S) =
�

S∈{S}
L

′
(W,S) (10)

Algorithm 2 : Viterbi for segmentation

Initialization:
δ(0) = 1;ψ(0) = 0
//δ(t) denotes the maximal likelihood of w1w2...wt based
on the previously estimated probability distribution of se-
quences.
//ψ(t) refers to the last segmenting position when we ob-
tain δ(t)

Iteration:

δ(t) = max
l=1...n

δ(t−l)p([w(t−l+1)...w(t)])

(11)ψ(t) = t−arg max
l=1..n

δ(t−l)p([w(t−l+1)...w(t)])

(12)
Termination:
L∗(W ) = max

S∈{S}
L

′
(W,L) = δ(T )

i(T ) = ψ(T )

Backtracking:
i(k) = ψ(i(k + 1) − 1)
//i(k) represents the starting position of each sequence.

Segmentation: Given a stream of text W = w1w2...wT ,
we can segment it in different ways. The number of the
segmentations can be up to O(2T ) . In fact, among the set
of all possible segmentations of W, one segmentation usually
contributes most of the likelihood of W according to our
observation. We can use Viterbi algorithm to get the most
likely segmentation. The algorithm is given in Algorithm 2.

Estimation: After getting the segmentations of the train-
ing text, we can estimate the parameters in two ways. One
is to take all the segmentations into consideration. Another
one is to consider the most likely segmentation only. For
the former approach, the parameters can be estimated as
follows:

p(si)
(k+1) =

�
S∈{S}

c(si, S) × L
′
(S|W ; Θ(k))

�
S∈{S}

c(S) × L′(S|W ; Θ(k))
(13)

c(si, S) represents the number of occurrence of sequence si

in the segmentation S ; c(S) represent the total number of

sequences in S ; Θ(k) is the parameters obtained at iteration

k; L
′
(S|W ; Θ(k)) is the conditional likelihood of the segmen-

tation S given W, at iteration k.
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When considering the most likely segmentation alone, we
can simplify (13) as follows:

p(si)
(k+1) =

c(si, S
∗(k))

c(S∗(k))
(14)

S∗(k) denotes the most likely segmentation based on the
parameter obtained in iteration k.

As shown in [6], the performances of the two above ap-
proaches are similar. So in this paper, we adopt the second
one which is much simpler.

To calculate the probability of a test document under a
given n-multigram model, the main problem we concern is
how to handle unknown words which do not appear in the
training data. In this paper, we first scan the test document
to find out the number of the unique unknown words (in-
stead of the number of occurrence of the unknown words)
and then assign each of them the probability p0. After that,
we normalize the probability distribution to make sure the
summation of all sequences’ probability is 1.

4. CLASSIFIERS BASED ON LANGUAGE
MODELS

4.1 n-gram models based classifier
It is straightforward to construct text classifiers based on

the n-gram models [21]. Given an n-gram model, it is easy to
get the probability of a document to indicate the likelihood
that the document is generated by this model. After training
the n-gram model on the training data in each category, we
can use the model to classify a test document d by:

c∗ = arg max
c∈C

{p(c|d)} (15)

By using Bayes rule, this can be written as:

c∗ = arg max
c∈C

{p(c)p(d|c)}

= arg max
c∈C

{p(c)
T�

i=1

p(wi|wi−n+1...wi−1, c)}

= arg max
c∈C

{p(c)
T�

i=1

pc(wi|wi−n+1...wi−1)}
(16)

Here, p(d|c) is the likelihood of d under category c, which
can be computed by an n-gram language model. The prior
p(c) can be estimated from training data or can be used
to incorporate more assumptions. pc(wi|wi−n+1...wi−1) is
estimated from the training data in category c using a back-
off model introduced in section 3.1.

Thus the classifier based on n-gram models overall is to
learn a separate back-off language model for each category
by training on a data set from that category. Then, to cat-
egorize a new text d, we supply d to each language model,
evaluate the likelihood of d under the model, and pick the
winning category according to Equation (16). In this paper,
two smoothing methods are employed, one is good-turing
smoothing and the other is witten-bell smoothing. We use
CNG and CNW to represent the classifiers based on n-gram
models with these two smoothing methods respectively.

4.2 n-multigram models based classifier
Just as n-gram models can act as text classifiers, n-multigram

models can be classifiers also. The frameworks of them are
similar. During the training stage, we construct a separate

During segmentation After segmentation
b1(s) CMB11 CMB12

b2(s) CMB21 CMB22

Table 1: Denotations of the four variations of CM

n-multigram model for each category by training on the text
from that category. Given a test document, we calculate its
probability under each model, and assign the category under
which the document has the largest probability to it. When
calculating the probability under a model, we first find out
the most likely segmentation of the test document using the
viterbi algorithm shown in algorithm 2 and then compute
the probability according to equation (9). CM is used to
denote the classifier based on n-multigram models.

By intuition, the longer a sequence, the more specific its
meaning and the more powerful its discriminative ability
for text classification. So we put forward two variations of
CM to give bonus to longer sequences. We can give the
bonus when doing segmentation by changing equation (11)
to equation (17) which will affects the segmentation results
and tends to produce longer sequences. We can also give
bonus after the segmentation by changing equation (9) to
(18) which just adds bonus to the calculated likelihood. In
equation (17) and (18), b(s) is the bonus function of s. Two
bonus functions are given in equation (19) and (20).

δ(t) = max
l=1...n

δ(t−l)p([w(t−l+1)...w(t)])∗b(w(t−l+1)...w(t))

(17)

L
′
(W,S) =

�
t=1..q

p(st)b(st) (18)

b1(s) = e|s|∗|s| (19)

b2(s) = e|s|∗|s|∗|s| (20)

Now we prove the correctness that b1(s) will give bonus to
longer sequences. The proof of b2(s) is similar. Given a se-

quence s, the bonus for it is e|s|∗|s|. If s is segmented into
s1, s2, the bonus for them are e|s1|∗|s1| and e|s2|∗|s2| respec-
tively. It is easy to see that e|s|∗|s| = e(|s1|+|s2|)∗|(|s1|+|s2|) is
larger than e|s1|∗|s1| ∗ e|s2|∗|s2| which is e|s1|∗|s1|+|s2|∗|s2| .

It is obvious that b2(s) gives much more bonus to the
longer sequences than b1(s) . Depending on the time we give
the bonus (during or after segmentation) and the function of
the bonus, we get four variations of the classifier based on n-
multigram, the denotations of the variations is summarized
in Table 1.

4.3 Classifier based on the combination
of n-gram and n-multigram models

In this section, we will put forward a classifier based on
the combination of the n-multigram models and the n-gram
models. The workflow of the proposed classifier is shown
in Figure 1. From the above description, we can see that
the n-multigram models can detect the frequent and usu-
ally meaningful sequences in the text. So it is natural to
use the sequences generated by n-multigram models to rep-
resent the documents instead of the single words. Then a
document changes from a sequence of words to a sequence
of “sequences”. From the text represented by sequences,
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we can construct classifiers based on n-gram models. Af-
ter that, we can apply the classifiers on the test documents
which have been converted to sequences according to the
corresponding n-multigram models.

Specifically, similar to n-gram and n-multigram based clas-
sifiers, the classifier based on the combination of n-gram and
n-multigram models detects the label of a test document as
follows:

c∗ = arg max
c∈C

{p(c|d)} = arg max
c∈C

{p(d|c) ∗ p(c)} (21)

where:

p(d|c) ∝ p(d′|cn−gram) (22)

We use cn−Multigram to denote the n-multigram model con-
structed from the documents of category c and cn−gram to
denote the n-gram model trained on the segmented results

of the training documents according to cn−Multigram. d
′

is
the most likely segmentation of d according to cn−Multigram,

which is essentially a sequence of “sequences”. p(d
′ |cn−gram)

is the probability of d
′

under cn−gram . For simplicity, we
set n = 3 and employ the Witten-Bell smoothing approach
when training the n-gram models on the training data rep-
resented by sequences. We use CM+N to represent the clas-
sifier based on the combination of n-multigram models and
n-gram models.
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Figure 1: Framework of the classifier based on the
combination of n-gram and n-multigram models.

4.4 Discussions of classifiers
Different categories have different usage of words and ex-

pressions. For example, among the several different disci-
plines in computer science, “data mining”, as a sequence,
appears more frequently in “Artificial Intelligence” than in
“Network” while “data transition” behaves oppositely. These
sequences are more discriminative when we perform text
classification. We can label a document with the sequence
“data transition” as “Network” with higher confidence than
to label a document with the single word “data” or “transi-
tion” or even both of the two words which appear in different

parts of the document. However, it is hard to construct the
vocabulary of the specific sequences for each category man-
ually. So in this paper, we propose to use n-multigram mod-
els to automatically generate such sequences and construct
classifiers based the generated sequences.

N-gram models capture the specialty of natural language
from another aspect, that is the occurrence of a word de-
pends on its previous words. Traditionally, n-gram models
are trained on single words. In this paper, we propose a
novel classifier by applying the n-gram models on the se-
quences produced through n-multigram models. This clas-
sifier is supposed to perform better than the classifiers based
on n-gram models and n-multigram models separately.

From the description of the training algorithm of the n-
multigram models, it is easy to see that the time complexity
for training classifiers based on n-multigram models is O(K×
M × T × n) where K is the number of iteration; M is the
number of training documents; T is the average length of the
training documents in terms of words and n is the maximum
length of the generated sequences. The time complexity for
training classifiers based on the n-gram models is similar
to that for the n-multigram models based classifier except
that n-gram models training do not need run K iterations.
However, the back-off step to improve the accuracy of n-
gram models takes extra time. The training time for the
classifier based on the combination of the n-gram models and
the n-multigram models is about the sum of the complexity
for training classifiers based on each single model. The time
complexity for testing under each kind of classifiers is similar
to the training complexity. The space complexity of the
three classifiers is at the same order in theory. However, in
reality, the model size of CM is much smaller than that of
CN and the sizes are similar for CN and CM+N .

5. EXPERIMENT
As shown in [21], the classifier based on n-gram models

is one of the most promising classifiers for text classifica-
tion which beats Support Vector Machine (SVM) on some
corpora. Therefore, in this paper, we take n-gram as the
baseline and compare it with our proposed classifiers in two
aspects: (1) we compare it with the classifier based on n-
multigram models; (2) we compare it with a classifier based
on combination of n-gram models and n-multigram models.

5.1 Dataset
Our experiments are conducted on RCV1, a new bench-

mark collection for text classification research [14]. RCV1 is
drawn from one of the online databases produced by Reuters
which is the largest international text and television news
agency. RCV1 was intended to consist of all and only En-
glish language stories produced by Reuters journalists be-
tween August 20, 1996, and August 19, 1997. The stories
cover the range of content typical of a large English language
international newswire. They vary from a few hundred to
several thousand words in length. The number of documents
contained in RCV1 is about 35 times more than that of the
popular Reuters-21578 collection and its variants [12].

In this paper, in order to speed up our experiments, we
select 10% documents from the top 10 categories which re-
sults in 47042 documents. Table 2 shows the number of the
sampled documents in the three largest categories and three
smallest categories. In order to reduce the uncertainty of
data split, a 3-fold cross validation procedure is applied in
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our experiments. That is, we randomly split the documents
into 3 folds and pick up one fold as the test data and the
other two folds as the training data each time.

Table 2: The number of sampled documents in the
three largest and smallest categories.

Number of Documents
19433

Three largest categories 7977
5271
2158

Three smallest categories 2102
1978

5.2 Evaluation metric
We employ the standard measures to evaluate the per-

formance of text classification, i.e. precision, recall and
F1-measure [26]. Precision (P) is the proportion of actual
positive class members returned by the system among all
predicted positive class members returned by the system.
Recall (R) is the proportion of predicted positive members
among all actual positive class members in the data. F1 is
the harmonic average of precision and recall which is defined
as F1 = 2 × P ×R/(P +R).

To evaluate the average performance across multiple cat-
egories, there are two conventional methods: micro-average
and macro-average. Micro-average gives equal weight to ev-
ery document, while macro-average gives equal weight to
every category, regardless of its frequency. Statistical signif-
icance tests are useful in order to verify to which extent the
claim of an improvement can be backed by the observations
on the test set. For the experiments we report in this paper,
we focused on a pair-difference t-test on an improvement of
individual F1 scores for the different classes that have been
evaluated in each experiment. By convention, we say that a
difference between means at the 95% level is “significant”, a
difference at 99% level is “highly significant” and a difference
at 99.9% level is “very highly significant”.

5.3 Preprocessing
Some preprocessing steps are applied. All the documents

are converted into lower-case. Each document is tokenized
with a stop-word remover and Porter stemming. To speed
up the classification, a simple feature selection method, known
as “document frequency thresholding (DF)” [29], is applied
in our experiments, where we only select the top 60000
words.

5.4 An example of the output of the n-multigram
models

Before coming to the details of the experiment, we provide
an example to illustrate the output of n-multigram mod-
els, which is helpful to obtain some straightforward ideas of
the advantages of n-multigram models. Take the sentence
“President Guntis Ulmanis arrived in France on a two-day
official visit, whose goal is to draw attention to security is-
sues in the Baltic region.” as an example, after removing
the stopwords and stemming, we apply n-multigram models
to segment the sentence into sequences and the result looks
like “/ presid gunti ulmani / arrive / franc / dai offici visit
/ goal / draw attent / secure issu / baltic / region /”. As

we can see, the resulted sequences are meaningful, such as
“President Guntis Ulmanis (presid gunti ulmani)” and “se-
curity issues (secure issu)”. This case shows the ability of
the n-multigram models to generate reasonable text repre-
sentations.

5.5 Results and analysis
Table 3 and Table 4 show the classification performance

of different classifiers in terms of micro-F1 and macro-F1
respectively. The best result for each classifier is in bold.
For the classifiers based on n-multigram models, besides the
maximum length of sequences ( n ), there are three param-
eters which need tuning. They are the occurrence threshold
( c0 ), the probability threshold ( p0 ) and the number of
iteration ( K ). The parameters are set as follows: c0 = 5,
p0 = 10−7 and K = 10, for the results shown in Table 3 and
Table 4. We will study the parameters in next section.

Table 3: Classification performance of different clas-
sifiers in terms of micro-F1

n = 1 n = 2 n = 3 n = 4
CNG 0.856 0.890 0.892 0.889
CNW 0.857 0.891 0.895 0.890
CM 0.855 0.888 0.891 0.893
CMB11 0.855 0.890 0.892 0.895
CM+N 0.859 0.921 0.926 0.920

Table 4: Classification performance of different clas-
sifiers in terms of macro-F1

n = 1 n = 2 n = 3 n = 4
CNG 0.837 0.865 0.868 0.863
CNW 0.838 0.871 0.872 0.869
CM 0.837 0.867 0.868 0.870
CMB11 0.837 0.864 0.863 0.863
CM+N 0.840 0.908 0.911 0.909

From the above tables, we can see that CNG and CNW

do not make much difference which means that the two
smoothing approaches, good-turing smoothing and witten-
bell smoothing, behave similarly when they are applied for
text classification. The same observation is shown in [21].

The results obtained by CM and CMB11 are similar when
the length of the multigram is changed from 1 to 4, although
CMB11 gets some minor improvement in terms of micro-
F1 in some cases and CM outperforms CMB11 in terms of
macro-F1 in some cases. The reason to explain this observa-
tion is as follows: the categories with relatively more train-
ing data tend to generate more sequences which may coin-
cide with those generated in the categories with less training
data. When we give bonus to longer sequences, some test
documents at the boundary of a large category and a small
category will have higher probability to be classified into the
larger categories. Though this bias can give the test docu-
ments at the boundary which are from the larger categories
with right labels and improve the micro-F1 value but the
wrong decision on the test documents which are from the
relatively smaller categories will affect the F1 values of the
smaller categories more obviously, which then reduces the
macro-F1 value.

As shown in Table 3 and Table 4, the classifiers based on
the n-multigram models achieve the similar or even better
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performance compared to the classifiers based on the n-gram
models. This observation is encouraging since the model
size for the former classifiers is much smaller than that of
the latter ones.

From Table 3 and Table 4, we can see that CM+N , the
classifier based on the combination of n-gram models and n-
multigram models outperforms both the classifiers based on
n-gram models (CNG and CNW ) and n-multigram models
(CM and CMB11) respectively. CM+N improved the micro-
F1 from 0.895 to 0.926 and the macro-F1 from 0.872 to 0.911
when compared to the best result obtained by classifiers
based on a single model only. Using the t-test, we find that
the difference between CM+N and other classifiers is “very
highly significant” at α = 0.0003 .

Table 5: Number of items for each classifier
n = 1 n = 2 n = 3

CNW 60000.0 229848.6 373656.7
CM 60000.0 69034.5 72670.2
CM+N 60000.0 265770.4 394064.7

The model size (in terms of the number of items) for CM

(a n-multigram models based classifier) is much less than
that of CNW (an n-gram models based classifier). The for-
mer is only 30.0% of the latter when n equals to 2 and 19.4%
when n equals to 3. The model size of CM+N is larger than
that of CNW , but it is only increased by 15.6%. From Table
5, we can also see that for CM , the increase of the model
size when we change n from 2 to 3 is much smaller than
that when we change n from 1 to 2. Actually, when we in-
crease n to some larger values, the size of the model does
not change obviously. The reason may be that two-word
and three-word sequences are common in English but the
sequences with four or more words are rare. However, when
we increase the parameter n of CNW , the model size will be
increased dramatically.

5.6 Parameters Tuning
For the classifiers based on n-multigram models, four pa-

rameters need tuning. They are the maximum length of
sequences (n), the occurrence threshold ( c0 ), the probabil-
ity threshold ( p0 ) and the number of iteration ( K ). For
the variations of the classifier based on n-multigram models,
we also need to test the different kinds of bonus functions.

Table 6 and Table 7 show the classification performance
of CM and its variations when c0 varies from 1 to 15 in
terms of micro-F1 and macro-F1 respectively. The values
for p0 and K are fixed: p0 = 10−7, K = 7. The best results
for each case are in boldface. From the tables, we can see
that nearly all the classifiers achieve their peak performance
when c0 equals to 5. The reason lies in the fact that when
c0 is too small, too many sequences which may be noise
are kept. However when c0 is too large, some meaningful
sequences will be removed. In both cases, the classification
performance will be reduced.

Table 8 and 9 show the classification performance of CM

and its variations when p0 varies from 10−5 to 10−9 in terms
of micro-F1 and macro-F1. The values of c0 and K are fixed:
c0 = 5, K = 7. p0 has two roles. One is to filter sequences
whose probabilities fall below p0, which can reduce the im-
pact of noises. The other role is to guess the probability of
unknown words at test stage. From the tables, we can see

Table 6: Classification performance of CM and its
variations in terms of micro-F1 when c0 varies

c0 n = 1 n = 2 n = 3 n = 4

CM

1 0.855 0.870 0.882 0.879
5 0.855 0.888 0.891 0.893
10 0.855 0.883 0.886 0.887
15 0.855 0.882 0.885 0.855

CMB11

1 0.855 0.866 0.880 0.880
5 0.855 0.890 0.892 0.895
10 0.855 0.885 0.887 0.887
15 0.855 0.883 0.885 0.886

CMB12

1 0.855 0.866 0.879 0.880
5 0.855 0.891 0.891 0.894
10 0.855 0.885 0.887 0.888
15 0.855 0.883 0.885 0.885

CMB21

1 0.855 0.860 0.877 0.875
5 0.855 0.877 0.878 0.875
10 0.855 0.873 0.875 0.873
15 0.855 0.873 0.872 0.870

CMB22

1 0.855 0.860 0.875 0.874
5 0.855 0.876 0.877 0.874
10 0.855 0.873 0.874 0.872
15 0.855 0.873 0.872 0.869

Table 7: Classification performance of CM and its
variations in terms of macro-F1 when c0 varies

c0 n = 1 n = 2 n = 3 n = 4

CM

1 0.837 0.840 0.857 0.853
5 0.837 0.867 0.868 0.870
10 0.837 0.860 0.861 0.862
15 0.837 0.857 0.860 0.859

CMB11

1 0.837 0.836 0.854 0.854
5 0.837 0.864 0.863 0.863
10 0.837 0.858 0.858 0.857
15 0.837 0.856 0.857 0.857

CMB12

1 0.837 0.836 0.853 0.853
5 0.837 0.863 0.863 0.861
10 0.837 0.858 0.857 0.858
15 0.837 0.856 0.857 0.856

CMB21

1 0.837 0.830 0.849 0.844
5 0.837 0.846 0.842 0.840
10 0.837 0.839 0.838 0.834
15 0.837 0.840 0.835 0.832

CMB22

1 0.837 0.831 0.846 0.843
5 0.837 0.847 0.843 0.840
10 0.837 0.839 0.837 0.834
15 0.837 0.839 0.835 0.832

that for almost all the classifiers, they reach their best per-
formance when p0 equals to 10−7. In fact, when p0 varies
from 10−7 to 10−8, the performance does not change much.
Such a wide range makes it easy to tune the parameter in
real applications.

From Table 6 to Table 9, we can see that for the vari-
ation of CM , the time when we give the bonus (during or
after segmentation) does not make much difference. But
the bonus function impacts the classification results obvi-
ously. Compared to the function shown in equation (19), the
function shown in equation (20) reduces the performance in
most cases. This observation indicates that when we give
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Table 8: Classification performance of CM and its
variations in terms of micro-F1 when p0 varies (the
log value of p0 is shown)

log(p0) n = 1 n = 2 n = 3 n = 4

CM

-5 0.491 0.564 0.570 0.569
-6 0.824 0.872 0.875 0.877
-7 0.855 0.888 0.891 0.893
-8 0.857 0.885 0.888 0.890
-9 0.854 0.880 0.883 0.885

CMB11

-5 0.491 0.594 0.601 0.595
-6 0.824 0.878 0.882 0.880
-7 0.855 0.890 0.892 0.895
-8 0.857 0.887 0.889 0.892
-9 0.854 0.884 0.887 0.888

CMB12

-5 0.491 0.594 0.600 0.595
-6 0.824 0.879 0.880 0.880
-7 0.855 0.891 0.891 0.894
-8 0.857 0.887 0.888 0.890
-9 0.854 0.884 0.886 0.887

CMB21

-5 0.491 0.626 0.631 0.626
-6 0.824 0.876 0.877 0.876
-7 0.855 0.877 0.878 0.875
-8 0.857 0.876 0.876 0.874
-9 0.854 0.874 0.874 0.873

CMB22

-5 0.491 0.626 0.630 0.626
-6 0.824 0.877 0.876 0.875
-7 0.855 0.876 0.877 0.874
-8 0.857 0.875 0.875 0.874
-9 0.854 0.873 0.874 0.873

too much bonus to longer sequences, the negative effect of
some noise sequences will affect the classification result se-
riously which makes the performance worse. Another con-
clusion which can be drawn from the tables is that the four
variations do not make much contribution to the classifi-
cation performance. Although some of them can improve
the micro-F1 value in some cases, they tend to reduce the
macro-F1 at the same time. The reason for this observation
is given in Section 5.5.

Table 10 shows the micro-F1 and macro-F1 values ob-
tained by CM when the number of iterations changes from
1 to 9. The values of other parameters are fixed as: c0 = 5;
p0 = 10−7; n = 4. It is easy to see that the performance of
CM converges quickly. This property makes CM applicable
in real applications.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed an approach of document rep-

resentation based on the automatically extracted sequences
generated through n-multigram models. Two text classi-
fiers are put forward on the basis of the proposed document
presentation. One is implemented by applying n-multigram
models directly which can classify the documents while gen-
erating the sequences based representation at the same time.
Another one is realized though the combination of n-multigram
models and n-gram models. This algorithm works in three
stages. In the first stage, n-multigram models are trained
on the training documents for each category and the train-
ing documents are segmented according to the n-multigram
models into sequences. In the second stage text classifiers

Table 9: Classification performance of CM and its
variations in terms of macro-F1 when p0 varies (the
log value of p0 is shown)

log(p0) n = 1 n = 2 n = 3 n = 4

CM

-5 0.563 0.637 0.638 0.636
-6 0.816 0.857 0.859 0.861
-7 0.837 0.867 0.868 0.870
-8 0.836 0.862 0.864 0.865
-9 0.829 0.854 0.856 0.858

CMB11

-5 0.563 0.657 0.659 0.653
-6 0.816 0.859 0.858 0.858
-7 0.837 0.864 0.863 0.863
-8 0.836 0.860 0.861 0.859
-9 0.829 0.856 0.859 0.858

CMB12

-5 0.563 0.657 0.658 0.652
-6 0.816 0.859 0.857 0.856
-7 0.837 0.863 0.863 0.861
-8 0.836 0.858 0.860 0.859
-9 0.829 0.852 0.859 0.857

CMB21

-5 0.563 0.673 0.671 0.668
-6 0.816 0.851 0.850 0.847
-7 0.837 0.846 0.842 0.840
-8 0.836 0.845 0.842 0.840
-9 0.829 0.842 0.841 0.838

CMB22

-5 0.563 0.673 0.672 0.668
-6 0.816 0.852 0.850 0.846
-7 0.837 0.847 0.843 0.840
-8 0.836 0.844 0.842 0.839
-9 0.829 0.841 0.841 0.835

Table 10: Performance of CM when the number of
iteration (K) changes

1 3 5 7 9
micro-F1 0.879 0.887 0.893 0.893 0.893
macro-F1 0.856 0.867 0.870 0.870 0.870

based on n-gram models are trained on the sequences pro-
duced in the first stage. The third stage is to classify the
test documents. For each test document, the pair of mod-
els (an n-multigram model and an n-gram model) from each
category will be applied on the test document in turn. The
document is segmented into sequences firstly according to an
n-multigram model from a certain category and its probabil-
ity of being generated by this category is calculated accord-
ing to the corresponding n-gram model. The test document
is assigned to the category which has the largest probability.

We conducted a series of experiments on a subset of RCV1.
The experiments show that our proposed text classification
algorithms work well. Although the model size of our pro-
posed algorithm based on the n-multigram models directly
is much smaller than that of the n-gram models based clas-
sifier, it can achieve similar or even better classification per-
formance. The results also show that the proposed algo-
rithm based on the combination of n-multigram models and
n-gram models improves the micro-F1 and macro-F1 values
from 89.5% to 92.6% and 87.2% to 91.1% respectively when
compared with the classifiers based on n-gram models. The
experiments are conducted through 3-fold cross validation
and the t-test shows that the improvement is very highly
significant to α = 0.0003.
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In our future work, we will test some other classification
algorithms such as SVM and KNN based on our proposed
document representation approaches to verify its validity.
It is also necessary to conduct experiments on some other
datasets to verify its adaptability.
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