
Text Data Augmentation for Deep Learning

Connor Shorten* , Taghi M. Khoshgoftaar and Borko Furht 

Introduction

Nearly all the successes of Deep Learning stem from supervised learning. Supervised 

learning describes the use of loss functions that align predictions with manually anno-

tated ground truth. Deep Learning can achieve remarkable performance through the 

combination of this learning strategy and large labeled datasets. �e problem is that 

collecting these annotated datasets is very difficult at the scale required. For example, 

one of the key Deep Learning applications for COVID-19 rapid response was question 

answering [1]. Tang et al. [2] constructed COVID-QA, a supervised learning dataset in 

which articles are annotated with an answer span to a given question. �e authors of the 

paper describe working for 23 hours to produce 124 question-answer pairs. Fitting 124 

question-answer annotations without overfitting is extremely challenging in the current 

state of Deep Learning. In addition to question answering, Natural Language Process-

ing (NLP) researchers are also exploring the application of abstractive summarization in 
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which a model outputs a novel summary from a collection of input documents. Cachola 

et al. [3] were able to collect a dataset of 5.4K Too Long; Didn’t Read (TLDR) summaries 

of 3.2K machine learning papers. �is required employing 28 undergraduate students to 

refine data bootstrapped from the OpenReview platform. �ese anecdotes are provided 

to highlight the difficulty of curating annotated big data for knowledge-intensive NLP 

tasks with millions of examples.

�e Deep Learning research community is currently exploring many solutions to the 

problem of learning without labeled big data. In addition to Data Augmentation, self-

supervised learning and transfer learning have performed very well. Few and zero-shot 

learning are categories of research gaining interest as well. In this survey, we explore 

getting more performance out of the supervised data available with Data Augmentation. 

Our survey additionally explores how Data Augmentation is driving key advances in 

learning strategies outside of supervised learning. �is includes self-supervised learning 

from unlabeled datasets, and transfer learning from other domains, whether that data is 

labeled or unlabeled.

Data Augmentation describes a set of algorithms that construct synthetic data from an 

available dataset. �is synthetic data typically contains small changes in the data that the 

model’s predictions should be invariant to. Synthetic data can also represent combina-

tions between distant examples that would be very difficult to infer otherwise. Data Aug-

mentation is one of the most useful interfaces to influence the training of Deep Neural 

Networks. �is is largely due to the interpretable nature of the transformations and the 

window to observe how the model is failing.

Preventing overfitting is the most common use case of Data Augmentation. Without 

augmentation, or regularization more generally, Deep Neural Networks are prone to 

learning spurious correlations and memorizing high-frequency patterns that are difficult 

for humans to detect. In NLP, this could describe high frequency numeric patterns in 

token embeddings, or memorizations of particular forms of language that do not gen-

eralize. Data Augmentation can aid in these types of overfitting by shuffling the particu-

lar forms of language. To overcome the noisy data, the model must resort to learning 

abstractions of information which are more likely to generalize.

Data Augmentation is a regularization strategy. Other regularization techniques have 

been developed such as dropout [4] or weight penalties [5]. �ese techniques apply 

functional regularization by either adding noise to intermediate activations of the net-

work or adding constraints to the functional form. �ese techniques have found suc-

cesses, but they lack the power to express the esoteric concept of semantic invariance. 

Data Augmentation enables an intuitive interface for demonstrating label-preserving 

transformations.

Our survey presents several strategies for applying Data Augmentation to text data. 

We cluster these augmentations into symbolic or neural methods. Symbolic methods 

use rules or discrete data structures to form synthetic examples. �is includes Rule-

Based Augmentations, Graph-Structured Augmentations, Feature-Space Augmenta-

tion, and MixUp. Neural augmentations use a deep neural network trained on a different 

task to augment data. Neural augmentations surveyed include Back-Translation, Gen-

erative Data Augmentation, and Style Augmentation. In addition to symbolic vs. neural-

based augmentations, we highlight other distinctions between augmentations such as 
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task-specific versus task-agnostic augmentations and form versus meaning augmenta-

tions. We describe these distinctions further throughout our survey.

Generalization is the core challenge of Deep Learning. How far can we extrapolate 

from the instances available? �e same interface used to control the training data is also 

useful for simulating potential test sets and distribution shifts. We can simulate distribu-

tion shift by applying augmentations to a dataset, such as adding random tokens to an 

email spam detector or increasing the prevalence of tokens that lie on the long-tail of the 

frequency distributions. �ese simulated shifts can also describe higher-level linguis-

tic phenomenon. �is involves deeper fact chaining than what was seen in the training 

set, or the ability to change predictions given counterfactual evidence. As our tools for 

Generative Data Augmentation continue to improve, we will be able to simulate more 

semantic distribution shifts. �is looks like a very promising direction to advance gener-

alization testing.

Our survey on Text Data Augmentation for Deep Learning builds on our work sur-

veying Image Data Augmentation for Deep Learning [6]. In Computer Vision, this 

describes applying transformations such as rotating images, horizontally flipping them, 

or increasing the brightness to form augmented examples. We found that it is currently 

much easier to apply label-preserving transformations in Computer Vision than NLP. It 

is additionally easier to stack these augmentations in Computer Vision, enabling even 

more diversity in the augmented set, which has been shown to be a key contributor to 

success. Data Augmentation research has been more thoroughly explored in Computer 

Vision than NLP. We present some ideas that have found interesting results with images, 

but remain to be tested in the text data domain. Finally, we discuss the intersection of 

visual supervision for language understanding and how vision-language models may 

help overcome the grounding problem. We discuss the grounding problem in greater 

detail under our Motifs Of Data Augmentation section.

Our next section presents practical implementation decisions for text data augmen-

tation. We begin by describing the use of a consistency regularization loss to further 

influence the impact of augmented data. Differently from consistency regularization, 

contrastive learning additionally uses negative examples to structure the loss function. 

�e next key question is how to control the strength and sampling of each augmenta-

tion. Augmentation controllers apply a meta-level abstraction to the hyperparameters 

of augmentation selection and the magnitude of the transformation. �is is commonly 

explored with an adversarial controller that aims to produce mistakes in the model. We 

also describe controllers that search for performance improvements such as AutoAug-

ment [7], Population-Based Augmentation [8], and RandAugment [9]. Although similar 

in concept, we discuss the key distinction between augmentation controllers and cur-

riculum learning. Another important consideration for implementing Data Augmenta-

tion is the CPU to GPU transfer in the preprocessing pipeline, as well as the conceptual 

understanding of offline versus online augmentation. Finally, we describe the application 

of augmentation to alleviate issues caused by class imbalance.

Our Discussion section presents opportunities to explore text data augmentation. 

We begin with task-specific augmentations describing how key NLP tasks such as 

question answering differ from natural language inference, particularly with respect 

to input length or the categorization as a knowledge-intensive task. We quickly 
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previewed that self-supervised and transfer learning are also emerging solutions to 

learning with limited labeled data. We discuss the use of Data Augmentation in self-

supervised learning and then recent works with transfer and multi-task learning. 

Finally, we discuss AI-GAs, short for AI-generating Algorithms [10]. �is is a very 

interesting idea encompassing papers such as POET [11], Generative Teaching Net-

works [12], and the Synthetic Petri Dish [13] which describe algorithms that learn 

the environment to learn from. We present how this differs from augmentation con-

trollers or curriculum learning, the idea of skill acquisition from artificial data, and 

opportunities to test these ideas in NLP.

Data Augmentation for NLP prevents overfitting, provides the easiest way to inject 

prior knowledge into a Deep Learning system, and offers a view into the generaliza-

tion ability of these models. Our survey is organized as follows:

• We begin with the key Motifs Of Data Augmentation that augmentations strive to 

achieve.

• We provide a list of Text Data Augmentations. �is list can be summarized into 

symbolic augmentations, using rules and graph-structured decomposition to form 

new examples, and neural augmentations, that use auxiliary neural networks to 

sample new data.

• Following our list of available augmentations, we dive deeper into Testing Gener-

alization with Data Augmentation.

• We continue with a comparison of Image versus Text Augmentation.

• Returning to Text Data Augmentation, we describe Practical Considerations for 

Implementation.

• Finally, we present interesting ideas and research questions in our Discussion sec-

tion.

• Our Conclusion briefly summarizes the motivation and findings of our survey.

Background

Data Augmentation has been a heavily studied area of Machine Learning. �e 

advancement of the prior knowledge encoded in augmentations is one of the key dis-

tinctions between previous works and now. As we will discuss in depth later in the 

survey, the success of Data Augmentation in Computer Vision has been fueled by the 

ease of designing label-preserving transformations. For example, a cat image is still a 

cat after rotating it, translating it on the x or y axis, increasing the intensity of the red 

channel, and so on. It is easy to brainstorm these semantically-preserving augmenta-

tions for images, whereas it is much harder to do this in the text domain.

We believe our survey on text data augmentation is well-timed with respect to ques-

tions such as why now? What has changed recently? Recent advances in generative 

modeling such as StyleGAN for images, GPT-3 for text [14], and DALL-E unifying 

both text and images [15], have been astounding. We summarize many exciting works 

on the use of prompting for adapting language models for downstream tasks. As dis-

cussed in further detail later on, we believe these advances in generative modeling 
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could be game changing for the way we store datasets and build Deep Learning mod-

els. More particularly, it could become common to use labeled datasets solely for the 

sake of evaluation, rather than representation learning.

Our survey has some similarities to Feng et al. [16] which has been published roughly 

around the same time as ours. Both surveys seek a clear definition of Data Augmenta-

tion and aim to highlight key motifs. Additionally, both surveys narrate the development 

of NLP augmentation around the successes of augmentation in Computer Vision and 

how these may transfer. Feng et al. [16] provide a deeper enumeration of task-specific 

augmentation than is covered in our survey. Our survey adds important concepts such 

as the debate between Meaning versus Form, Counterfactual Examples, and the use of 

prompts in Generative Data Augmentation.

Many of the successes of Deep Learning stem from access to large labeled datasets 

such as ImageNet [17]. However, constructing these datasets is very challenging and 

time-consuming. �erefore, researchers are looking for alternative ways to leverage data 

without manual annotation. �is is a large motivation behind the success of self-super-

vised language modeling with papers such as GPT-3 [14] or BERT [18]. Data Augmenta-

tion follows this same motivation as overcoming the challenge of learning with limited 

labeled data and avoiding manually labeling data. For example, many of the surveyed 

studies highlight the success of their algorithms when sub-setting the labeled data.

Transfer Learning has been one of the most effective solutions to this challenge of 

learning from limited labeled datasets [19]. Transfer Learning references initialization 

of the model for learning with the weights learned from a previous task. �is previous 

task usually has the benefit of big data, whether that data is labeled such as ImageNet or 

unlabeled, as is used in self-supervised language models. �ere are many research ques-

tions around the procedure of Transfer Learning. In our Discussion section we discuss 

opportunities with Data Augmentation such as freezing the base feature extractor and 

training separate heads on the original and augmented datasets.

Self-supervised learning describes a general set of algorithms that learn from unla-

beled data with supervised learning. �is is done by algorithmically labeling the data. 

Some of the most popular self-supervised learning tasks include generation, contrastive 

learning, and pretext tasks. Generation describes how language models are trained. A 

token is algorithmically selected to be masked out and the masked out token is used 

as the label for supervised learning. Contrastive learning aligns representations of data 

algorithmically determined to be similar (usually through the use of augmentations), 

and distances these representations from negatives (usually other samples in the mini-

batch). Pretext tasks describe ideas such as applying an augmentation to data and task-

ing the model to predict the transformation. �e augmentation interface powers many 

task constructions in self-supervised learning.

Motifs of text data augmentation

�is section will introduce a unifying view of objective the augmentations presented in 

the rest of the survey address. We introduce the key motifs of Text Data Augmentation 

as Strengthening Decision Boundaries, Brute Force Training, Causality and Counterfac-

tual Examples, and the distinction between Meaning versus Form. �ese concepts dig 
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into the understanding of Data Augmentation and their particular application to lan-

guage processing.

Strengthening decision boundaries

Data Augmentation is commonly applied to classification problems where class bounda-

ries are learned from label assignments. Augmented examples are typically only slightly 

different from existing samples. Training on these examples results in added space 

between the original example and its respective class boundary. Well defined class 

boundaries result in more robust classifiers and uncertainty estimates. For example, 

these boundaries are often reported with lower dimensional visualizations derived from 

t-SNE [20] or UMAP [21].

A key motif of Data Augmentation is to perturb data so that the model is more familiar 

with the local space around these examples. Expanding the radius from each example in 

the dataset will overall help the model get a better sense of the decision boundary and 

result in smother interpolation paths. �is is in reference to small changes to the origi-

nal data points. In NLP this could be deleting or adding words, synonym swaps, or well 

controlled paraphrases. �e model becomes more robust to the local space and decision 

boundary based on available labels simply by increased exposure.

Brute force training

Deep Neural Networks are highly parametric models with very high variance that can 

easily model their training data. Fitting the training data is surprisingly robust to inter-

polation, or moving within the data points provided. What Deep Learning struggles 

with, as we will unpack in Generalization Testing with Data Augmentation, is extrapo-

lating outside of data points provided during training. A potential solution to this is to 

brute force the data space with the training data.

�e upper bound solution to many problems in Computer Science is to simply enu-

merate all candidate solutions. Brute force solutions rely on computing speed to over-

power the complexity of a given problem. In Deep Learning, this entails training on an 

exhaustive set of natural language sequences such that all potential distributions the 

test set could be sampled from are covered in the training data. �is way, even the most 

extreme edge cases will have been covered in the training set. �e design of brute force 

training requires exhaustive coverage of the natural language manifold. A key question 

is whether this idea is reasonable or not? It may be better to identify key regions that are 

missing, although that it is challenging to probe for and define.

Causality and counterfactual examples

Vital to achieving the goals of Deep Learning, is to learn causal representations [22], as 

opposed to solely representing correlations. �e field of Causal Inference demonstrates 

how to use interventions to establish causality. Reinforcement Learning is the most 

similar branch of Deep Learning research in which an agent deliberately samples inter-

ventions to learn about its environment. In this survey, we consider how the results of 

interventions can be integrated into observational language data. �is is also similar to 

the subset of Reinforcement Learning known as the offline setting [23].
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Many of the Text Data Augmentations described throughout the survey utilize the 

terminology of Counterfactual Examples [24]. �ese Counterfactual Examples describe 

augmentations such as the introduction of negations or numeric alterations to flip the 

label of the example. �e construction of counterfactuals in language generally relies on 

human expertise, rather than algorithmic construction. Although the model does not 

deliberately sample these interventions akin to a randomized control trial, the hope is 

that it can still establish causal links between semantic concepts and labels by observing 

the result of interventions.

Liu et al. [25] lay the groundwork for formal causal language in Data Augmentation. 

�is entails the use of structured causal models and the procedure of abduction, action, 

and prediction to generate counterfactual examples. �ese experiments rely on phrasal 

alignment between sequences in neural machine translation to sample counterfactual 

replacements. �eir counterfactual augmentation improves on a baseline English to 

French translation system from 26.0 to 28.92 according to the BLEU metric. It seems 

possible that this phrasal alignment could be extended to other sequence-to-sequence 

problems such as abstractive question answering, summarization, or dialogue systems. 

�is explicit counterfactual structure is different from most reviewed works that rather 

use natural language prompts to automate counterfactual sampling. For example, DINO 

[26] generates natural language inference data by either seeding the generation with 

“mean the same thing” or “are on completely different topics”. We think it is an interest-

ing research direction to see if rigorous causal modeling such as computing the condi-

tional probabilities of the context removing the variable [27] will provide benefits over 

prompts and large language models.

Meaning versus form

One of the most interesting ideas in language processing is the distinction between 

meaning and form. Bender and Koller [28] introduced the argument, providing several 

ideas and thought experiments. A particularly salient anecdote to illustrate this is known 

as the octopus example. In this example, two people are stranded on separate islands, 

communicating through an underwater cable. �is underwater cable is intercepted by 

an intelligent octopus who learns to mimic the speaking patterns of each person. �e 

octopus does this well enough that it can substitute for either person, as in the Turing 

test. However, when one of the stranded islanders encounters a bear and seeks advice, 

the octopus is unable to help. �is is because the octopus has learned the form of their 

communication, but it has not learned the underlying meaning of the world in which 

their language describes.

We will present many augmentations in this paper that aid in learning form. Similar to 

the concept of strengthening decision boundaries, ideas like synonym swap or rotating 

syntactic trees will help the octopus further strengthen its understanding of how lan-

guage is generally organized. With respect to achieving an understanding of meaning in 

these models and defining this esoteric concept, many have turned to ideas in grounding 

and embodiment. Grounding typically refers to pairing language with other modalities 

such as vision-language or audio-language models. However, grounding can also refer to 

abstract concepts and worlds constructed solely from language. Embodiment references 

learning agents that act in their environment. Although Bender and Koller propose that 
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meaning cannot be learned from form alone, many other works highlight different areas 

of the language modeling task such as assertions [29] or multiple embedded tasks [30] 

that could lead to learning meaning. Another useful way of thinking about meaning ver-

sus form could be to look at recently developed benchmarks in language processing such 

as the distinction between GLUE [31] and SuperGLUE [32] tasks that predominantly 

test an understanding of form to knowledge-intensive tasks such as KILT [33] that bet-

ter probe for meaning. In our survey, we generally use the terms “understanding” and 

“meaning” to describe passing black-box tests designed by humans. We believe that 

drilling into the definition of these terms is one of the most promising pursuits in lan-

guage processing research.

Text data augmentations

We described Data Augmentation as a strategy to prevent overfitting via regularization. 

�is regularization is enabled through an intuitive interface. As we study a task or data-

set, we learn more about what kind of priors or what kind of additional data we need to 

collect to improve the system. For example, we might discover characteristics about our 

question answering dataset such as that it fails with symmetric consistency on compari-

son questions. �e following list of augmentations describes the mechanisms we cur-

rently have available to inject these priors into our datasets.

Symbolic augmentation

We categorize these augmentations as “Symbolic Augmentations” in contrast to “Neural 

Augmentations”. As stated earlier, the key difference is the use of auxiliary neural net-

works, or other types of statistical models, to generate data compared to using symbolic 

rules to augment data. A key benefit of symbolic augmentation is the interpretability 

for the human designer. Symbolic augmentations also work better with short transfor-

mations, such as replacing words or phrases to form augmented examples. However, 

some information-heavy applications rely on longer inputs such as question answering 

or summarization. Symbolic rules are limited in applying global transformations such as 

augmenting entire sentences or paragraphs.

Fig. 1 Success of EDA applied to 5 text classification datasets. A key takeaway from these results is the 
performance difference with less data. The gain is much more pronounced with 500 labeled examples, 
compared to 5,000 or the full training set
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Rule-based augmentation

Rule-based Augmentations construct rules to form augmented examples. �is entails if-

else programs for augmentation and symbolic templates to insert and re-arrange exist-

ing data. Easy Data Augmentation from Wei et  al. [34] presents four augmentations. 

Figure 1 highlights the performance improvement with EDA, note the smallest subset 

of 500 labeled examples benefits the most. One of the main reasons to be excited about 

Easy Data Augmentation is that it is relatively easy to use off-the-shelf. Many of the 

Augmentations mentioned later in this survey, are still in the research phase, waiting 

for large-scale testing and adoption. Easy Data Augmentation includes random swap-

ping, random deletion, random insertion, and random synonym replacement. Examples 

of this are shown in Fig. 2.

�ere are many opportunities to build on these augmentations. Firstly, we note that 

with random swapping, the classification of the word is incredibly useful. From the Data 

Augmentation perspective of introducing semantic invariances, “I am jogging”, is much 

more similar to “I am swimming” than “I am yelling”. Further designing token vocabular-

ies with this kind of structure should lead to an improvement.

Programs for Rule-based augmentation further encompass many of the adversarial 

attacks that have been developed for NLP. Adversarial attacks are equivalent to aug-

mentations, differing solely in the intention of their construction. As an example of 

a rule-based attack, Jin et  al. [35] present TextFooler. TextFooler first computes word 

importance scores by looking at the change in output when deleting each word. Text-

Fooler then selects the words which most significantly changed the outputs for synonym 

replacement. �is is an example of a rule-based symbolic program that can be used to 

organize the construction of augmented examples.

Another rule-based strategy available is Regular Expression Augmentation. Regular 

Expression filtering is one of the most common ways to clean data that has been scraped 

from the internet, as well as several other data sources such as Clinical Notes [36]. Regu-

lar Expressions describe matching patterns in text. �is is usually used to clean data, but 

it can also be used to find common forms of language and generate extensions that align 

with a graph-structured grammar. For example, matching patterns like “�is object is 

adjective” and extending it with patterns such as, “and adjective”. Another strategy is to 

re-order the syntactics based on the grammar such as “�is object is adjective” to “An 

adjective object”.

Min et  al. [37] propose rules for augmentation based on syntactic heuristics. �is 

includes Inversion, swapping the subject and object in sentences, and Passivization 

Fig. 2 Examples of easy data augmentation transformations
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where the hypothesis in premise-hypothesis NLI (Natural-Language Inference) pairs are 

translated to the passive version of the sentence. An example of Inversion is the change 

from “�e lawyer saw the actor” to “�e actor saw the lawyer”. An example of Passiviza-

tion is changing from “�is small collection contains 16 El Grecos” to “�is small col-

lection is contained by 16 El Grecos”. �e authors show improvement applying these 

augmentations on the HANS challenge set for NLI [38].

Graph-structured augmentation

An interesting opportunity for text data augmentation is to construct graph-struc-

tured representations of text data. �is includes relation and entity encodings in 

knowledge graphs, grammatical structures in syntax trees, or metadata grounding 

language data, such as citation networks. �ese augmentations add explicit structural 

information, a relatively new integration with Deep Learning architectures. �e addi-

tion of structure can aid in finding label-preserving transformations, representation 

analysis, and adding prior knowledge to the dataset or application. We will begin our 

analysis of Graph-Structured Augmentation by unpacking the difference between 

structured versus unstructured representations.

Deep Learning operates by converting high-dimensional, and sometimes sparse, 

data into lower-dimensional, continuous vector embedding spaces. �e learned vec-

tor space has corresponding metrics such as L2 or cosine similarity distance func-

tions. �is is a core distinction from topological spaces, in which distance between 

points is not defined. A topological space is a more general mathematical space with 

less constraints than Euclidean or metric spaces. Topological spaces encode informa-

tion that is challenging to integrate in modern Deep Learning architectures. Rather 

than designing entirely new architectures, we can leverage the power of structured 

data through the Data Augmentation interface.

One of the most utilized structures in language processing is the Knowledge Graph 

[39]. A Knowledge Graph is composed of (entity, relation, entity) tuple relations. �e 

motivation of the augmentation scheme is that paths along the graph provide infor-

mation about entities and relations which are challenging to represent without struc-

ture. Under the scope of Rule-based Augmentation, we presented the idea of synonym 

swap. One strategy to implement synonym swap would be to use a Knowledge Graph 

with “is equivalent” relationships to find synonyms. �is can be more practical than 

manually defining dictionaries with synonym entries. �is is especially the case 

thanks to rapid acceleration in automated knowledge graph construction from unla-

beled data. Knowledge Graphs often contain more fine-grained relations as well.

Previously, we mentioned how random synonym replacement would benefit enor-

mously from the perspective of preserving the class label with better swaps. Improved 

swaps describe transitions such as “I am jogging” to “I am running” compared to “I 

am yelling”, or even “I am market”. Structured language in graph-form is a very useful 

tool to achieve this augmentation capability. �ese kinds of graphs have been heavily 

developed with notable examples such as WordNet [40], Penn Treebank [41], and the 

ImageNet class label structure [17]. Graphs such as WordNet describe words in rela-

tionship to one another through “synsets”.
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Graphs are made up of nodes and edges. In WordNet, each node represents a word 

such as “tiger”. �e genius of WordNet is the simplification of which edges to connect. 

In WordNet, the nodes are connected with the same edge type, a “synset” relation-

ship. Synsets are loosely defined as words belonging to a similar semantic category. 

�e word “tiger” would have a synset relation with nodes such as “lion” or “jaguar”. 

�e word “tiger” may also have finer-grained synset relations with nodes that describe 

more particular types of tigers. WordNet is an example of a Graph-Structured Aug-

mentation that builds on synonym replacement. WordNet describes a graph where 

each node is related to another graph by being a “synset”.

We additionally consider graphs that contain finer grained edge classifications, this 

kind of graph is frequently referred to as a Knowledge Graph [39]. As an example, 

CoV-KGE [42] contains 39 different types of edges relating biomedical concept nodes 

such as drugs or potential binding targets. Huang et al. [43] provide another interest-

ing example of constructing a knowledge graph from the long context provided as 

input to abstractive summarization. �is graph enables semantic swaps that preserve 

global consistency.

Another heavily studied area of adding structure to text data is known as syntactic 

parsing. Syntactic parsing describes different tasks that require structural analysis of text 

such as the construction of syntax or dependency trees. Recently, Glavas and Vulic [44] 

demonstrated that supervised syntactic parsing offered little to no benefit in the modern 

pre-train, then fine-tune pipeline with large language models.

�e final use of structure for Text Data Augmentation we consider is to integrate meta-

data via structural information. For example, scientific literature mining has become a 

very popular application of NLP. �ese applications could benefit from the underlying 

citation network characterizing these papers, in addition to the text content of the papers 

themselves. Particularly, network structure has played an enormous role in biology and 

medicine. Li et al. [45] present many of these graphs in high-level application domains 

such as molecules, genomics, therapeutics, and healthcare. �e integration of this struc-

ture with text data could be a key component to grounding text representations.

In the theme of our survey, we note that these auxiliary graphs may benefit from aug-

mentation as well. Data Augmentation for explicitly graph-structured data is still in its 

early stages. Zhao et  al. [46] propose an edge augmentation technique that “exposes 

GNNs to likely (but nonexistent) edges and limiting exposure to unlikely (but exist-

ent) ones” [46]. �is graph augmentation leads to an average accuracy improvement 

of 5% across 6 popular node classification datasets. Kong et  al. [47] further demon-

strate the effectiveness of adversarially controlled node feature augmentation on graph 

classification.

In the section, Practical Considerations for Implementation, we will present the use 

of consistency regularization and contrastive learning to further enforce the use of aug-

mented data in training. Building on these ideas, we can use graph-structures to assign 

nearest neighbor assignments and regularize embeddings. Neural Structured Learning 

[48] describes constructing a graph connecting instances that share fine-grained class 

labels. �is is used to penalize a misclassification of “golden retriever” less so than “ele-

phant” if the ground truth label is “labrador retriever”. Li et al. [49] similarly construct 
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an embedding graph to enforce consistency between predictions of strong and weakly 

augmented data.

MixUp augmentation

MixUp Augmentation describes forming new examples by meshing existing examples 

together, sometimes blending the labels as well. As an example, MixUp may take half 

of one text sequence and concatenate it with half of another sequence in the dataset to 

form a new example. MixUp may be one of the best interfaces available to connect dis-

tant points and illuminate a path of interpolation.

Most implementations of MixUp vary with respect to the layer in which samples are 

interpolated. Guo et al. [50] test MixUp at word and sentence levels. �is difference is 

shown in Fig.  3. �eir wordMixup technique combines existing samples by averaging 

embedding vectors at the input layer. �e sentMixup approach combines existing sam-

ples by averaging sentence embeddings as each original sequence is passed through sia-

mese encoders. �eir experiments find a significant improvement in reducing overfitting 

compared to no regularization or using dropout.

Feature space augmentation

Feature Space Augmentation describes augmenting data in the intermediate representa-

tion space of Deep Neural Networks. Nearly all Deep Neural Networks follow a sequen-

tial processing structure where input data is progressively transformed into distributed 

representations and eventually, task-specific predictions. Feature Space Augmentations 

isolate intermediate features and apply noise to form new data instances. �is noise 

could be sampled from standard uniform or gaussian distributions, or they could be 

designed with adversarial controllers.

MODALS [51] presents a few strategies for feature space augmentations. Shown 

in Fig.  4, these strategies describe how to move along class boundaries to form new 

Fig. 3 Left, word-level mixup. Right, sentence-level mixup. The red outline highlights where augmentation 
occurs in the processing pipeline
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examples in the feature space. Hard example interpolation (a) forms a new example by 

moving it in the direction of existing embeddings that lie on the decision boundary for 

classification. Hard example extrapolation (b) describes moving existing examples along 

the same angle they currently lie from the mean vector of the class boundary. Gauss-

ian noise (c) entails adding Gaussian noise in the feature space. Difference transform 

(d) moves an existing sample in the directional distance calculated from two separate 

points in the same class. As described as one of the general Motifs Of Data Augmenta-

tion, MODALS aims to strengthen decision boundaries. Research in Supervised Con-

trastive Learning [52], replacing the commonly used KL-divergence of logits and class 

labels with contrastive losses such as NCE with positives and negatives formed based on 

class labels, has been shown to improve these boundaries. It could be useful to explore 

how this benefits the MODALS algorithm.

We also consider Differentiable Data Augmentation [53] techniques to fall under the 

umbrella of Feature Space Augmentation. Data Augmentation is a function f(x) that pro-

duces augmented examples x’. Similar to any other layers in the network, we can treat 

the beginning of the network as an augmentation module and backpropagate gradients 

through it. We can also separate the augmentation function and add it to the inputs such 

that the transformation is not too dramatic, akin to adding an optimized noise map to 

the input. Minderer et  al. [54] use this technique to facilitate self-supervised pretext 

tasks.

Neural augmentation

�e following augmentations rely on auxiliary neural networks to generate new train-

ing data. �is entails using a model trained on supervised Neural Machine Translation 

datasets to translate from one language to another and back to sample new instances, 

or a model trained on generative language modeling to replace masked out tokens or 

sentences to produce new data. We additionally discuss the use of neural style transfer in 

NLP to translate from one writing style to another or one semantic characteristic such as 

formal to casual writing.

Back-translation augmentation

Back-translation describes translating text from one language to another and then back 

from the translation to the original language. An example could be taking 1,000 IMDB 

movie reviews in English and translating them to French and back, Chinese and back, or 

Arabian and back. �ere has been an enormous interest in machine translation. �is has 

Fig. 4 Directions for feature space augmentation explored in MODALS
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resulted in the curation of large labeled datasets of parallel sentences. We can also imag-

ine the use of other text datasets such as translations between programming languages 

or writing styles as we describe in more detail under Style Augmentation.

Back-translation leverages the semantic invariances encoded in supervised translation 

datasets to produce semantic invariances for the sake of augmentation. Also interest-

ingly, back-translation is used to train unsupervised translation models by enforcing 

consistency on the back-translations. �is form of back-translation is also heavily used 

to train machine translation models with a large set of monolingual data and a limited 

set of paired translation data. Outside of translation we could imagine structuring these 

domain pairings such as scientific papers and news articles or college-level and high-

level reading and so on.

An interesting design question with this may be to weigh the importance of using a 

high performance machine translation model for the back-translation. However, as 

stated by Pham et al., the lesson has been “better translation quality of the pseudo-paral-

lel data does not necessarily lead to a better final translation model, while lower-quality 

but diverse data often yields stronger results instead” [55]. �e curation of paired lan-

guages and domains could also impact the final performance. Exploring back-translation 

augmentation for question answering Longpre et al. discuss “curating our input data and 

learning regime to encourage representations that are not biased by any one domain or 

distribution” [56].

Style augmentation

Finally, we present another augmentation strategy utilizing Deep Networks to augment 

data for the training of other Deep Nets. In our previous survey of Image Data Augmen-

tation, we explored works that use Neural Style Transfer for augmentation. Artistic style 

transfers such as a picasso-themed dog image, may be useful as an OOD augmentation 

in a Negative Data Augmentation framework, which we will present later. However, we 

are more interested in styles within the dataset. �is is an interesting strategy to prevent 

overfitting to high-frequency features or blurring out the form of language such as to 

focus on meaning. In the text data domain, this could describe transferring the writing-

style of one author to another for applications such as abstractive summarization or con-

text for extractive question answering.

Data Augmentation is often deployed to focus models on semantics, rather than par-

ticular forms of language. �ese particular forms could emerge from one author’s writing 

style or general tonality in the language such as an optimistic versus a pessimistic writer. 

Style transfer offers an interesting window to extract semantic similarities between writ-

ing styles. �is could help with modeling contexts in question answering systems or doc-

uments for information retrieval.

Generative data augmentation

Generative Data Augmentation is one of the most exciting emerging ideas in Deep 

Learning. �is includes generating photorealistic facial images [57] or indistinguishable 

text passages [14]. �ese models have been very useful for Transfer Learning, but the 

question remains: What is the killer application of the generative task? �ese generations 
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are certainly interesting for artistic applications, but more importantly is their use for 

representation learning and Data Augmentation.

We note a core distinction in the use of generative models for Data Augmentation. A 

popular use is to take a pre-trained language model of the shelf and optionally fine-tune 

it further with the language modeling task. �is is the standard operating procedure of 

Transfer Learning. However, the fine-tuning is usually done with the Supervised Learn-

ing task, rather than additional language modeling. �e pre-trained language models 

have learned many interesting properties of language because they are trained on mas-

sive datasets. An interesting example that is publicly available is �e Pile [58]. �e Pile is 

800GB of text data spanning Wikipedia, comment forums, entire books, and many more 

examples of data like this. Even though these models and datasets are very impressive, 

additional benefits will likely be achieved by domain-tuning with additional language 

modeling on the limited dataset.

Language modeling is a very useful pre-training stage and we often have more data 

for language modeling than a downstream task like question-answering. Whereas we 

may only have 100 question-answer pairs, the question, answer, and surrounding context 

could easily contain 300 words each, accounting for a total of 3,000 words for construct-

ing language modeling examples. A dataset size of 3,000 compared to 100 can make a 

large difference in success with Deep Learning and is the prime reason for our interest 

in Data Augmentation to begin with. Gururangan et al. [59] present an argument for this 

use of language models since downstream performance is dramatically improved when 

pre-training on a relevant dataset. �is distinction of “relevant dataset” is in contrasting 

reference to what is used to train models like GPT-3 [14].

One of the most popular strategies for training a language model for Generative Data 

Augmentation is Conditional BERT (C-BERT) [60]. C-BERT augments data by replacing 

masked out tokens of the original instance. �e key novelty is that it takes an embed-

ding of the class label as input, such as to preserve the semantic label when replacing 

masked out tokens. �is targets the label-preserving property of Data Augmentation. 

�e C-BERT training strategy can be used when fine-tuning a model pre-trained on 

another dataset or starting from a random initialization.

An emerging strategy to adapt pre-trained generative models to downstream tasks 

is to re-purpose the interface of masking out tokens. �is is known as prompting. �e 

output of language models can be guided with text templates for the sake of generating 

or labeling new data. Testing the efficacy of prompting with respect to the objective of 

learning from limited data, Scao and Rush [61] show that prompting is often worth 100s 

of data points on SuperGLUE classification tasks [32]. �is is in direct comparison with 

the more heavily studied paradigm of Transfer Learning, head-based fine-tuning. We 

will present a few variants on implementing prompts, this includes in-context learning, 

pattern-exploiting training, and prompt tuning.

�e first implementation of prompting we consider is in-context learning. In-context 

learning became well known when demonstrated with GPT-3. �e idea is to prepend 

each input with a fixed task description and a collection of examples of the task. �is 

does not require any further gradient updates of the model. Brown et al. [14] show that 

scale is crucial to making this work reporting significant performance drops from 175B 

parameters to 13B and less. �is technique has likely not yet hit its ceiling, especially 
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with the development of transformer models that can in sequences longer than 512 

tokens as inputs. Similar to excitement about retrieval-augmented modeling, this will 

allow in-context learning models to process more demonstrations of the task. However, 

due to limitations of scale, methods that continue with gradient updates are more practi-

cally useful.

�e next implementation of prompting we will present is prompt tuning. Prompt 

tuning describes first embedding the prompt into a continuous space, and then opti-

mizing the embedding with gradient descent while keeping the rest of the network fro-

zen. Similarly to GPT-3, Lester et  al. [62] show that scale improves performance with 

prompt tuning and that prompt tuning significantly outperforms the in-context learning 

results reported from Brown et al. [14]. Performance can be further improved by ensem-

bling optimized prompts and running inference as a single batch of the input and the 

appended prompts. Tuned prompt ensembling improves the average performance of the 

prompts on SuperGLUE from 88.5, and the best performing individual prompt at 89.8, to 

90.5. �e authors further highlight that analysis of the optimized prompt embedding can 

aid in task complexity and similarity metrics, as well as Meta-Learning. Prompt tuning 

shares the same underlying concept of prepending context to the input of downstream 

tasks to facilitate fine-tuning, however this technique is more in line with research on 

Transfer Learning with minimal modifications. For example, adapter layers [63] aim to 

introduce a small number of parameters to fine-tune a pre-trained Transformer.

An emerging theme in the pre-train then fine-tune paradigm has been that domain 

and task alignment tends to improve fine-tuned performance. Gururangan et  al. [59] 

demonstrate the effectiveness of data domain alignment and Zhang et  al. [64] dem-

onstrate effectiveness of task alignment in the proposed PEGASUS algorithm. In cor-

respondence with the lesson of alignment, Zhong et  al. [65] tune language models to 

be better fitted to answer prompts. �is is done by manually annotating 441 questions 

across 43 existing datasets that map every task to a “Yes” or “No” answer. Measured by 

AUC-ROC plots, the authors show that further fine-tuning on prompt specialization 

improves these models and that this also benefits from scale. �e authors call for the 

organization of NLP datasets into unified formats that better aids in fine-tuning models 

for answering prompts.

Pattern exploiting training (PET) [66] uses the pre-trained language model to label 

task-specific unlabeled data. �is is done with manually-defined templates that convert 

the supervised learning task into a language modeling task. �e outputs of the language 

model are then mapped to supervised learning labels with a verbalizer. Gradient-descent 

optimization is applied to verbalized outputs to fine-tune it with the same cross-entropy 

loss function used to train classifiers. Schick and Shutze [67] demonstrated that the PET 

technique enables much smaller models to surpass GPT-3 with 32 labeled examples 

from SuperGLUE. Tam et al. [68] further developed the algorithm to ADAPET. ADA-

PET utilizes dense supervision in the labeling task, applying the loss to the entire vocab-

ulary distribution without a verbalizer and additional requiring the model to predict the 

masked tokens in the context given the label, similarly to conditional-BERT. ADAPET 

outperforms PET without the use of task-specific unlabeled data.

A limitation to pattern-exploiting training, in-context learning, and prompt tun-

ing, is that they require retaining a large language model for downstream tasks. Most 
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applications are interested in compressing these models for the sake of efficiency. Under 

the scope of Label Augmentation, we will present the use of knowledge distillation. For 

now, we consider compression by generating data to train a smaller model with. �is 

approach is most similar to pattern-exploiting training, except that rather than use 

the pre-trained language model to label data, we will instead use it to generate entire 

examples.

Drawing inspiration from the success of MixUp, which was presented in further detail 

in MixUp Augmentation, Yoo et al. developed GPT3Mix [69]. �e input to GPT3Mix 

begins with a Task Specification that defines the task such as, “Text Type T = movie 

review, Label Type L = sentiment”. Akin to MixUp, the next inputs are examples of 

the task formulated as “text type: example text k (label type: example label k)”, such as 

“Example 1: �e cat is running my mat. (negative)”. �e final piece of the input is the 

template to generate new examples. Further, the generated example is “soft-labeled” by 

the generating probabilities of each token in the process of generating the new exam-

ple. GPT3Mix achieves massive performance improvements over no augmentation, Easy 

Data Augmentation, and BackTranslation when subsetting available data to extreme lev-

els such as 0.1% and 0.3%.

Schick and Shutze [26] also explore the strategy of generating data from language 

models, presenting Datsets from Instructions (DINO). DINO uses a task description and 

one example from the dataset to generate pairwise classification datasets. Interestingly, 

they contrast task descriptions which entail the resulting label to decode language model 

generation. For example, the task description could begin with “Write two sentences 

that” and continue with either “mean the same thing” or “are on completely different 

topics”. �e generation accounts for the token another label description would gener-

ate. Evaluated on the STS text similarity dataset, representations learned from DINO 

show improvements over state-of-the-art sentence embedding techniques trained with 

supervised learning, such as Universal Sentence Encoders [70] and Siamese BERT and 

RoBERTa models [71].

While built on the same underlying concept, discrete versus continuous prompt 

search diverge heavily from one another. Discrete prompt search has the benefit of inter-

pretability. For example, comparing different task descriptions and examples provided 

by a human annotator offers insights into what the model has learned. However, prompt 

optimization in the continuous embedding space fully automates the search. Continuous 

prompt optimization is likely more susceptible to overfitting due to the freedom of the 

optimization space.

Another somewhat similar theme to prompting in NLP has been to augment knowl-

edge-enhanced text generation with retrieval. Popular models include Retrieval-Aug-

mented Generation (RAG) [72], and Retrieval-Augmented Language Model Pre-training 

(REALM) [73]. Shuster et  al. [74] show how retrieving information to prepend to the 

input reduces the problem of hallucination in text generation. Once this retrieved infor-

mation is embedded into the continuous representation space of language models, it is a 

similar optimization problem as prompt tuning.

Another interesting idea is the intersection of Data Privacy and Generative Data Aug-

mentation. Can we store data in the parameters of models instead of centralized data-

bases? �e idea of Federated Learning [75] is to send copies of the global model weights 
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to a local database such as to avoid a centralized database. Which models should we 

send to local databases? Classifiers or generative models? If we send a generative model, 

we have the potential to cover more of the data distribution and learn more about gen-

eral data manifolds such as the use of language more broadly, however, we risk exposing 

more critical information [76].

Label augmentation

Supervised Learning, describes fitting an input, x, to a label, y. �roughout this survey, 

we have presented strategies for regularizing the x values. In this section, we explore 

research looking to entertain the y class labels. �e most successful example of this is 

Knowledge Distillation [77]. Knowledge Distillation describes transforming the tradi-

tional one-hot encoded y labels into a soft distribution by re-labeling xs with the logits of 

another neural network’s prediction. �is has been very influential in compression such 

as DistilBERT [78], information retrieval [79], and achieving state-of-the-art classifica-

tion results in Computer Vision [80].

In addition to Knowledge Distillation, several other strategies have been developed to 

augment the label space. Label smoothing uses a heuristic adjustment to the density on 

negative classes and has been highly influential for training classifiers [81] and genera-

tive adversarial networks [82]. Another exciting approach is the use of a meta-controller, 

similar to knowledge distillation, but massively different in that the Teacher is learning 

from the gradients of the Student’s loss to update the label augmentation. Notable exam-

ples exploring this include Meta Pseudo Labels [83] and Teaching with Commentaries 

[84]. �is ambitious idea of learning to augment data through outer-inner loop gradients 

have also been explored in the data space, x, with Generative Teaching Networks [12]. 

As of the time of this writing, Generative Teaching Networks have only been applied 

to image data. A similar idea is “Meta Back-Translation” [55], in this work, the authors 

“propose a meta-learning framework where the back-translation model learns to match 

the forward translation model’s gradients on the development data with those on the 

pseudo-parallel data.”

�akur et al. [85] present the Augmented SBERT to augment data labels for distilla-

tion. �e authors note that the cross-encoder, although much slower and less efficient 

than bi-encoders, tends to reach higher accuracy on pairwise classification tasks such 

as ranking or duplicate question detection. �e paper proposes to label data with the 

cross-encoder and fit these augmented labels with the bi-encoder. Also worth mention-

ing is that the cross-encoder heavily outperforms the bi-encoder with less training data. 

�akur et al. find a significant benefit strategically selecting data to soft label with the 

cross encoder. We have found this idea throughout experiments in Data Augmentation, 

discussing it further in our Discussion section under Curriculum Learning.

Testing generalization with data augmentation

�e holy grail of Machine Learning is to achieve out-of-distribution (OOD) generaliza-

tion. �is is distinct from in-distribution generalization where the training and test sets 

are sampled from the same data distribution. In order to measure OOD generalization, 

we need to make assumptions about how the distribution will shift. As Arjvosky writes, 

“if the test data is arbitrary or unrelated to the training data, then generalization is 
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obviously futile” [86]. Chollet further describes the relationship between system-centric 

and developer-aware generalization, as well as levels of generalization such as absent, 

local, broad, and extreme [87]. We argue that Data Augmentation is the natural inter-

face to quantify the relationship between test and train data distributions and levels of 

generalization.

A classic tool to test for generalization is to simply report the difference in accuracy 

between the training and test sets. However, as shown in papers such as Deep Double 

Descent [88], the phenomenon of overfitting is generally poorly understood with large-

scale Deep Neural Networks. We believe it is more practical to study overfitting and 

generalization in the data space. For example, the success of adversarial examples shows 

that Deep Neural Networks cannot generalize to distributions added with adversarially 

optimized noise maps. Jia and Liang [89] show that models trained on SQuAD cannot 

generalize when adversarially optimized sentences are added to the context, an example 

of this is shown in Fig. 5. In addition to adversarial attacks, many other datasets show 

intuitive examples of distribution shifts where Deep Neural Networks fail to generalize.

We present Data Augmentation as a black-box test for generalization. Check-

List [90] proposes a foundational idea for these kinds of tests in NLP. CheckList is 

designed to test the linguistic capabilities of models such as robustness to negation, 

vocabulary perturbations, or temporal consistency. We view this as introducing a dis-

tribution shift of linguistic phenomena in the test set. Clark et  al. [91] construct a 

toy example for transformers to see how far they can generalize fact chaining. In this 

test, the training data requires the model to chain together more or less facts than are 

tested in the test set. Again, the distribution shift is controlled with an intuitive inter-

face again to Data Augmentation. Finally, WILDS [92] is a collection of real-world dis-

tribution shifts. �ese real-world shifts can also be mapped to Data Augmentations.

Kaushiik et al. [24] describes employing human-labelers to construct a set of coun-

terfactual movie reviews and natural language inference examples. �e authors 

construct an elegant annotation interface and task Mechanical Turk workers to 

minimally edit examples such as to switch the label. For example, converting “�e 

world of Atlantis, hidden beneath the earth’s core, is fantastic” to “�e world of Atlan-

tis, hidden beneath the earth’s core is supposed to be fantastic”. For movie reviews, 

the authors group the workers’ revisions into categories such as recasting fact as 

hoped for, suggesting sarcasm, inserting modifiers, inserting phrases, diminishing 

value qualifiers, differing perspectives, and changing ratings. For natural language 

Fig. 5 Fooled by injected text. Image taken from Jia and Liang [89]
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inference, the authors group the workers’ revisions into categories such as modifying/

removing actions, substituting entities, adding details to entities, inserting relation-

ships, numerical modifications, using/removing negation, and unrelated hypothesis. 

�ese examples are constructed for testing generalization to these counterfactual 

examples.

Returning to our description of Generative Data Augmentation, are generative models 

capable of making these edits? If GPT-3 was given an IMDB review with the task prompt 

of “change this movie review from positive to negative”, it could probably manage it. 

We leave it to future work to investigate the generalization shifts induced by human-

designed counterfactuals and generative models. To further motivate this study, the 

authors note that their dataset construction came with a hefty price tag of $10,778.14. 

Inference costs of generative models are unlikely to approach this cost, unless working 

with extremely large models. Highlighting that a similar categorization of the changes 

as Kaushik et al. use [24] could help us understand the linguistic phenomena underlying 

this kind of generalization test.

Generative Data Augmentation provides another lens to study generalization. Nak-

kiran et  al. propose a novel way of studying generalization in “�e Deep Bootstrap 

Framework” [93]. �e idea is to compare the Online test error to the Bootstrap test 

error. �e Online error describes the performance of a model trained on an infinite data 

stream, i.e. without repeating samples. �e Bootstrap test error describes the common 

training setup in Deep Learning, repeating batches of the same data. �e authors simu-

late the Online learning scenario by fitting a generative model, in this particular case 

a Denoising diffusion probabilistic model [94]. �e generative model is used to sample 

6 million examples, compared to the standard 50,000 samples used to train CIFAR-10. 

Garg et  al. [95] additionally propose RATT, a technique that analyzes learning curves 

and generalization when randomly labeled unlabeled data is added to the training batch. 

�e augmentations described in this survey may be able to simulate this unlabeled data 

and provide similar insights.

To conclude, when is overfitting problematic? How much of a data distribution are 

modern neural networks capable of covering? Deep Neural Networks have a remarkable 

ability to interpolate within the training data distribution. A potential solution could be 

to leverage Data Augmentation to expand the training distribution such that there are 

no reasonable out-of-distribution shifts in the test sets. Even if all the potential distribu-

tions cannot be compressed into a single neural network, this interface can illuminate 

where the model will fail.

Image versus text augmentation

Our survey on Text Data Augmentation for Deep Learning is intended to follow a simi-

lar format as our prior work on Image Data Augmentation for Deep Learning [6]. We 

note there are many similarities between the Easy Data Augmentations and basic geo-

metric and color space transformations used in Computer Vision. Most similarly, both 

are easy to implement and complement nearly any problem working with text or image 

data respectively. We have described how Easy Data Augmentation can easily interface 

with text classification, pairwise classification, extractive question answering, abstrac-

tive summarization, and chatbots, to name a few. Similarly, geometric and color space 
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transformations in Computer Vision are used in image classification, object detection, 

semantic segmentation, and image generation.

As described in the beginning of our survey, Data Augmentation biases the model 

towards certain semantic invariances. Image Data Augmentation has largely been suc-

cessful because it is easy to think semantic invariances relevant to vision. �ese include 

semantic invariance to horizontal flips, rotations, and increased brightness, to name 

a few. Comparatively, it is much harder to define transformations to text data that are 

guaranteed to be semantically invariant. All of the augmentations described in Easy Data 

Augmentation have the potential to perturb the original data such that it changes the 

ground truth label, y.

Another interesting trend is the integration of vision and language in recent mod-

els such as CLIP and DALL-E. For the sake of Data Augmentation, a notable example 

is Vokenization from Tan and Bansal [96]. �e authors align tokens such as “humans” 

with images of “humans” and so on, even for verbs such as “speaking”. �e masked lan-

guage modeling task then uses the visual tokens as additional supervision for predicting 

masked out tokens. �ere is some noise in this alignment such as finding a visual token 

for words such as “by” or “the”. Tan and Basil report visual grounding ratios for tokens of 

54.8%, 57.6%, and 41.7% on curated vision-language datasets compared to 26.6%, 27.7%, 

and 28.3% for solely language corpora. Across the SST-2, QNLI, QQP, MNLI, SQuAD 

v1.1 and v2.0, and SWAG benchmark tasks, Vokenization improves BERT-Large from 

79.4 to 82.1 and RoBERTa-Large from 77.6 to 80.6. �ere are many interesting vision-

language datasets labeled for tasks such as visual question answering, image captioning, 

and text-image retrieval, to name a few. Vision-language Data Augmentation schemes 

such as Vokenization look to be a very promising area of research.

A recent trend in Image Data Augmentation has been its integration in the training 

of generative models, namely generative adversarial networks (GANs) [97]. �e GAN 

framework, similar to the ELECTRA model [98], consists of a generator and a discrimi-

nator. �e generator transforms random noise into images and the discriminator clas-

sifies these images as either coming from the generator or the provided training set. 

Following, we will describe why this does not work as well as autoregressive modeling 

for text. Returning to how Data Augmentation has been used for GANs, this investi-

gation began with Zhang et  al.’s work on consistency regularization [99]. Consistency 

regularization requires the discriminator to make the same classification on a real image 

and an augmented view of that same image. Unfortunately, this led to the augmenta-

tions being “leaked” into the generated distribution such that the generator produces 

augmented data as well.

We will end this discussion by presenting some ideas from LeCun and Misra [100] 

on the key distinction between generative modeling between Images and Text. �e key 

issue stated in the article is handling uncertainty. As an example, take the masked token 

completion task: “�e mask chases the mask in the savana”. LeCun and Misra point out 

that the language model can easily “associate a score or a probability to all words in the 

vocabulary: high score for lion’, ‘cheetah’, and a few other predators, and low scores for 

all other words in the vocabulary” [100]. In comparison, applying this kind of density 

on candidate images in highly intractable. �e missing token can only be 1 of a typi-

cal 30,000 tokens, whereas a missing 8x8 RGB patch can take on a ridiculously large, 
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255x8x8x3 values. �erefore, image models need to rely on energy-based models that 

learn joint embedding spaces and assign similarity scores, rather than exactly modeling 

the probability of each missing patch. Perhaps the GAN framework, or something simi-

lar, will take over in NLP once generative modeling expands its scope to sentence-level 

or paragraph-level generation, such as the pre-training task used for abstractive summa-

rization in PEGASUS [64].

Another interesting success of Data Augmentation has been its application in Rein-

forcement Learning. �is has been heavily studied with Robotic Control from Visual 

Inputs and the Atari benchmark. One of the biggest bottlenecks with robotic learning, 

and most deep reinforcement learning problems, is a lack of data. It is challenging to 

restart a robot laundry folder back to the beginning of the unfolded shirt and collect 

millions of trajectories. To solve this problem, researchers have turned to forming aug-

mented trajectories from collections in a replay buffer. Amongst many applications of 

reinforcement learning with Text data that have been proposed, patient care control is 

particularly exciting. Ji et al. [101] explore the use of model-based reinforcement learn-

ing for patient care of septic patients using the MIMIC-III dataset [102]. �e authors 

use clinical notes to sanity check the model-based rollouts of physiological patient state 

markers. A promising area of research will be to apply Text Data Augmentation to col-

lected clinical note trajectories to improve patient care and trajectory simulation.

Practical considerations for implementation

�is section presents many details of implementing Text Data Augmentation that make 

a large performance difference in terms of evaluation metrics and training efficiency.

Consistency regularization

Consistency regularization is a strong compliment to the priors introduced via Data 

Augmentation. A consistency loss requires a model to minimize the distance in repre-

sentations of an instance and the augmented example derived from it. In line with the 

motif of strengthening decision boundaries, consistency regularization enforces a con-

nection between original and augmented samples. �is is usually implemented in a 

multi-task learning framework where a model simultaneously optimizes the down-

stream task and a secondary consistency term.

Consistency regularization has been successfully applied to translate between pro-

gramming languages by enforcing consistency on back-translations [103]. Alberti et al. 

[104] use a slightly different form of consistency regularization to generate synthetic 

question-answer pairs. Rather than minimizing the distance between representations 

of original and augmented examples, the framework requires that the model outputs 

the exact same answer when predicting from context, question inputs as when a sepa-

rate model generates the question from context, answer inputs. �e original BERT-

Large model achieves an F1 score of 83.1 when fine-tuned on the SQuAD2. Fine-tuning 

BERT with an additional 7 million questions generated with the consistency condition 

improves performance to 84.8.

Consistency regularization is a common technique for self-supervised represen-

tation learning because unlabeled data should still have this property of consistent 
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representations before and after augmentation. Xie et al. [105] deploy consistency reg-

ularization as shown in Fig.  6. �is technique surpasses the previous state-of-the-arts 

trained solely with supervised learning using significantly less data. �ese improvements 

continue even in the extreme case of only 20 labeled examples. As an example of the per-

formance gain, the fine-tuned BERT model achieves a 6.5% error rate on IMDB review 

classification, which is reduced to 4.2% with UDA. �e multi-task loss formulation is 

also fairly common in consistency regularization implementations.

Contrastive learning

Contrastive learning differs from consistency regularization by utilizing negative sam-

ples to normalize the loss function. �is is a critical distinction because the negative 

samples can provide a significant learning signal. We believe that the development of 

Text Data Augmentation can benefit from adapting successful examples in Computer 

Vision. �e use of Data Augmentation to power contrastive self-supervised learning 

has been one of the most interesting stories in Computer Vision. �is involves frame-

works such as SimCLR [106], MoCo [107], SwAV [108], and BYOL [109], to name a 

few. �is training strategy should be well suited for information retrieval in NLP.

Krishna et al. [110] propose contrastive REALM (c-REALM). �e contrastive loss is used 

to align the embedding of the question and supervised answer, and contrast the question 

with other supervised answers from the mini-batch. However, this technique of contras-

tive learning is more akin to supervised contrastive learning [52], than frameworks such as 

SimCLR. In SimCLR, Data Augmentation is used to form the positive pairs. �is strategy 

has not been heavily explored in information retrieval, likely due to the lack of augmenta-

tions. Hopefully, the list we have provided will help those interested pursue this idea.

Gunel et al. [111] demonstrate significant improvements on GLUE benchmark tasks by 

training with a supervised contrastive loss in addition to cross-entropy loss on one-hot 

encoded label vectors. �e gain is especially pronounced when learning from 20 labeled 

examples, while they do not report much of a difference at 1,000 labeled examples. In 

addition to quantitative metrics, the authors highlight that the embeddings of classes are 

much more spread out through the lens of a t-SNE visualization.

Fig. 6 Unsupervised data augmentation schema. Image taken from Xie et al. [105]
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Contrastive learning, similarly to consistency regularization, describes making the 

representation of an instance and a transformation-derived pair similar. However, con-

trastive learning adds a negative normalization that additionally pushes these represen-

tations away from other instances in the samples mini-batch. Contrastive learning has 

achieved large advances in representation Computer Vision such as SimCLR [106] and 

MoCo [107]. Using Data Augmentation for contrastive learning is a very promising area 

of research with recent extensions to the information-retrieval language model REALM 

[73]. We refer interested readers to a report from Rethmeier and Augenstein [112] for 

more details on early efforts to apply contrastive learning to NLP.

Consistency regularization and contrastive learning are candidate solutions to a com-

mon problem found by inspecting model performance. For example, �orne et al. [113] 

find that fact verification models achieve better accuracy when classifying if claims are 

supported or refuted by the evidence when ignoring the evidence. Contrastive learning 

would require the model to correctly associated supporting evidence by contrasting it 

with refuting evidence. Consistency Regularization would more so describe having a 

similar prediction when the evidence has been slightly perturbed, such as inserting a 

random word or replacing it with a paraphrase that shares the same semantics.

Negative data augmentation

Negative Data Augmentation is a similar concept to the negative examples used in con-

trastive learning. However, a key difference is that contrastive learning generally uses 

other data points as the negatives, whereas Negative Data Augmentation entails apply-

ing aggressive augmentations. �ese augmentations are not just limited to label cor-

ruptions, but may push the example out of the natural language distribution entirely. 

Returning to the motif of Meaning versus Form [28] these augmentations may not be 

useful for learning meaning, but they can help reinforce the form of natural language. 

Sinha et al. [114] demonstrate how this can be used to improve contrastive learning and 

generative adversarial networks.

Augmentation controllers

A large contributor to the success of Data Augmentation in Computer Vision is the 

development of controllers. Controllers reference algorithms that optimize the strength 

of augmentations throughout training. �e strength of augmentations describe the mag-

nitude of operation such as inserting 3 additional words compared to 15. Augmentation 

strength also describes how many augmentations are stacked together such as random 

insertion followed by deletion followed by back-translation and so on, described more 

next. Successful controllers such as AutoAugment [7], Population-Based Augmentation 

[8], or RandAugment [9] have not yet seen large-scale adoption in NLP.

When applying Easy Data Augmentation, several hyperparameters arise. Hyperparam-

eter optimization is one of the active areas of Deep Learning research [115–117]. �is 

presents a perfect problem to find optimal values for random augmentation samplings, 

as well as magnitudes such as: how many tokens to delete? SpanBERT [118], for exam-

ple, shows that instead of masking out single tokens for language modeling, masking out 

multiple tokens at a time, known as spans, results in better downstream performance.
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Adversarial augmentation

Adversarial attacks and the use of adversarially optimized inputs for augmentation is 

very similar to the previous discussion on controllers. �e key differentiation is that 

adversarially controllers target misclassifications whereas controllers generally try to 

avoid misclassifications. Particularly, adversarial optimization aims to improve robust-

ness to high-frequency pattern shifts. Adversarial attacks on text data generally range 

from introducing typos to swiping out individual or chunks of words. �ere is a great 

deal of ambiguity with this since many of these perturbations would be cleaned and fil-

tered by the text data preprocessing techniques such as spell checkers, case normaliza-

tions, or regular expression filtering.

TextAttack [119] is an open-source library implementing adversarial text attacks and 

providing APIs for Data Augmentation. �ere are four main components of an attack in 

the TextAttack framework, a goal function, constraints, transformations, and a search 

method. �is pipeline is illustrated in Fig. 7. �e goal function defines the target out-

put, for example instead of solely flipping the predicted output we may want to target a 

50-50 density. �e constraints define how far the input can be changed. �e transforma-

tion describes the tools available to change the input such as synonym swaps, deletions, 

applying back-translation, and all the other techniques discussed previously. Finally, the 

search method describes the algorithm for searching for the attack. Similar to our dis-

cussion of controllers there are many different ways to perform black-box searches such 

as grid or random searches, bayesian optimization, and evolutionary search, to name a 

few [115].

A key consideration with adversarial augmentation is how quickly we can construct 

adversarial examples. Many adversarial example construction techniques such as Sze-

gedy et  al. [120] rely on iterative optimization such as L-BFGS to find the adversarial 

example. �is would be a significant bottleneck in Deep Learning training to wait for the 

adversarial search at each training batch. Towards solving this issue, Wang et al. [121] 

reduce time consumption up to 60% with their DEAT algorithm. �e high-level idea of 

DEAT is to use batch replay to avoid repeatedly computing adversarial batches.

Stacking augmentations

Stacking augmentations is a strategy that has improved vision models but is less straight-

forward to apply to text data. One strategy for this is CoDA [122]. CoDA introduces a 

local consistency loss to make sure stacking augmentations has not overly corrupted the 

sample, and a global loss to preserve local neighborhoods around the original instance.

Fig. 7 Developing attacks in TextAttack [119]
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Tokenization

�e preprocessing pipeline of tokenization presents a formidable challenge for imple-

menting Data Augmentations. It is common to tokenize, or convert word tokens to their 

respect numeric index in a vocabulary-embedding lookup table offline before it reaches 

the Data Loader itself. Applying Data Augmentations on these index lists could require 

significantly more engineering effort. Even for simple synonym replacement, additional 

code will have to be written to construct dictionaries of the synonyms index value for 

swaps. Notably, researchers are exploring tokenizer-free models such as byT5 [123] and 

CANINE [124]. �ese models process byte-level sequences such as ASCII codes [125, 

126] and will require special processing to integrate these augmentations.

Position embeddings

Another more subtle detail of Transformer implementations are the use of position 

embeddings. �e original Transformer [92] uses sine and cosine functions to integrate 

positional information into text sequences. Another subtle Data Augmentation could be 

to explore perturbing the parameters that render these encodings.

Augmentation on CPUs or GPUs?

Another important aspect of Data Augmentation is to understand the typical data pre-

processing pipeline from CPUs to GPUs. It has been standard practice to apply Data 

Augmentation to data on the CPU before it is passed to the GPU for model training. 

However, recent practice has looked at applying Data Augmentation directly on the 

GPU. �is is done in Keras, for example, by adding Data Augmentation as a layer in the 

model immediately after the input layer. It is also worth noting clever schemes such as 

Data Echoing from Choi et al. [127] that apply additional techniques to avoid idle time 

between CPU data loading and GPU model training.

O�ine and online augmentation

Similarly to the discussion of augmenting data on the CPU or on the GPU, another 

important consideration is to make sure the Data Augmentation is happening online, 

compared to offline. �is refers to when the original instance is augmented in the data 

pipeline. Offline augmentation refers to augmenting the data and storing the augmented 

examples to the disk. Online augmentation describes augmenting the data as a new 

batch of the original data is loaded for a training step. We note that Online augmenta-

tion is much more powerful than Offline augmentation. Offline augmentation offers the 

slight benefit of faster loading times, but it does not really take advantage of the stochas-

ticity and diversity enabled with most of the described augmentations.

Another important detail of this pipeline is augmentation multiplicity [128]. Augmen-

tation multiplicity refers to the number of augmented samples derived from one original 

example. Fort et  al. [128] and Hoffer et  al. [129] illustrate how increasing augmenta-

tion multiplicity can improve performance. �is approach could introduce significant 

memory overhead without an online augmentation pipeline. Additionally Wei et  al. 

[130] point out that examples are often augmented online such that the model never 

actually trains with the original instances. Wei et al. propose separating the model into 
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two fine-tuning heads, one which trains solely on the unaugmented data and the other 

trained on high magnitude augmentations. �ese works highlight the opportunity to 

explore fine-grained details in augmentation pipelines.

Curriculum learning

Curriculum Learning describes having a human or meta-controller structured organi-

zation to the data batches. �is includes varying the strength of Data Augmentation 

throughout training. Kucnik and Smith [131] find that it is much more efficient to sub-

sample a portion of the dataset to be augmented, rather than augmenting the entire 

dataset. Wei et  al. [132] demonstrate the efficacy of gradually introducing augmented 

examples to original examples in the training of triplet networks for text classifica-

tion. We note this is very similar to our discussion of controllers for augmentation and 

searching for optimal magnitude and chaining parameters. �akur et  al. [85] describe 

that “selecting the sentence pairs is non-trivial and crucial for the success of the method”.

Class imbalance

A prevalent issue explored in classification models is Class Imbalance [133]. In addition 

to customized loss functions, sampling techniques are a promising solution to overcome 

biases stemming from Class Imbalance. �ese solutions generally describe strategies 

such as random oversampling or undersampling [134, 135], in addition to interpolation 

strategies such as synthetic minority oversampling technique (SMOTE) [136]. SMOTE 

is a general framework to oversample minority instances by averaging between them. 

From the list of augmentations we have covered, we note that MixUp is very similar to 

this technique and has been explored for text data. It may be useful to use other tech-

niques for oversampling to avoid potential pitfalls of duplicating instances.

Discussion

Task-speci�c augmentation for NLP

NLP encompasses many different task formulations. �is ranges from text classification 

to paraphrase identification, question answering, and abstractive summarization, to name 

a few. �e off-the-shelf Data Augmentation prescribed in the previous section will need 

slight adaptations for each of these tasks. For example, when augmenting the context in a 

question answering dataset, it is important to be mindful of removing the answer. �e larg-

est difference we have found between tasks from the perspective of Data Augmentation 

is that they vary massively with respect to input length. Short sequences will have to be 

more mindful of how augmentations change the original example. Longer sequences have 

more design decisions such as how to sample nested sentences for back-translation and 

so on. We refer interested readers to Feng et al. [16] who enumerate how Data Augmenta-

tion applies to summarization, question answering, sequence tagging, parsing, grammati-

cal error correction, neural machine translation, data-to-text natural language generation 

(NLG), open-ended and conditional generation, dialogue, and multimodal tasks.
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Self-supervised learning and data augmentation

In both the case of self-supervised learning and Data Augmentation, we are looking to 

inject prior knowledge about a data domain. When a model is deployed, what is more 

likely: the data distribution changes or the task the model is supposed to perform with 

the data changes? In self-supervised learning, we look for ways to set up tasks and loss 

functions for representation learning. In Data Augmentation, we look for priors to 

manipulate the data distribution. A key advantage of Data Augmentation is that it is 

much easier to stack priors than self-supervised learning. In order to utilize multiple 

priors, self-supervised learning relies on highly unstable multi-task learning or costly 

multi-stage learning. In contrast, Data Augmentation only requires random sampling 

operations to integrate multiple priors.

We note that many of the key successes in self-supervised Learning rely on Data Aug-

mentation, or have at least been dramatically improved by Data Augmentation. For exam-

ple, the success of contrastive learning relies on Data Augmentation to form two views 

of the original instance. �e most data-efficient GAN frameworks achieve data-efficiency 

through the use of Data Augmentation [137]. Further, DistAug [138] even tests Data Aug-

mentation with large scale pixel autoregressive modeling in the ImageGPT model [139].

Transfer and multi-task learning

Transfer learning has been one of the most successful approaches to training deep neu-

ral networks. �is looks especially promising as more annotated datasets are collected 

and unified in dataset hubs. A notable example of which is HuggingFace datasets [140], 

containing 884 datasets at the time of this publication. In addition to transfer learning, 

researchers have additionally explored multi-task learning in which a model simulta-

neously optimizes multiple tasks. �is has been well explored in T5 [141], which con-

verts all tasks into language modeling. We believe there is room for Data Augmentation 

experiments in this space, such as the use of MixUp to combine data from multiple tasks 

or Back-Translation between curated datasets.

Wei et al. [130] propose an interesting extension, named as Multi-Task View (MTV), 

to the common practice of transfer learning to better utilize augmented subsets and 

share information across distributions. Multi-Task View (MTV) trains separate heads 

on augmented subsets and ensembles predictions for the final output. Geva et al. [142] 

have also shown utility in sharing a feature extractor base and training separate heads. 

In this case, Geva et al. train each head with a different task and reformulate inputs into 

unifying prompts for inference. Similar to the discussion of prompting under Generative 

Data Augmentation, there remains a significant opportunity to explore transfer learning, 

multi-task learning, and Data Augmentation.

AI-GAs

One of the most interesting ideas in artificial intelligence research is AI-GAs (AI-

generating algorithms) [10]. An AI-generating algorithm is composed of three pillars, 

meta-learning architectures, meta-learning the learning algorithms themselves, and 

generating effective learning environments. We believe that Data Augmentation and 

this interface to control data distributions will play a large role in the third pillar of 
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generating learning environments. For example, embedding learning agents in teacher-

student loops in which the teacher controls augmentation parameters to render the 

learning environment.

Learning the learning environment itself has been successfully applied to bipedal walk-

ing control with neural networks in POET [11]. POET is a co-evolutionary framework 

of control parameters and parameters that render walking terrains. Data Augmentation 

may be the most natural way of extending this framework to understanding language 

in which the environment searches for magnitude parameters of augmentation or sub-

sets of data, as in curriculum learning. AI-GAs have been applied to vision problems 

in examples such as Generative Teaching Networks [12] and Synthetic Petri Dish [13]. 

In GTNs, a teacher network generates training data for a student network. Notably, the 

training data has high-frequency noise patterns that do not resemble natural image data. 

It could be interesting to see how well GTNs could generate text embeddings similar to 

the continuous optimization of prompt tuning.

Conclusion

In conclusion, this survey has presented several strategies for applying Data Augmenta-

tion in Text data. �ese augmentations provide an interface to allow developers to inject 

priors about their task and data domain into the model. We have additionally presented 

how Data Augmentation can help simulate distribution shift and test generalization. 

As Data Augmentation for NLP is relatively immature compared to Computer Vision, 

we highlight some of the key similarities and differences. We have also presented many 

ideas surrounding Data Augmentation, from practical engineering considerations to 

broader discussions of the potential of data augmentation in building artificial intelli-

gence. Data Augmentation is a very promising strategy and we hope our discussion sec-

tion helps motivate further research interest.
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