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Abstract 
Speaker verification and identification systems most often 
employ HMMs and GMMs as recognition engines. This paper 
describes an algorithm for the optimal selection of the feature 
space, suitable for these engines. In verification systems, each 
speaker (target) is assigned an “individual” optimal feature 
space in which he/she is best discriminated against impostors. 
Several feature selection procedures were tested for the 
selection process. A Recognition Related Criterion (RRC), 
correlated with the recognition rate, was developed and 
evaluated.  

The algorithm was evaluated on a text-dependent 
database. A significant improvement (over the “standard” 
MFCC space) in verification results was demonstrated with 
the selected individual feature space. An EER of 0.7% was 
achieved when the feature set was the “almost standard” Mel 
Frequency Cepstrum Coefficients (MFCC) space (12 MFCC 
+ 12 ∆MFCC). Under the same conditions, a system based on 
the selected feature space yielded an EER of only 0.48%. 

1. Introduction 
Today, Automatic Speaker Verification (ASV) systems [1 – 
5] use a common feature space for all speakers. Moreover, 
this common set of features is most often the set of cepstral 
and delta-cepstral coefficients, used in speech recognition 
tasks. Very little work has been done on selecting the optimal 
feature space for speaker verification/identification tasks [6 – 
14].  

The motivation for the research is the assumption that 
every speaker has his own ‘optimal’ feature space, which 
optimally discriminates him against other speakers. This was 
supported by preliminary past work [6]. 

The goal of this paper is to demonstrate the significance 
of employing an individual feature space in modern 
Continuous Density Hidden Markov Model (CD-HMM) [15] 
or Gaussian Mixture Model (GMM) [16] based verification 
systems. 

In this paper, a new criterion for feature selection was 
developed, which is suitable for speaker verification tasks. A 
text-dependent speaker verification system, based on CD-
HMM was developed with individual feature selection 
procedure. The system was evaluated on a text-dependent 
database, using several feature selection procedures along 
with the new feature selection criterion, named “Recognition 
Related Criterion” (RRC).  
Figure 1 shows a general scheme of the proposed speaker 
verification system.  
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Figure 1: The proposed speaker verification system 

The proposed speaker verification system consists (in the 
training stage) of the speaker’s (target) training speech 
utterances, pre-processing and global feature extraction (set 
of all pre-determined features), The training of each speaker 
involves the extraction of a high dimensional feature space 
(termed here “global feature space”), from which the 
individual optimal feature sub-space will be extracted. 

An algorithm for individual feature selection is executed 
on the global feature set to yield the optimal individual 
feature space (X). For each speaker, an index of selected 
features is stored and an HMM target’s model is trained in 
that individual feature space along with target’s individual 
background model. 

In the test stage, an unknown speaker’s claimed identity T 
and test utterance are presented to the system. A verification 
algorithm, (to be discussed in section 3) employing the 
individual feature space, is used to provide an accept/reject 
decision. 

2. Feature selection 
Often, in pattern recognition problems, there is large number 
of features that may be used. Usually, it is not possible to 
work with very large dimensional feature space due to the 
fact that the recognition error may increase (“the curse of 



dimensionality” [17]). Very often also the application forces 
constraints in memory and computation power, which limit 
the dimension of the feature space.  

Feature selection is the process of selecting a features 
subset, which is most effective for preserving class 
separability. The feature selection method can be specified in 
terms of two components:  
1) Performance criterion, ( )J i  
2) Selection procedure,  

The problem of feature selection can be described as 
follows:  

Given a set Y of K features { }| 1, 2,...,iY y i K= =  

select a subset X (of k K<  features) 

{ }| 1, 2,..., ,i iX x i k x Y= = ∈  such that the performance 

criterion ( )J i  is optimized. 
In speaker verification/identification tasks, the aim of this 

selection is to determine the feature space of size k K<  for 
which the recognition error is minimized. Minimizing the 
recognition error is not always easy to implement; hence 
separability measures are often introduced as criteria. 

Several selection procedures are discussed in the pattern 
recognition literature [17, 18], such as: 

Exhaustive search - an optimal method of feature 
selection. It considers all the combinations of k out of K. 
Implementation of such a search requires an enormous 

amount of computation, namely 
( )

!
! !

K K
k k K k

 
=  − 

 

searches. For example, with k = 24 and K = 120, the number 
of searches is ~ 2410.872 10× (!).  

K-best Method - this method is probably the simplest one. 
The best subset of k features is composed of the k best 
features considered one at a time. However, a set of the best 
individual k features is not necessarily the best set of k 
features. 

Forward Selection - This method sometimes called 
“bottom-up” [11], “ascendant selection” [8], or “add-on”. The 
Forward selection procedure starts with the empty set and 
adds features iteratively. Initial tests are done with each of K 
features, one at a time, selecting the best single feature. Then, 
tests with two features, including the best one selected at the 
previous stage, and each (one at a time) of the remaining K – 
1 features. The cycle is repeated until the desired number of 
features has been chosen.  

Backward Selection - This method is a simple stepwise 
search technique, sometimes called “knock-out” strategy [14] 
or “top-down” [11]. The Backward selection procedure starts 
from the full set of K features. All K subsets of 1K −  
features are used in the performance criterion calculation to 
determine the best subset (of 1K −  features). The feature not 
used in this best subset is “knock-out” of consideration. The 
process is repeated with 1K −  subsets of 2K −  features, 
etc. 

The l-r Algorithm - The l-r algorithm [12] uses the 
forward and the backward selection in order to yield a better 
performance selection procedure. For every iteration, the 
algorithm uses the forward procedure in order to add l 
features, and uses the backward procedure in order to remove 
the r worst features from the augmented subset.  

The Sequential Floating Forward Sequence (SFFS) - 
The Sequential Floating Forward Sequence (SFFS) [19] can 
be seen as a “dynamic” l-r algorithm. The SFFS procedure 
consists of applying, after each forward step, a number of 
backward steps as long as the resulting subsets are better than 
the previously evaluated ones at that level. Consequently, 
there are no backward steps at all if the performance cannot 
be improved.  

Dynamic Programming  (DP) - dynamic programming is 
utilized to find an optimal set of features with much fewer 
calculations than exhaustive search. The dynamic 
programming is a multistage optimization technique that 
makes use of the principle of optimality which states: 
whatever the initial state and decision are, the remaining 
decisions must constitute an optimal policy with regard to the 
state resulting from the first decision. When applied to the 
selection of features, the principle in conjunction with a 
functional equation permits the choice of attributes that have 
the maximum effectiveness [7]. One may view the dynamic 
programming procedure as a tree search method as shown in 
figure 2. In this representation, the features jx  

( 1, 2,...,j K= ) are depicted by the nodes of the tree. Subsets 
can be interpreted as paths or branches joining the nodes of 
subsequent stages. There are k stages in this iterative 
algorithm, as the number of features in the optimal subset. Let 

( )1 2, ,...,j j j j
n nq q q=q  ( 1, 2,...,j K= ) be one of the K 

possible subsets selected after n stages and j
nq  represents a 

feature in X. For every jx  ( 1, 2,...,j K= ) at the nth stage, 

the subset j
nq  is picked such that: 

( ) ( )1 1max , ; 1, 2,..., ;j i i
n n j j ni

J J x i K x− −= = ∉q q q  (1) 

where J is defined as a feature performance criterion. For a 
detailed discussion of the DP algorithm see for example [7]. 
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Figure 2: Feature subset selection using dynamic 

programming 



To guarantee optimal results, the performance criterion, J, has 
to be monotonic, non-decreasing function of n and can be 
separated into two parts, one corresponding to the history of 
the process up to the n-1 stage and the other corresponding to 
the behavior of the process at the nth stage [20]. Most of the 
criteria used in practice, cannot guarantee these 
characteristics, especially when the features are dependent, so 
the DP becomes a sub-optimal selection method. 

2.1.  Performance criterion for Speaker Verification 

In verification systems, the decision to accept or reject an 
identity claim is based on the comparison of a score with a 
threshold, τ . In this paper the score, ( )s O , of utterance’s 
observations, O, is the log likelihood ratio, 
( ) ( ) ( )log | log |T IBMs p pλ λ= −O O O , where Tλ  is the 

target speaker’s model, and IBMλ  is the individual  
background model. 

A common and very often used evaluation measure for 
testing performances of speaker verification systems is the 
Equal Error Rate (EER), denoting the case when the false 
accept error is equal to the false reject (miss) error. It is 
therefore logical to use the EER (or some function thereof), as 
the performance criterion.  

The use of the EER as a criterion becomes impractical 
due to the large computational load, since feature selection 
search algorithms require the estimation of the criterion at 
each step. Moreover, and more important, given a relatively 
small amount of training data available, the calculated EER 
yields very low resolution to be used as a criterion.  

The proposed performance criterion, presented here, is the 
estimation of a function of the EER, based on the assumption 
that the scores’ Probability Density Function (PDF) of the 

target ( )( )| Tf s ∈ O O O  and 

impostors ( )( )| If s ∈ O O O , may both be assumed 

Gaussians. Here TO  and IO  are the observations uttered by 
the target and impostors respectively. Figure 3 schematically 
describes the estimation of the EER. 
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Figure 3: Estimation of verification errors from target 
and impostors Gaussian-like PDF’s. 

 
 
 
 

The PDF of the target’s score is assumed to be Gaussian:  

 

( )
( )( )2

2
1| exp

2 2
T

T
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s
f s

µ

πσ σ

 −  ∈ = −   
  

O
O O O  

and the PDF of the impostors is similarly assumed to be 
Gaussian with parameters ( ),I Iµ σ . Given a threshold, τ , 

the False Accept ( FAP ) and False Reject (or “miss” missP ) 
errors may be calculated by the areas under the appropriate 
curves as shown in figure 3. 

To check the Gaussian assumption, a 2χ  goodness-of-fit 
test was successfully performed on the targets’ scores as well 
as on the impostors’ scores, using 0.05 significance level and 
9 degrees of freedom [24].  

Figure 4 shows an example of a target’s score histogram 
and its impostors’ score histogram, with the best fitted 
Gaussians. The scores were calculated in the target’s selected 
feature space (24 features).  
 

 

Figure 4: Gaussian fit for the histogram of target (#3) 
and impostors’ scores. 

 

2.1.1. The Recognition Related Criterion (RRC)  [13] 

Under the Gaussian assumption, the false reject, or missP  

errors and the false accept FAP  may be written: 
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where τ  is the threshold for which ( )miss FAP P EER= =  
(figure 3), and: 

 ( ) 2

0

1 1erf exp
22

x
x t dt

π
 = −  ∫  

( ){ } ( ){ }
( ){ } ( ){ }

| , |

std | , std |
T T I I

T T I I

E s E s

s s
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σ σ
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The value of τ for which miss FAP P=  may be calculated by: 

 
1 1erf erf2 2

erf erf

T I
miss FA

T I

T I

T I

P P τ µ τ µ
σ σ

τ µ τ µ
σ σ

   − −
= ⇒ + = − +   

   
   − −
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Since ( )erf i  is monotonically injected (one to one) function, 
the last equation yields 

 T I

T I

τ µ τ µ
σ σ
− −

= −  

hence, the value of τ for which miss FAP P=  is given by: 

 I T T I

I T

µ σ µ σ
τ

σ σ
+

=
+

 (4) 

Introducing the value of τ  (4) in the ( )missP EER=  
equation (2): 

 1erf 2
I T

I T
EER µ µ

σ σ
 −

= + + 
 (5)

 
Since we are interested in minimizing EER, the constant ½ is 
irrelevant. Moreover, since erf(·) is a monotonically injected 
function, its argument may be used as a criterion. Thus, the 
proposed performance criterion, RRC, is 

 T I

I T
RRC µ µ

σ σ
−

=
+

 (6) 

The criterion of equation (6) is to be maximized. Note 
that this criterion is somewhat similar to the F-ratio for the 
two Gaussian curves. 

3. Experimental setup 
The experiment was set for text-dependent speaker-
verification task. The model for each speaker was trained as a 
left-to-right Continuous Density Hidden Markov Model (CD-
HMM), with 5 states and 2 Gaussians per state. Individual 
background models (CD-HMM with 5 states and 2 Gaussians 
per state) were trained using 26 speakers (one utterance from 
each speaker). This experiment consisted only of male 
speakers. The use of background models for score 
normalization instead of cohorts is because of computation 
speed considerations. 

3.1. The database 

The algorithm was evaluated with utterances of the Hebrew 
word /hamesh/ (five), taken from the Hebrew Isolated Digits 
(HID) database. The database contains high quality speech, 
recorded over a six months period; sampled at 16KHz with 12 
bits resolution. 

Ten male speakers from this database, which have the 
highest number of utterance repetitions, were chosen to be 
target speakers. For each target there are 39 impostors. The 
number of utterances (repetitions of the word ‘five’) for each 
target speaker is between 70 to 400, and the number of 
utterances for each impostor is 45. The first 20 utterances for 
each Target speaker are used for training, the next 20 (targets’ 
utterances) for feature selection procedure (evaluation), and 
the rest utterances for testing. 

3.2. Front-end processing and the global feature set 

A conventional front end processing is employed in the 
system. First, the speech windowed by a 30 ms Hamming 
window with 15-ms frame rate. A speech activity detector is 
then used to discard silence–noise frames. The speech activity 
detector is a self-normalizing, energy based detector. Next, a 
global set of feature vectors are extracted from the speech 
frames. The global feature set was chosen to contain K = 120 
features from 10 groups of 12 order features. Table 1 shows 
the overall set of features and their assigned symbols. 

 

Table 1: The features and their symbols. 

# Feature name Order Symbols 

1 Mel Frequency Cepstral Coef. 
(MFCC) [21] 

12 1 12m m÷
 

2 Linear Prediction Cepstral Coef. 
(LPCC) [15, 22] 

12 1 12c c÷
 

3 Log Area Ratio (LAR) 12 1 12a a÷
 

4 Linear Prediction Coef. (LPC) 12 1 12l l÷
 

5 Partial Correlation (PARCOR) 12 1 12p p÷
 

6 First diff of MFCC (∆ - MFCC) 12 1 12m m∆ ÷∆
 

7 First diff of LPCC(∆ - LPCC) 12 1 12c c∆ ÷∆
 

8 First diff of  LAR (∆ - LAR) 12 1 12a a∆ ÷∆
 

9 First diff of LPC (∆ - LPC) 12 1 12l l∆ ÷∆
 

10 First diff of PARCOR  (∆ - 
PARCOR) 

12 1 12p p∆ ÷∆
 

 Total number of features: 120  



 
The MFCC features [21] were chosen since they are most 
often used in speaker verification / recognition systems. In 
our work, no Cepstral Mean Subtraction (CMS) was added. 
The other features [22] were chosen due to ease of estimation. 
Since the goal of the paper is proof of concept, only 120 
features were used, to reduce the calculation time. In future 
work other features, such as for example PLP’s will be 
included. The features have been normalized to their standard 
deviation in the feature extraction process to improve results. 

3.3. The verification system and the feature selection 
procedure 

The verification system is shown in figure 1 and described 
shortly in the introduction. The individual feature selection 
blocks are shown in the training stage of the system. The 
individual feature selection procedure requires a set of 
impostor utterances. Obviously, one cannot use all the 
impostor utterances in the database – a small set of impostors’ 
utterances must be selected. These were chosen as follows:  
For each target - (T), a CD-HMM was trained with 20 of the 
target’s utterances, yielding a target model Tλ . These 
models were defined for the full (global) 120-feature space. 
For each one of the target models, six “selected” impostors 
(cohort speakers - C) were determined using the Close 
Impostors Clustering (CIC) method [23] with the divergence-
like criterion: 

 

( ) ( ) ( )

( ) ( )
1

=1
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λ λ

=

 = −
 

 − −
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where ( )|i
T cp λO  is the probability of the ith target’s 

utterance i
TO  given the candidate impostor model cλ .  j

cO  

is the jth impostor’s utterance, and 
T

NO  and 
c

NO  are the 

number of target’s utterances and candidate impostor’s 
utterances respectively. The cohorts selected in the 120-
feature space were used for all sub spaces required by the 
feature selection algorithm. 

The feature selection procedure was executed for each 
target with the RRC (6) criterion using the evaluation 
database: 20 target’s utterances, and 10 utterances from each 
one of the six cohort impostors (C = 6). The result of the 
selection procedure was a set of k = 24 features for each 
target speaker. This feature order of 24 was determined in 
order to compare the results of the feature selection algorithm 
with the “almost standard” MFCC feature space (12 MFCCs 
+ 12 ∆MFCCs). Several feature selection procedures were 
executed: k-best, forward, DP, and SFFS.  

In the test stage, an unknown speaker’s claimed identity 
and test utterance are presented to the system. From the 
identity claim, the appropriate feature space is drawn and 
feature extraction is made on the pre-processed utterance to 
yield features, which belong to the speaker feature space. The 
verification algorithm provides a probabilistic score, ( )s O , 

which is compared to a threshold (τ), to yield an accept or 
reject decision. The score ( )s O  used here is the log 

likelihood ratio, ( ) ( ) ( )log | log |T IBMs p pλ λ= −O O O , 

where, O, is the speech utterance’s observations, Tλ  is the 

target speaker’s model, and IBMλ  is the individual 
background model. This model is trained for each target in its 
individual feature space, using the same background speakers. 

4. Results and discussion 
Figure 5 shows the maximum value of the criterion (RRC), as 
a function of the dimension of the selected feature space, k, as 
evaluated by the different feature selection procedures: k-
best, forward, DP and SFFS. These curves indicate that the 
worst selection procedure is, as expected, the k-best. The next 
is the forward selection procedure. The two best selection 
procedures are the DP and the SFFS. The SFFS yields similar 
results, it is however more efficient than the DP in terms of 
calculations load. The SFFS was thus chosen as the selection 
procedure in our individual feature selection system. 
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Figure 5: Maximum RRC criterion as a function of the 

feature space dimension, k, for several feature 
selection procedures (for speaker #3). 

Figure 6 shows EER test results of the various selection 
methods as a function of the feature space dimension, for 
speaker #3. From this figure one can see that the dimension of 
k=33 yields best results (for the SFFS). For dimension sizes 
above 35, the EER increases probably due to the “curse of 
dimensionality”. The results shown in figure 6 are posterior 
results, based on the test database. In practical cases, one 
would like to determine the order of the feature space, from 
the training/evaluation data, during the training process. 
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Figure 6: Real EER test results of the different feature 

selection procedures in different feature space 
dimension (for speaker #3). 

 
Table 2 shows the 24 selected feature subsets for each one of 
the first five target speakers, using the SFFS feature selection 
procedure. The SFFS used the RRC criterion (6). From this 
table one can see that different feature spaces were selected 
for the different target speakers. One can see also that the 
dominant features in the optimal sets belong to the MFCC 
family. 
 

Table 2: Selected features for the (first 5) target speakers. 

Sp 
# 

Selected features 

1 

4 5 10 8 2 11

2 4 5 6 7 8 9 11 12

3 2 12 4 2 4 5 8 10

m m m c a l
m m m m m m m m m
c a a l p p p p p

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

 

2 

2 4 5 8 9 12 8 10 12 11

1 6 7 9 10 11 12

1 4 5 12 1 4 5

m m m m m a l l l p
m m m m m m m
a a a a p p p

∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆

 

3 

5 8 9

3 5 6 7 9 10 11 12

2 3 5 6 9 10 11 12 1 2 9 10

m m m
m m m m m m m m
a a a a a a a l p p p p

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

4 

3 7 8 9 10 4 6 11 6 11 6 8 11

4 5 8 10 12

2 8 8 9 10 2

m m m m m a a a l l p p p
m m m m m
a a l l l p

∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆

 

5 

4 7 12 7 8 9 10 11 7 8 9 10

4 5 7 9 11 12

1 7 10 11 2 10

m m m a a a a a p p p p
m m m m m m
a a a a p p

∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆

  
 
 
 
 

Figure 7 shows the histogram of feature appearance in the 
individual selected feature subsets (from the ten targets). 
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Figure 7: Number of feature appearance in the 
individual selected feature subsets (ten targets). 

 
From figure 7 one can see that most of the selected features 
belong to the ∆MFCCs, especially the highest order 
coefficients 4 12m m∆ ÷∆ . 
 

Figure 8 shows the results of verification experiments 
obtained with different feature spaces. Results are presented 
using Detection Error Tradeoff (DET) plots, which show the 
system tradeoff of misses versus false acceptances. The figure 
shows the average DET curves of the full set of 120 features 
and two different (24 dimensional) spaces: 1) the MFCC (12 
MFCC + 12 ∆MFCC) feature space, 2) the individual selected 
feature space. Each curve is an average of ten DET curves of 
the ten target speakers. Note that the DET curves here are not 
performed conventionally (universal threshold), since scores 
for each target are given in a different feature space. 
Therefore, individual DET curves are calculated individually 
for each of the targets and average DET curve is performed 
by averaging all individual DET curves. The number of target 
trials is 1734, and the number of impostor trials is 6600. 
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Figure 8: Average DET curves of speaker verification 
results (feature spaces:  global 120 features, 24 
MFCC and Del MFCC space, and 24 individual 

optimal space) 

 

 Figure 8 shows that the individual selected feature 
system yields the best results. The worst results were 
achieved with the overall 120-feature space, probably due to 
the “curse of dimensionality”. 

Table 3 shows the mean EER values for each tested 
feature space. An average EER of 0.48% was achieved with 
the individual selected feature space. This is an improvement 
of 31% comparing to the ‘almost standard’ MFCC feature 
space (average EER = 0.7%).  
 

Table 3: Average equal error rate of the verification 
results 

Feature Space Mean Equal Error Rate (EER) in 
% 

120 features 6 

MFCC 0.7 

FS 0.48 

 
 

5. Conclusions 
This work has proposed an individual feature selection 
algorithm for HMMs with a Recognition Related Criterion 
(RRC). It has shown that employing an individual feature 
space can significantly improve speaker verification 
accuracy. It has also been demonstrated that the SFFS 
selection procedure is preferable to the other selection 
methods tested here.  

The results shown in this paper were for the case of text 
dependent speaker verification. Work is under way now to 
apply the feature selection algorithm to the case of text 
independent speaker verification [24]. For that the GMM is 

used rather than the HMM. Work is also under way to apply 
the algorithm to the problem of identification rather than 
verification. Here we plan to use a common ‘optimal’ feature 
space for all the speakers to be identified. 
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