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Abstract—Reading text from photographs is a challenging
problem that has received a significant amount of attention.
Two key components of most systems are (i) text detection from
images and (ii) character recognition, and many recent methods
have been proposed to design better feature representations
and models for both. In this paper, we apply methods recently
developed in machine learning–specifically, large-scale algo-
rithms for learning the features automatically from unlabeled
data–and show that they allow us to construct highly effective
classifiers for both detection and recognition to be used in a
high accuracy end-to-end system.
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I. INTRODUCTION

Detection of text and identification of characters in scene

images is a challenging visual recognition problem. As

in much of computer vision, the challenges posed by the

complexity of these images have been combated with hand-

designed features [1], [2], [3] and models that incorporate

various pieces of high-level prior knowledge [4], [5]. In this

paper, we produce results from a system that attempts to

learn the necessary features directly from the data as an

alternative to using purpose-built, text-specific features or

models. Among our results, we achieve performance among

the best known on the ICDAR 2003 character recognition

dataset.

In contrast to more classical OCR problems, where the

characters are typically monotone on fixed backgrounds,

character recognition in scene images is potentially far

more complicated due to the many possible variations in

background, lighting, texture and font. As a result, build-

ing complete systems for these scenarios requires us to

invent representations that account for all of these types of

variations. Indeed, significant effort has gone into creating

such systems, with top performers integrating dozens of

cleverly combined features and processing stages [5]. Recent

work in machine learning, however, has sought to create

algorithms that can learn higher level representations of

data automatically for many tasks. Such systems might be

particularly valuable where specialized features are needed

but not easily created by hand. Another potential strength

of these approaches is that we can easily generate large

numbers of features that enable higher performance to be

achieved by classification algorithms. In this paper, we’ll

apply one such feature learning system to determine to what

extent these algorithms may be useful in scene text detection

and character recognition.

Feature learning algorithms have enjoyed a string of

successes in other fields (for instance, achieving high perfor-

mance in visual recognition [6] and audio recognition [7]).

Unfortunately, one caveat is that these systems have often

been too computationally expensive, especially for applica-

tion to large images. To apply these algorithms to scene

text applications, we will thus use a more scalable feature

learning system. Specifically, we use a variant of K-means

clustering to train a bank of features, similarly to the system

in [8]. Armed with this tool, we will produce results showing

the effect on recognition performance as we increase the

number of learned features. Our results will show that it’s

possible to do quite well simply by learning many features

from the data. Our approach contrasts with much prior work

in scene text applications, as none of the features used here

have been explicitly built for the application at hand. Indeed,

the system follows closely the one proposed in [8].

This paper is organized as follows. We will first survey

some related work in scene text recognition, as well as the

machine learning and vision results that inform our basic

approach in Section II. We’ll then describe the learning

architecture used in our experiments in Section III, and

present our experimental results in Section IV followed by

our conclusions.

II. RELATED WORK

Scene text recognition has generated significant interest

from many branches of research. While it is now possible

to achieve extremely high performance on tasks such as

digit recognition in controlled settings [9], the task of

detecting and labeling characters in complex scenes remains

an active research topic. However, many of the methods

used for scene text detection and character recognition are



predicated on cleverly engineered systems specific to the

new task. For text detection, for instance, solutions have

ranged from simple off-the-shelf classifiers trained on hand-

coded features [10] to multi-stage pipelines combining many

different algorithms [11], [5]. Common features include

edge features, texture descriptors, and shape contexts [1].

Meanwhile, various flavors of probabilistic model have also

been applied [4], [12], [13], folding many forms of prior

knowledge into the detection and recognition system.

On the other hand, some systems with highly flexible

learning schemes attempt to learn all necessary information

from labeled data with minimal prior knowledge. For in-

stance, multi-layered neural network architectures have been

applied to character recognition and are competitive with

other leading methods [14]. This mirrors the success of such

approaches in more traditional document and hand-written

text recognition systems [15]. Indeed, the method used in

our system is related to convolutional neural networks. The

primary difference is that the training method used here

is unsupervised, and uses a much more scalable training

algorithm that can rapidly train many features.

Feature learning methods in general are currently the

focus of much research, particularly applied to computer

vision problems. As a result, a wide variety of algorithms

are now available to learn features from unlabeled data [16],

[17], [18], [19], [20]. Many results obtained with feature

learning systems have also shown that higher performance

in recognition tasks could be achieved through larger scale

representations, such as could be generated by a scalable

feature learning system. For instance, Van Gemert et al. [21]

showed that performance can grow with larger numbers of

low-level features, and Li et al. [22] have provided evidence

of a similar phenomenon for high-level features like objects

and parts. In this work, we focus on training low-level

features, but more sophisticated feature learning methods

are capable of learning higher level constructs that might be

even more effective [23], [7], [17], [6].

III. LEARNING ARCHITECTURE

We now describe the architecture used to learn the feature

representations and train the classifiers used for our detection

and character recognition systems. The basic setup is closely

related to a convolutional neural network [15], but due to its

training method can be used to rapidly construct extremely

large sets of features with minimal tuning.

Our system proceeds in several stages:

1) Apply an unsupervised feature learning algorithm to a

set of image patches harvested from the training data

to learn a bank of image features.

2) Evaluate the features convolutionally over the training

images. Reduce the number of features using spatial

pooling [15].

3) Train a linear classifier for either text detection or

character recognition.

We will now describe each of these stages in more detail.

A. Feature learning

The key component of our system is the application of

an unsupervised learning algorithm to generate the features

used for classification. Many choices of unsupervised learn-

ing algorithm are available for this purpose, such as auto-

encoders [19], RBMs [16], and sparse coding [24]. Here,

however, we use a variant of K-means clustering that has

been shown to yield results comparable to other methods

while also being much simpler and faster.

Like many feature learning schemes, our system works

by applying a common recipe:

1) Collect a set of small image patches, x̃(i) from training

data. In our case, we use 8x8 grayscale1 patches, so

x̃(i) ∈ R
64.

2) Apply simple statistical pre-processing (e.g., whiten-

ing) to the patches of the input to yield a new dataset

x(i).

3) Run an unsupervised learning algorithm on the x(i) to

build a mapping from input patches to a feature vector,

z(i) = f(x(i)).

The particular system we employ is similar to the one

presented in [8]. First, given a set of training images, we

extract a set of m 8-by-8 pixel patches to yield vectors of

pixels x̃(i) ∈ R
64, i ∈ {1, . . . ,m}. Each vector is brightness

and contrast normalized.2 We then whiten the x̃(i) using

ZCA3 whitening [25] to yield x(i). Given this whitened bank

of input vectors, we are now ready to learn a set of features

that can be evaluated on such patches.

For the unsupervised learning stage, we use a variant

of K-means clustering. K-means can be modified so that

it yields a dictionary D ∈ R
64×d of normalized basis

vectors. Specifically, instead of learning “centroids” based

on Euclidean distance, we learn a set of normalized vectors

D(j), j ∈ {1, . . . , d} to form the columns of D, using inner

products as the similarity metric. That is, we solve

min
D,s(i)

∑

i

||Ds(i) − x(i)||2 (1)

s.t. ||s(i)||1 = ||s(i)||∞,∀i (2)

||D(j)||2 = 1,∀j (3)

where x(i) are the input examples and s(i) are the corre-

sponding “one hot” encodings4 of the examples. Like K-

means, the optimization is done by alternating minimization

over D and the s(i). Here, the optimal solution for s(i) given

1All of our experiments use grayscale images, though the methods here
are equally applicable to color patches.

2We subtract out the mean and divide by the standard deviation of all
the pixel values.

3ZCA whitening is like PCA whitening, except that it rotates the data
back to the same axes as the original input.

4The constraint ||s(i)||1 = ||s(i)||∞ means that s
(i) may have only 1

non-zero value, though its magnitude is unconstrained.



Figure 1. A small subset of the dictionary elements learned from grayscale,
8-by-8 pixel image patches extracted from the ICDAR 2003 dataset.

D is to set s
(i)
k = D(k)⊤x(i) for k = arg maxj D(j)⊤x(i),

and set s
(i)
j = 0 for all other j 6= k. Then, holding all s(i)

fixed, it is easy to solve for D (in closed-form for each

column) followed by renormalizing the columns.

Shown in Figure 1 are a set of dictionary elements

(columns of D) resulting from this algorithm when applied

to whitened patches extracted from small images of char-

acters. These are visibly similar to filters learned by other

algorithms (e.g., [24], [25], [16]), even though the method

we use is quite simple and very fast. Note that the features

are specialized to the data—some elements correspond to

short, curved strokes rather than simply to edges.

Once we have our trained dictionary, D, we can then

define the feature representation for a single new 8-by-

8 patch. Given a new input patch x̃, we first apply the

normalization and whitening transform used above to yield

x, then map it to a new representation z ∈ R
d by taking the

inner product with each dictionary element (column of D)

and applying a scalar nonlinear function. In this work, we

use the following mapping, which we have found to work

well in other applications: z = max{0, |Dx|−α} where α is

a hyper-parameter to be chosen. (We typically use α = 0.5.)

B. Feature extraction

Both our detector and character classifier consider 32-by-

32 pixel images. To compute the feature representation of the

32-by-32 image, we compute the representation described

above for every 8-by-8 sub-patch of the input, yielding a 25-

by-25-by-d representation. Formally, we will let z(ij) ∈ R
d

be the representation of the 8-by-8 patch located at position

i, j within the input image. At this stage, it is necessary

to reduce the dimensionality of the representation before

classification. A common way to do this is with spatial

pooling [26] where we combine the responses of a feature

at multiple locations into a single feature. In our system,

we use average pooling: we sum up the vectors z(ij) over

9 blocks in a 3-by-3 grid over the image, yielding a final

feature vector with 9d features for this image.

C. Text detector training

For text detection, we train a binary classifier that aims

to distinguish 32-by-32 windows that contain text from

windows that do not. We build a training set for this classifier

(a) Distorted ICDAR ex-
amples

(b) Synthetic examples

Figure 2. Augmented training examples.

by extracting 32-by-32 windows from the ICDAR 2003

training dataset, using the word bounding boxes to decide

whether a window is text or non-text.5 With this procedure,

we harvest a set of 60000 32-by-32 windows for training

(30000 positive, 30000 negative). We then use the feature

extraction method described above to convert each image

into a 9d-dimensional feature vector. These feature vectors

and the ground-truth “text” and “not text” labels acquired

from the bounding boxes are then used to train a linear

SVM. We will later use our feature extractor and the trained

classifier for detection in the usual “sliding window” fashion.

D. Character classifier training

For character classification, we also use a fixed-sized input

image of 32-by-32 pixels, which is applied to the character

images in a set of labeled train and test datasets.6

However, since we can produce large numbers of features

using the feature learning approach above, over-fitting be-

comes a serious problem when training from the (relatively)

small character datasets currently in use. To help mitigate

this problem, we have combined data from multiple sources.

In particular, we have compiled our training data from

the ICDAR 2003 training images [27], Weinman et al.’s

sign reading dataset [4], and the English subset of the

Chars74k dataset [1]. Our combined training set contains

approximately 12400 labeled character images.

With large numbers of features, it is useful to have even

more data. To satisfy these needs, we have also experimented

with synthetic augmentations of these datasets. In particular,

we have added synthetic examples that are copies of the

ICDAR training samples with random distortions and image

filters applied (see Figure 2(a)), as well as artificial examples

of rendered characters blended with random scenery images

5We define a window as “text” if 80% of the window’s area is within a
text region, and the window’s width or height is within 30% of the width or
height (respectively) of the ground-truth region. The latter condition ensures
that the detector tends to detector characters of size similar to the window.

6Typically, input images from public datasets are already cropped to the
boundaries of the character. Since our classifier uses a fixed-sized window,
we re-cropped characters from the original images using an enclosing
window of the proper size.



Figure 3. Precision-Recall curves for detectors with varying numbers of
features.

(Figure 2(b)). With these examples included, our dataset

includes a total of 49200 images.

IV. EXPERIMENTS

We now present experimental results achieved with the

system described above, demonstrating the impact of being

able to train increasing numbers of features. Specifically,

for detection and character recognition, we trained our

classifiers with increasing numbers of learned features and

in each case evaluated the results on the ICDAR 2003 test

sets for text detection and character recognition.

A. Detection

To evaluate our detector over a large input image, we

take the classifier trained as in Section III-C and compute

the features and classifier output for each 32-by-32 window

of the image. We perform this process at multiple scales

and then, for each location in the original image assign it

a score equal to the maximum classifier output achieved

at any scale. By this mechanism, we label each pixel with

a score according to whether that pixel is part of a block

of text. These scores are then thresholded to yield binary

decisions at each pixel. By varying the threshold and using

the ICDAR bounding boxes as per-pixel labels, we sweep

out a precision-recall curve for the detector and report

the area under this curve (AUC) as our final performance

measure.

Figure 3 plots the precision-recall curves for our detector

for varying numbers of features. It is seen there that perfor-

mance improves consistently as we increase the number of

features. Our detector’s performance (area under each curve)

improves from 0.5 AUC, to 0.62 AUC simply by including

more features. While our performance is not yet comparable

to top performing systems it is notable that our approach

included virtually no prior knowledge. In contrast, Pan

et al.’s recent state-of-the-art system [5] involves multiple

(a) ICDAR test image (b) Text detector scores

(c) ICDAR test image (d) Text detector scores

Figure 4. Example text detection classifier outputs.
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Figure 5. Character classification accuracy (62-way) on ICDAR 2003 test
set as a function of the number of learned features.

highly tuned processing stages incorporating several sets of

expert-chosen features.

Note that these numbers are per-pixel accuracies (i.e.,

the performance of the detector in identifying, for a single

window, whether it is text or non-text). In practice, the

predicted labels of adjacent windows are highly correlated

and thus the outputs include large contiguous “clumps” of

positively and negatively labeled windows that could be

passed on for more processing. A typical result generated

by our detector is shown in Figure 4.

B. Character Recognition

As with the detectors, we trained our character classifiers

with varying numbers of features on the combined training

set described in Section III. We then tested this classifier on

the ICDAR 2003 test set, which contains 5198 test characters

7Achieved without pre-segmented characters.



Table I
TEST RECOGNITION ACCURACY ON ICDAR 2003 CHARACTER SETS.

(DATASET-CLASSES)

Algorithm Test-62 Sample-62 Sample-36

Neumann and Matas, 2010 [28] 67.0%7 - -
Yokobayashi et al., 2006 [2] - 81.4% -
Saidane and Garcia, 2007 [14] - - 84.5%

This paper 81.7% 81.4% 85.5%

from 62 classes (10 digits, 26 upper- and 26 lower-case

letters). The average classification accuracy on the ICDAR

test set for increasing numbers of features is plotted in

Figure 5. Again, we see that accuracy climbs as a function of

the number of features. Note that the accuracy for the largest

system (1500 features) is the highest, at 81.7% for the 62-

way classification problem. This is comparable or superior

to other (purpose-built) systems tested on the same problem.

For instance, the system in [2], achieves 81.4% on the

smaller ICDAR “sample” set where we, too, achieve 81.4%.

The authors of [14], employing a supervised convolutional

network, achieve 84.5% on this dataset when it is collapsed

to a 36-way problem (removing case sensitivity). In that

scenario, our system achieves 85.5% with 1500 features.

These results are summarized in comparison to other work

in Table I.

V. CONCLUSION

In this paper we have produced a text detection and

recognition system based on a scalable feature learning

algorithm and applied it to images of text in natural scenes.

We demonstrated that with larger banks of features we are

able to achieve increasing accuracy with top performance

comparable to other systems, similar to results observed in

other areas of computer vision and machine learning. Thus,

while much research has focused on developing by hand

the models and features used in scene-text applications, our

results point out that it may be possible to achieve high

performance using a more automated and scalable solution.

With more scalable and sophisticated feature learning al-

gorithms currently being developed by machine learning

researchers, it is possible that the approaches pursued here

might achieve performance well beyond what is possible

through other methods that rely heavily on hand-coded prior

knowledge.
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