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Abstract—Previous methods on text image motion deblurring
seldom consider the sparse characteristics of the blur kernel. This
paper proposes a new text image motion deblurring method by
exploiting the sparse properties of both text image itself and
kernel. It incorporates the L0-norm for regularizing the blur
kernel in the deblurring model, besides the L0 sparse priors for
the text image and its gradient. Such a L0-norm-based model is
efficiently optimized by half-quadratic splitting coupled with the
fast conjugate descent method. To further improve the quality
of the recovered kernel, a structure-preserving kernel denoising
method is also developed to filter out the noisy pixels, yielding a
clean kernel curve. Experimental results show the superiority of
the proposed method. The source code and results are available
at: https://github.com/shenjianbing/text-image-deblur.

Index Terms—L0-norm, motion deblurring, text image.

I. INTRODUCTION

T
EXT documents such as advertisements, receipts, and
information signboards captured by hand-held cameras

are very common in our daily lives. They provide great
conveniences for information acquisition and memorization.
However, acquired documents are often motion blurred due to
the camera shaking during photographing. How to eliminate
such a degradation and obtain sharp texts are thus very impor-
tant. In this paper, we propose a text image motion deblurring
method by considering the sparsity of both image and kernel.

There has been abundant research on natural image deblur-
ring [3]. A few methods [5] implicitly include the image
sparsity with the dictionary, which has been adopted for other
ill-posed inverse problems [1], [2], [6] without solving them
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directly. However, its performance depends on the quality of
the generated dictionary. Therefore, most studies explicitly
incorporate the image sparsity as prior constraints, which gen-
erally utilize the heavy-tail or other types of sparse statistics,
e.g., sparse dark channel prior, as a strong sparsity prior to
regularize the solution. However, generalizing these techniques
directly to text image deblurring could be problematic because
they emphasize the importance of color variations and conti-
nuity in natural images while text images are usually sparsely
toned with less contrast variation and more color-constant
stroke regions. Fig. 1(b) shows such an example where the
motion blurred text image [Fig. 1(a)] cannot be successfully
deblurred with the state-of-the-art deblurring method [7].

The merits of the sparse toning of text images were not
discovered in the text image deblurring community before
their recent introduction by Pan et al. [8]. They discovered
the sparse distributions of the text image intensity and its
gradients, and utilized them as L0-norm-based constraints.
Impressive results were obtained, outperforming previous stud-
ies [9], [10] by the traditional text-specific properties, e.g.,
sharp contrast between texts and background. Unfortunately,
existing methods including the sparsity one [8] still cannot
recover the clear latent texts, as shown in Fig. 1(c) and (d).
Recently, a convolutional neural network (CNN)-based text
deblurring method [11] was proposed. Fig. 1(e) shows the
deblurred result with this method. Such an end-to-end learn-
ing approach without kernel estimation highly depends on the
variety and quantity of the training samples. Therefore, there
still lacks a robust text image motion deblurring method.

A common characteristic of the motion blur kernel is that it
tends to be sparse, where most values close to zero. This is due
to the fact that the motion kernel identifies the smooth motion
path of the camera. But, to the best of our knowledge, none
of the existing text deblurring methods explicitly considers
the sparsity of the blur kernel as a Lp norm constraint. We
believe the text motion deblurring method can be more robust
by exploiting the kernel sparsity. In this paper, the sparsity of
the blur kernel is explicitly modeled via a L0-regularizer to
obtain a high quality estimation of the blur kernel.

Actually, the kernel sparsity has been widely adopted for
natural image deblurring [12], [13]. Among them, the heavy-
tailed style norm [14] is not sparse enough to depict the spar-
sity of motion blur kernels. The sparsity oriented norm mix-
tures are inefficient due to the high number of parameters to
tune. Other common sparsity forms include L1 norm [15], [16]
or L2 continuity norm mixtures [13]. However, the former
has been embedded in the optimization process and thus
can be omitted, while the latter complicates the deblurring
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Fig. 1. Deblurring of a motion blurred text image by four state-of-the-art methods and our method, separately. Among the four methods, one (Pan et al. [7])
is for natural image deblurring with the other three, Pan et al. [8], Cao et al. [9], and Hradiš et al. [11], for text image deblurring.

process without significant performance improvement by our
experiments. A simple yet efficient kernel sparsity solution
is expected. Consequently, the proposed text image motion
deblurring model combines the sparsity constraints for the
image, its gradient, as well as the blur kernel. It is formulated
as an optimization energy function where the sparsity priors
are all represented through the L0 norm. A new optimization
method which integrates half-quadratic splitting and the fast
conjugate gradient is also developed.

It is also observed that the estimated kernel image is
often contaminated by noise surrounding the motion trajec-
tory. Obtaining a clear and noise-free kernel is difficult due to
the approximate estimation property of the optimization pro-
cess. Existing methods often implicitly incorporate denoising
into the kernel optimization process, however, noise is still
difficult to be eliminated significantly. The noisy kernel will
degrade the quality of the deblurred image.

To obtain a noise-free kernel, we propose a structure-
preserving kernel denoising method, which explicitly denoises
the kernel after kernel optimization and is thus independent
of the kernel optimization technique. It can keep the shape
and intensities of the kernel unchanged while adaptively fil-
tering out the noisy pixels. This is more efficient than existing
image denoising methods [17], [18] because they do not con-
sider the special motion structure in the kernel, contrary to
our method. The final deblurring result in Fig. 1(f) reveals that
our method is much better than the other four state-of-the-art
methods.

The main contributions of our method are summarized as
follows.

1) A new text image motion deblurring model contain-
ing the sparsity constraints for both image and kernel,
which extraordinarily matches the sparse text image
and smooth camera motion path during the unstable
photographing.

2) An efficient energy function representing the sparsity
constraint only by the L0 norm, which is optimized
by a half-quadratic splitting and fast conjugate descent
integrated algorithm.

3) A structure-preserving kernel denoising method to
denoise the estimated blur kernel, which can keep the

shape and intensities of the kernel unchanged while
eliminating the noises.

II. RELATED WORK

Text image motion deblurring is a class-specific study
of the broader image deblurring area [19], [20]. Similar
to other intensively studied inverse problems, e.g., image
segmentation [21], object tracking [29], [33], and visual
saliency [27], [39], various solutions in different aspects have
been proposed, e.g., motion model, outlier, prior, and hardware
reconfiguration. Our interest is to explore the merits of sparsity
prior for the specific text image motion deblurring. Therefore,
the sparsity in image deblurring methods is first reviewed.
Then the status of text image deblurring will be reviewed.

A. Natural Image Deblurring Using Sparsity

The sparsity of natural images is implicitly included by
some methods, e.g., Hu et al. [5] encoded the image patch
with sparse coefficients using an over-complete dictionary.
Such methods can recover the latent image without solving
the ill-posed deconvolution, and thus have also been adopted
for other inverse problems [1], [2], [4], [6]. However, their
optimal performance is affected by the quality of dictionary,
considering the vast differences among natural images.

Therefore, most studies explicitly include the image sparsity
as a prior constraint, where the heavy-tailed gradient distri-
bution of image statistics is widely formulated by different
Lp(0 < p < 1) norms [12], [22]. Some approximation formats
are also proposed, such as Gaussian mixture model and piece-
wise function approximation [16]. However, the heavy-tailed
distribution or the norm mixtures is generally not suitable for
text images which are usually colored uniformly.

The gradient sparsity is also introduced in other formats,
e.g., the approximated L0 norm [23] and the normalized L1

norm [15]. Still there can be limits in describing the spar-
sity of text images [8]. Some studies consider extending the
pixel-wise sparsity constraint to other forms. For example,
Cai et al. [24] represented the sparsity of framelet with the
L1 norm, while Pan et al. [7] and Yan et al. [25] included
the sparsity priors of the dark and bright channels with the
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L0 norm. However, these studies can fail when applied to
text images, e.g., the dark channel may not exist for most
text images which contain uniformly colored strokes with
nonzero-valued colors.

The sparsity of the motion kernel is also studied. Some
researchers [14] simulated it to be the same heavy-tailed dis-
tribution as the natural image gradient distribution. Others such
as [15] and [16] modeled it by the L1 norm. Other similarly
complicated prior constraints make use of several kernel priors
together. The prior constraint associated with the sparse L0 and
continuous L2 norms [13]. The merits of our kernel sparsity
constraint when comparing with these methods are as follows.

1) It is closer to the true motion kernel intensity distribution
than the heavy tailed sparsity constraints.

2) It does not use the L1 norm due to the embedded L1

property of the blur kernel.
3) It is easier to deploy the optimization process than the

complicated ones because of only one coefficient.

B. Text Image Motion Deblurring

Some methods are specifically designed for text images.
Chen et al. [26] computed the intensity distribution prior,
observing that the intensities between the foreground texts and
the background are significantly different. Their method relies
on text segmentation to separate the background and the two-
tone or bi-level property of text, similar to some two-tone
image deblurring studies [28], [30]. However, these methods
may not be effective for real images which are usually not
two-tone. Cho et al. [10] used the stroke width transform to
separate the text image into text and nontext regions, which
gives poor results when the characters are small and connected.
Lou et al. [31] exploited the sparse characteristics of natu-
ral text images and estimated the latent image directly with
an over-complete dictionary. Cao et al. [9] also adopted a
sparsity-based technique and created two types of dictionar-
ies, one for the natural scene and the other for the characters
at multiple scales. Pan et al. [8] further formulated such a
sparsity as L0 constraints for the intensity and gradient dis-
tributions of the latent image, without a training process. We
also use these sparsity constraints in our deblurring model.

However, existing text image deblurring methods may fail
due to neglecting the sparsity of the motion blur kernel, even
though such a sparsity has already been considered in natural
image deblurring methods. As far as we know, it has never
been applied to text image motion deblurring. Therefore, we
propose to make use of kernel sparsity through the L0-norm-
based kernel constraint. Our model drops the L2 kernel prior
widely utilized in most deblurring methods [8], [13], [23] due
to the following reasons.

1) The data term of the deblurring model has partially
included the kernel continuity.

2) The L2 norm of the motion blur kernel is very small
in comparison with its L0 kernel norm and thus its
contribution to the convergence can be negligible.

3) The additional parameter tuning and optimization burden
will be introduced with the additional L2 norm to make
the optimization more complex.

Along with the booming research of deep neural
networks [36], [39], the CNN was introduced for text image
deblurring [11]. Taking the raw blurry patch as input, the
method can recover the latent image via the trained 15-layer
CNN. This idea is interesting, but its performance highly relies
on the quantity and variety of training documents or text
patches. In addition, the training process is time-consuming
even with high quality GPU implementation due to a vast
number of parameters to tune.

Existing text deblurring methods often take the blur kernel
as a single objective to optimize. However, in natural image
deblurring, recently, much better results are obtained through
separated optimizations [32]. The kernel is separated into three
parts (trajectory, intensity, and point spread function) and each
part is optimized independently with different priors. However,
the kernel width along the skeleton is kept unchanged, which
may be incorrect for real photographs due to the projective
transform and random camera motion. In addition, process-
ing three separate optimizations instead of a single combined
one increases the computational load and may introduce noise
into the kernel. Our proposed denoising method relaxes the
requirement of a fixed width and instead filters out the tra-
jectory noises along its skeleton without modifying the kernel
structure. It also does not require additional optimization.

Image denoising is a traditional research topic with a lot of
methods available, including the well-known ones, i.e., the
nonlocal means, K-SVD, and BM3D. These methods also
have a lot of variants, which have almost reached the opti-
mally possible denoising performance [34]. They usually aim
for natural images, where optimization or learning is often
incorporated. However, our denoising method simply uses the
trajectory as the guidance without optimization or learning and
is specifically designed for the motion-based kernel.

III. SPARSITY-BASED MOTION DEBLURRING MODEL

AND ITS ENERGY FUNCTION

We now present the novel sparsity-based model where only
the sparsities for the image intensity, image gradient, and
kernel are taken as prior constraints.

A. New Model

Assume that B, K, and L are the blurred image, the blur
kernel, and the latent image, respectively. Image deblurring
can be formulated as an energy minimization problem whose
objective function consists of three terms

min
K,L

D(B, K, L) + γKP(K) + γLP(L) (1)

where D(B, K, L) represents the data term. It measures the
difference between the B and the convolution between K and L

D(B, K, L) = ‖B − K ⊗ L‖2
2 (2)

where ⊗ means the convolution operation. P(K) and P(L)

denote, respectively, the prior regularizers of K and L, with
γK and γL being their coefficients.

The prior knowledge of K and L is crucial to regularize such
an ill-posed inverse problem, and to facilitate estimating the
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(a)

(b)

(c)

Fig. 2. Sparse properties of the image intensity and gradients of motion
blurred text images. An example clear image and its four differently blurred
images are shown. (a) Image and its blurred ones. (b) Intensity distributions.
(c) Gradient distributions.

blur kernel and the latent image, as a result. Different types
of prior constraint represented by different matrix norms have
been brought forward so far [13].

The text sparsity priors are adopted from the sparsity prop-
erties discussed by Pan et al. [8]. Observing the text image,
we can see that the characters and background usually have
uniform intensities in the clear image and nonuniform ones in
the blurred one. In the intensity histogram of the image, only
few intensity positions will be significantly higher than other
places for a clear image, while there is no such a zero peak for
a blurred image. The same observation can also be made in the
gradient distribution. Fig. 2 shows the intensity and gradient
distributions of an example image blurred by different motion
blur kernels. It can be seen that: 1) the intensities of the clear
image contain a lot of zeros while these of the blurred image
are close to zero but not null and 2) the clear image contains
more zero gradients than the blurred image.

A motion blur kernel identifies the smooth path of the cam-
era, so it tends to be sparse, with most values outside the sparse
motion path being null. Consequently, the kernel can also be
constrained as a sparse kernel. Fig. 3 shows two example ker-
nels obtained from the naturally blurred images by the method
in [8]. Most of kernel values are zero for each kernel and thus
these kernels are all very sparse as their intensity histograms
show. Therefore, we take the sparsities of both image and its
kernel as the priors. Now, let us discuss the energy function
including these constraints for optimizing the proposed model.

B. Energy Function

The values of the image intensity and its gradient, and the
blur kernel are mostly zeros as we have discussed. Therefore,
their prior distributions can be regularized by the L0 norm
which counts the number of nonzero values of a vector. Taking
these priors together, we can obtain the energy function for
the proposed model with only the L0 sparsity norm as the
constraints for the image and its gradient, and the blur kernel.

(a)

(b)

Fig. 3. Intensity histograms of two example kernels estimated from five
naturally shaking text images by the method of Pan et al. [8]. (a) Two kernels.
(b) Intensity distributions.

The sparse properties of the image and its gradients can be
formulated as

Ps(L) = ‖L‖0 (3)

Ps(∇L) = ‖∇L‖0. (4)

The image prior is then obtained by taking (3) and (4)
together, with σ being the weight

P(L) = σPs(L) + Ps(∇L). (5)

Similarly, the sparse constraint for the kernel can be

P(K) = ‖K‖0. (6)

The interesting part of the new model is that it is perhaps the
first one to include the kernel prior only by the L0-norm repre-
sented sparsity constraint. The advantage of this configuration
will be discussed in the following section.

IV. ANALYSIS ON THE KERNEL PRIOR CONSTRAINT

This section mainly analyzes the two L0-norm related forms
of kernel sparsity, the L1-norm, and the L2-norm incorporated
mixture of norms, and shows that either the L1 norm or the L2

included norm mixture is not necessary for a proper regular-
ization. About the other two types of published norms: 1) the
heavy-tail style norm cannot correctly depict the kernel spar-
sity distribution (Fig. 3) and thus may not be a proper choice
and 2) the mixture of norms without the L2 norm can be too
complicated for an efficient optimization with more parame-
ters to tune in comparison with our single L0-norm. Therefore,
these norms are not discussed here.

A. L1 Norm-Based Sparsity Prior

Assume that the motion blur kernel K with the size of m×n.
Generally, it has two properties as follows.

1) Non-Negativity: The element of K, Ki,j, is always non-
negative, i.e.,

Ki,j ≥ 0. (7)
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2) Normalization: The sum of the elements of K is
equal to 1

m
∑

i=1

n
∑

j=1

Ki,j = 1. (8)

These two conditions amount to

‖K‖1 = 1. (9)

In practice, these two conditions are usually implicitly taken
in charge by existing proposed deblurring models including
ours (Algorithm 1 in Section VII) through a kernel normal-
ization process. The negative elements are first set to zeros and
then the kernel is normalized to one. Some studies [35], [37]
even explicitly show this process. Therefore, it is not necessary
to include an L1 kernel norm explicitly.

B. Insignificant Kernel Continuity Regularizer

The constraint of kernel continuity is often formulated by L2

norm, however, such a regularizer could be insignificant. First,
the kernel continuity is already partially included in the data
term (2). Our following analysis will also show that the L2-
norm is very small for a blur kernel in comparison with the
L0-norm, and thus it can be negligible for the optimization
process. Second, the additional continuity regularizer intro-
duces one additional parameter to tune, where an additional
optimization budget may make the deblurring system more
difficult to converge.

1) Negligible Continuity Regularizer: Let us first present a
proposition based on the two properties of a blur kernel.

Proposition 1: We assume that the size of motion blur
kernel K is m × n. Its L2-norm is smaller than its L0-norm

‖K‖2 < ‖K‖0. (10)

Proof: Only one nonzero element in the blur kernel can-
not blur an image and, therefore, the number of the nonzero
elements of K is always larger than 1, i.e.,

m
∑

i=1

n
∑

j=1

sgn
(

Ki,j

)

≥ 2 (11)

where sgn(·) is the sign function.
According to the non-negativity of K by (7), (11) suggests

that Ki,j < 1 if further considering the normalization property
of K by (8) and, consequently,

‖K‖2 =

√

‖K‖2
2 =

√

√

√

√

m
∑

i=1

n
∑

j=1

K2
i,j <

√

√

√

√

√

⎛

⎝

m
∑

i=1

n
∑

j=1

Ki,j

⎞

⎠

2

= 1.

(12)

The L0-norm of K based on (7) can be formulated as

‖K‖0 =

m
∑

i=1

n
∑

j=1

sgn
(

Ki,j

)

. (13)

Considering the nonzero property in (11), we obtain

‖K‖0 ≥ 2. (14)

Finally, combining (12) and (14) leads to (10).

(a)

(b)

Fig. 4. L2 norms of motion blur kernels and the associated weights (17)
balancing the L0 norm and the L2 norm. (a) L2 norms. (b) Weights.

In practice, the motion trajectory is often very sparse with
mostly zero values in the blur kernel (Fig. 3), whose space
complexity can be assumed as almost linear, i.e., it approx-
imates O(max(m, n)). In other words, ‖K‖0 is in the order
of α(max(m, n)) with α being a scalar and thus significantly
larger than ‖K‖2 which is less than 1 (12). Fig. 4(a) shows
the L2 norms of an example 41 × 41 kernel which contains
20%–50% nonzero elements randomly generated to simulate
the sparsity of the motion kernel, considering that generally
more than half kernel elements are zeros. The L0 norm for
this sparse range is between 336 and 840, while the L2 norm
is only between 0.0426 and 0.0699 in Fig. 3. The difference
between the two norms is apparently large: the L0 norm can
be about 1.9718e4 times the value of the L2 norm.

The above observation on the kernel sparsity can be sum-
marized as the following assumption based on Proposition 1.

Assumption 1: For a motion blur kernel K of an image cap-
tured by a shaking camera, its L2-norm is generally much
smaller than its L0-norm

‖K‖2 ≪ ‖K‖0. (15)

This assumption and the previous discussions on both L2

and L0 norms [e.g., (12) and (14)] show that the kernel
continuity prior can be neglected in the deblurring model.

2) Additional Computation Budget if Additionally Including

the Continuity Regularizer: L2 norm for the kernel continuity
prior can be scaled to the same importance as L0 norm if both
of them are adopted. However, an additional parameter should
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be chosen to balance the contributions of them for the kernel
regularizer in comparison with (6), i.e.,

P(K) = γK0‖K‖0 + γK2‖K‖2
2 (16)

where γK0 and γK2 are the coefficients. Such a balance
can be reformulated as follows by considering their equal
contributions to the total energy:

‖K‖0 = w‖K‖2
2 (17)

with the weight w = (γK2/γK0) according to (16).
However, finding a proper w is nontrivial because the L2

norms of different images can be quite different. For exam-
ple, Fig. 4(b) shows w oscillates drastically from 6.8700e4
to 4.6064e5 because of the varying L2 norms [Fig. 4(a)]. It is
thus difficult to tune the contribution of the L2 norm with such
a changing weight if both L0 and L2 norms of the unknown
kernel are considered for blind deblurring.

Because of norm mixture, additional optimization related
problems will emerge when incorporating the extra L2 norm.
On one hand, this optimization can be unstable because of the
difficulty in selecting a creditable weight. On the other hand,
additional costs (e.g., time and storage) will be introduced even
though the optimized solution of (2) may be obtained with
this dual norm-based kernel constraint. Therefore, only the L0

sparsity norm is adopted in our method for the kernel without
considering the explicit continuity constraint incorporated by
other models [8], [13].

V. OPTIMIZATION VIA HALF-QUADRATIC SPLITTING

We now present the optimization method for the proposed
model. K and L in the deblurring model (1) are alternatively
optimized via the following two functions, separately:

min
K

D(B, K, L) + γKP(K) (18)

min
L

D(B, K, L) + γLP(L). (19)

The properties of K given by (7)–(9) are mandatorily held
in the optimization process (see step 17 in Algorithm 1),
which can also eliminate the scale ambiguity of K and thus
improve the estimation accuracy. Both (18) and (19) contain
a computationally intractable L0 regularization term. To work
around this shortcoming, the half-quadratic splitting-based L0

minimization method [38] can be used, which can approx-
imately solve the L0 optimization iteratively with auxiliary
variables. This scheme makes both (18) and (19) convex and
thus ensures their convergences.

However, K cannot be obtained robustly if computed
directly from the intensity [40]. To resolve this problem, we
further adopt the fast conjugate gradient method [41] to com-
pute it in the gradient space after a half-quadratic splitting. In
comparison with the traditional conjugate gradient method, the
fast method can converge faster with a much fewer number of
Fourier transforms, thanks to the derivatives adopted.

A. Kernel Optimization With Fast Conjugate Gradient

To compute K while fixing L, (18) is reformulated as follows
in the gradient space:

min
K

D(∇B,∇L, K) + γKP(K). (20)

The corresponding alternative model, after introducing the
auxiliary variable N, is

min
∇K,N

D(∇B,∇L, K) + θ1‖N − K‖2
2 + γK‖N‖0 (21)

with θ1 being the coefficient. It is often set to a relatively
large number (e.g., 2000 in our experiment) so that the above
new form approximates (20). This new form can be solved by
estimating K and N alternatively.

1) Estimating K: Denote x and y being two derivative direc-
tions. K is computed by the fast conjugate gradient method
through the following energy function:

E(K) = ‖B∗ − K ⊗ L∗‖
2
2 + θ1‖N − K‖2

2 (22)

(L∗, B∗) ∈
{

(∇xL,∇xB),
(

∇yL,∇yB
)

(∇xxL,∇xxB),
(

∇yyL,∇yyB
)

((

∇xyL + ∇yxL
)

,∇xyB
)}

. (23)

Consequently, K can be obtained from (22) by

∂E(K)

∂K
= X

T
XK + θ3(N − K) − X

T
Y = 0 (24)

where X and Y are composed of the partial derivatives of L

and B, respectively.
However, XK is very large and therefore this computation

is time and space consuming. To accelerate it, we further use
the fast Fourier transform (FFT) [denoted as F(·)]. In particu-
lar, F(X∗) and X

T
Y can be precomputed before optimization.

X
T

XK can be computed through FFT as

X
T

XK = F−1

⎛

⎝

∑

L∗

w∗F(L∗) ⊙ F(L∗) ⊙ F(K)

⎞

⎠ (25)

where F−1(·) represents the inverse FFT; ⊙ means the
element-wise multiplication; and w∗ is the weight for each ele-
ment of L∗.

∑

L∗
w∗F(L∗) ⊙ F(L∗) can also be precomputed

before the optimization starts.
2) Estimating N: Optimization of N is similar to K

E(N) = θ1‖N − K‖2
2 + γK‖N‖0. (26)

The solution for N is expressed as [38]

N =

{

K |K|2 ≥
γK

θ1

0 else.
(27)

B. Image Optimization

To estimate L, (19) is reformulated by fixing K and
introducing two auxiliary variables, P and M = (Mx, My)

T

min
L,P,M

D(B, L, K) + θ2‖L − P‖2
2 + θ3‖∇L − M‖2

2

+ γL(σ‖P‖0 + ‖M‖0) (28)

where coefficients θ2 and θ3 are set to be relatively large num-
bers as θ1 for approximating (19). P and M are initialized to
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(a) (b) (c) (d)

Fig. 5. Principle of the structure-preserving kernel denoising. (a) Noisy kernel. (b) Skeleton in green for (a) and the corresponding sliding window in blue
on the current pixel in red. (c) Enlarged patch inside the sliding window of (b). (d) Final denoised kernel. The yellow direction lines in (c) give the directions
used to filter out the noisy pixels surrounding the current pixel.

be 0. L, P, and M can be obtained alternatively by minimizing
each one independently while fixing the others.

For P and M, their optimization equations are similar to
that of N when computing K

E(P) = θ2‖L − P‖2
2 + γLσ‖P‖0 (29)

E(M) = θ3‖∇L − M‖2
2 + γL‖M‖0. (30)

For L, its optimization equation is

E(L) = D(B, L, K) + θ2‖L − P‖2
2 + θ3‖∇L − M‖2

2. (31)

Equation (31) can be solved as a least squares problem [8].
Accordingly, the closed-form solution is

L = F−1

(

F(K)F(B) + θ2F(P) + θ3FM

F(K)F(K) + θ2 + θ3F(∇)F(∇)

)

(32)

where F(·) is the complex conjugate of F(·), with FM =

F(∇x)F(M) + F(∇y)F(M).

VI. STRUCTURE-PRESERVING KERNEL DENOISING

The optimization process may result in so noisy kernels that
the motion trajectory can be barely identified as the example
kernel shown in Fig. 5(a). Deblurring the image with such
a kernel would degrade the quality of the recovered image.
The real kernel associated with the continuous motion process
is continuous and without noise. Therefore, a denoising step
can be incorporated inside the deblurring process to obtain a
clean kernel made of a continuously varying width along its
trajectory. The structure-preserving kernel denoising method
is proposed based on this idea.

A. Principle of the Denoising Method

Considering that the blur kernel is generated by the motion
of the camera during the exposure time τ , we can define
the clean kernel and its noisy version being K(t) and K

′(t),
respectively, according to the time t. Their relationship is

K
′(t) = K(t) + n(t) (33)

with n(t) being the noise function. The denoising process turns
into finding K

′(t) at t that can minimize the difference between

K(t) and K
′(t) during τ

min
K

′(t)

∫ τ

t=0
|K(t) − K

′(t)|. (34)

However, the kernel at t is not a simple pixel but an irregu-
lar part of the motion trajectory with different intensities and
span widths, corresponding to different duration times and
projective deformations due to the camera speed and motion
path, separately. Therefore, (34) can be reformulated to mini-
mize the differences of the shape and pixel intensity composed
kernel structures between K and K

′

min
K

′(t)

∫ τ

t=0
|S(K(t)) − S

(

K
′(t)

)

| (35)

with S(·) representing the structure function.
Equation (35) seeks the best structure of K

′ approximating
that of K without noisy pixels. However, the solution of (35) is
nontrivial considering the discrete kernel intensity and irregu-
lar kernel shape. Checking (35), we can see that the best K

′

is the one closest to K at each time t during τ , i.e., the best
K

′ is the one closest to K at each position on the kernel struc-
ture. Consequently, (35) can be reformulated as the following
discrete form at each discrete time t:

min
K

′(t)
|S

(

K
(

t
))

− S
(

K
′
(

t
))

|. (36)

For a kernel image, its trajectory represents the kernel struc-
ture and, therefore, (36) means the optimized kernel can be
obtained by filtering its trajectory from the beginning to the
end. Consequently, we can propose the sliding window-based
kernel denoising strategy. It uses a sliding window to adap-
tively filter the trajectory for noise removal so that a clean blur
kernel with a width-varying trajectory curve can be obtained.
The structure of the resulting kernel K

′ is as close as possible
to that of the original kernel K.

B. Structure-Preserving Denoising Using Sliding Window

The denoising process consists of two main steps (Fig. 5):
1) skeleton detection and 2) window sliding. The first step
locates the skeleton of the trajectory in the noisy kernel image.
The skeleton of the trajectory is a pixel-thin curve structure
centered inside the shape and is used as the sliding path of the
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center of the sliding window. The second step slides a window
along the skeleton and filters out the noisy pixels.

In the first step, the skeleton detection method adopted
in [42] is taken. It uses the ordered region-growing algorithm
to extract the connectivity among all nodes in the kernel image
represented as an acyclic graph. The skeleton can then be
obtained by specifying endpoints or through a pruning process.
Fig. 5(b) shows the detected skeleton for the kernel shown in
Fig. 5(a), which depicts the camera motion path during cap-
ture. In the second step, a sliding window is moved along the
skeleton pixel by pixel so that the noisy pixels surrounding the
current skeleton pixel can be eliminated. The denoised kernel
can be obtained finally, whose trajectory will continually vary
in intensity and width along the skeleton, reflecting the true
photographing process of different durations and paths. Then
the structure, i.e., the shape and intensities, of the true kernel
is kept after the denoising step.

The noisy pixels normally lie around the motion path incon-
sistently or show rather lower intensities than the pixels that
belong to the real kernel [Fig. 5(a)]. Therefore, the noisy pix-
els are searched along four directions from the skeleton pixel,
i.e., two horizontal and vertical directions [the yellow arrows
in Fig. 5(c)]. The pixels with significantly low values are set
to be the noisy pixels and then eliminated.

However, the intensities of a true kernel can vary anywhere
along the skeleton. Then a unified threshold is inadequate for
judging whether the intensity of a pixel surrounding the cur-
rent skeleton pixel is significantly low or not. In the proposed
method, we combine a global and a local approaches. First,
a global threshold is used before the sliding starts to elimi-
nate the apparent noisy pixels in the whole kernel. Second, a
local threshold is applied during the sliding to eliminate the
missed noisy pixels surrounding the current skeleton pixel. In
practice, the global threshold is usually set to one tenth of the
max intensity values in the whole patch with the local one set
to three tenths of the intensity of the current skeleton pixel.
Fig. 5(d) shows the denoised kernel for the original noisy one,
where the kernel structure keeps unchanged.

VII. PROPOSED ALGORITHM

The image is deblurred in a multiscale manner [8], [20]
which iteratively estimates the kernel and the latent image
in the coarse-to-fine style. For each level of the pyramid, the
residual deconvolution of Pan et al. [8] is adopted. The method
first estimates Ll using the Laplacian prior [43] and then com-
putes L0 without taking the intensity prior into account. The
difference image between L0 and Ll is filtered by a bilat-
eral filter so that ringing effects can be suppressed. The final
clear latent image L is then obtained by subtracting the filtered
difference image from Ll.

Algorithm 1 shows the main steps for the deblurring pro-
cess. In the algorithm: 1) maxLevel is determined by the size
of the minimal pyramid image of K, which is set in the same
way as Pan et al. [8]; 2) maxIter is set to be 5; and 3) K1 is
initialized to be 0 except its two central elements are set to
0.5. The coefficients of constraints γL, γK , and σ are usually
set to 0.004, 0.004, and 1, respectively.

Algorithm 1 L0-Norm Text Image Deblurring Algorithm
Input: B, max iterations maxIter, max pyramid level

maxLevel

Output: K, L

1: Build the pyramid images of B, Bi(1 ≤ i ≤ maxLevel),
from the coarsest level i = 1 to the finest level i =

maxLevel;
2: L1 = B1

3: Initialize K1;
4: iLevel = 1;
5: while iLevel ≤ maxLevel do

6: iTer = 1;
7: while iTer ≤ maxIter do

8: Estimate LiLevel by the half-quadratic splitting method
with BiLevel and KiLevel (Section V-B);

9: Estimate KiLevel in gradient space by the half-
quadratic splitting and fast conjugate gradient meth-
ods with BiLevel and LiLevel (Section V-A);

10: Normalize KiLevel (Section IV-A);
11: iTer = iTer + 1;
12: end while

13: Upsample KiLevel to be KiLevel+1;
14: iLevel = iLevel + 1;
15: end while

16: Denoise KmaxLevel by the structure-preserving denoising
(Section VI-A);

17: Normalize KmaxLevel (Section IV-A);
18: K = KmaxLevel;
19: Estimate L by the residual deconvolution method with B

and K.

VIII. EXPERIMENTAL RESULTS

Three state-of-the-art text image deblurring methods are
adopted primarily for comparing the experimental results qual-
itatively and quantitatively: 1) the CNN-based method by
Hradiš et al. [11]; 2) the L0-regularized image intensity and
gradient priors by Pan et al. [8]; and 3) the dictionary-based
method by Cao et al. [9]. Hradiš et al. [11] is a direct end-to-
end end-to-end learning-based method, while Pan et al. [8],
Cao et al. [9], and ours take the traditional optimization.
Neither of Pan et al. [8] and Cao et al. [9] considers the kernel
sparsity and In most experiments, to show the performance of
our kernel denoising strategy, our method is presented in two
versions, our method without denoising and our method with

denoising, meaning the deblurring by our method without or
with the proposed kernel denoising strategy, respectively. The
artificial dataset of Pan et al. [8] is taken for the statistical
performance comparison, which contains 15 images and eight
kernels.

A. Qualitative Results

We first show the deblurring performances with differ-
ent sparsity-based methods, including the natural image ori-
ented methods: Krishnan et al. [15], Xu et al. [23], and
Zuo et al. [14]. Krishnan et al. [15] adopted the ratio of L1 to
L2 norm and the L1 norm, respectively, for the image and the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FANG et al.: TEXT IMAGE DEBLURRING USING KERNEL SPARSITY PRIOR 9

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 6. Comparison of the deblurring results of ten sparsity-based methods. (a) Blurred image. (b) Krishnan et al. [15]. (c) Xu et al. [23]. (d) Zuo et al. [14].
(e) Hradiš et al. [11]. (f) Pan et al. [8]. Our method (g) without denoising and (h) with denoising. The estimated kernel is displayed at the bottom of each
deblurring result with two scaled clips on its right. Note that there is no kernel estimated by Hradiš et al. [11].

kernel prior constraints; Xu et al. [23] used a L0 norm norm
approximation for the image constraint; and Zuo et al. [14]
imposed the hyper-Laplacian constraint for both image and
kernel. The deblurring results of these three methods and other
five text image oriented methods including ours are shown in
Fig. 6.

Highly relying on the types of the training blurred images,
Hradiš et al. [11] obtains the worst performance among the
ten even though it aims for text images. There are apparent
ringing artifacts and blurring among all existing sparsity-
based methods, no matter whether they are natural image
or text image. Especially, the existing text image image ori-
ented methods are apparently not better than the natural image
oriented ones, e.g., Pan et al. [8] versus Xu et al. [23].

However, the proposed L0-norm-based deblurring method (the
last two rows in Fig. 6) achieves better performances that the
other compared methods. Our method performs the best with
denoising.

A clearer kernel always associates with a higher quality
latent estimation, e.g., Pan et al. [8] versus Cao et al. [9] and
the comparison between ours. It justifies the importance of
our simultaneous constraints for the image, its gradient and
the kernel, as well as the importance of kernel denoising. We
now give the comparison with the text image deblurring meth-
ods, Hradiš et al. [11], Pan et al. [8], and Cao et al. [9].
Fig. 7 shows the deblurring results of two blurred images taken
from the dataset of Pan et al. [8]. Another experiment with
the significantly blurred real text images is also taken into
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(a) (b) (c) (d) (e) (f)

Fig. 7. Deblurring results with the dataset in [8]. The estimated kernel is displayed in the similar way as Fig. 6 with two scaled clips shown below. (a)
Blurred image. (b) Hradiš et al. [11]. (c) Pan et al. [8]. (d) Cao et al. [9]. Our method (e) without denoising and (f) with denoising.

(a) (b) (c) (d) (e) (f)

Fig. 8. Deblurring results on real images. The results are shown in the same way as Fig. 7. (a) Blurred image. (b) Hradiš et al. [11]. (c) Pan et al. [8].
(d) Cao et al. [9]. Our method (e) without denoising and (f) with denoising.

consideration (Fig. 8). Hradiš et al. [11] still returns the worst
results among all methods while while neither Pan et al. [8]
nor Cao et al. [9] can effectively remove the blur. Our
method obtains the best results, with much clearer denoised
kernels.

B. Quantitative Results

In the following, we will present the statistical compar-
ison of the convergence speed and accuracy of the kernel
estimation. We have discussed that the L2-norm-based kernel
constraint is not necessarily useful (Section IV-B). More the-
oretical analysis of the performance of L0 norm or L1 norm is
a nontrivial task. Therefore, the convergence performance of
the kernel estimation between the proposed L0 kernel prior-
based method and the L2 kernel prior-based methods of both
Pan et al. [8] and Cao et al. [9] are compared. For fair com-
parison, the kernel denoising step in our method is omitted.
The cross-correlation-based kernel similarity metric used by

Pan et al. [8] is adopted, which is computed by the maximum
response of normalized cross-correlation between two kernels.

Fig. 9(a) gives the example convergence processes of both
Pan et al. [8] and ours ours during the iterations with the eighth
kernel. The process of Cao et al. [9] is not shown because their
code cannot be debugged iteration after iteration, therefore, the
intermediate kernels are not available for comparison. compar-
ison. Both Pan et al. [8] and ours take a multiscale way where
each scale is made of five iterations. kernels are converged in
every sequence of five iterations and then restart at a coarser
status with a lower similarity. lower similarity. However, the
average similarity of Pan et al. [8] oscillates approximately
between 0.7 and 0.75 while ours always increases at each
scale and reaches a similarity of more than 0.85 after 25 itera-
tions. Therefore, the convergence speed of our method can be
faster and more accurate than that of Pan et al. [8]. Fig. 9(b)
shows the final averaged similarities for each kernel, where our
method is uniformly and significantly better than the other two
methods.
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(a) (b)

Fig. 9. Kernel estimation performance with the dataset of Pan et al. [8]. (a) Example convergence for the eighth kernel during the iteration. (b) Average
convergence for each kernel. Note that Cao et al. [9] is not included in (a) as explained in the texts.

IX. CONCLUSION

We introduced a new motion deblurring method for text
images. While previous methods omit the sparsity of the
motion blur kernel, the proposed method incorporates the
kernel sparsity as well as the sparsities of both image and
its gradients. Formulated all the sparsities by the L0 norm,
this new model is optimized by the half-quadratic splitting
coupling with fast gradient descent. A structure-preserving
denoising method aiming at keeping the kernel structure
unchanged was also presented. It can yield a noise-free
kernel with a curvilinear trajectory while keeping the kernel
intensities and shape unchanged. Experimental results demon-
strated the advantages of the method both qualitatively and
quantitatively.
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