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ABSTRACT 

 
In this paper, we describe a Gaussian Mixture Model-
Universal Background Model (GMM-UBM) speaker 
identification system. In this GMM-UBM system, we 
derive the hypothesized speaker model by adapting the 
parameters of UBM using the speaker’s training speech 
and a form of Bayesian adaptation. The UBM technique is 
incorporated into the GMM speaker identification system 
to reduce the time requirement for recognition 
significantly. The paper also presents a new frame level 
likelihood score normalization for adjusting different 
scores of speaker models to get more robust scores in final 
decision. Experiments on the 2000 NIST Speaker 
Recognition Evaluation corpus show that GMM-UBM 
and frame level likelihood score normalization yield better 
performance. Compared to the baseline system, around 
31.2% relative error reduction is obtained from the 
combination of both techniques. 

 

1. INTRODUCTION 
 
Over the past ten years, Gaussian mixture models (GMM) 
for the modeling of speaker spectral characteristics has 
become the dominant approach for speaker identification 
systems which use untranscribed training data [1]. 

Reynolds et al. [2] presented GMM-based speaker 
verification system which uses a universal background 
model (UBM) for alternative speaker representation, and a 
form of Bayesian adaptation to derive speaker models 
from UBM. 

In this paper, a speaker model based on Gaussian 
Mixture Model-Universal Background Model (GMM-
UBM) is introduced into text-independent speaker 
identification. Our work focuses on applications which 
require high identification rates using short utterance from 
unconstrained (text-independent) conversational speech 
and robustness to degradations produced by transmission 
over a telephone channel. 

For speaker recognition over the telephone, one of 
the largest challenges is dealing with channel variability. 
There are different acoustic environment and transmission 
channel. In addition, different training and testing 
conditions result in a low match score. Typically a 
speaker enrolls his/her voice using one microphone (or 
handset) and then to be verified using a different 
microphone. Different microphones impose different 
characteristics on the acoustic signal [3]. Current research 
has gone some way towards reducing channel effects. 

Compensation techniques for channel effects can be 
classified into three broad categories: feature-based 
compensation, model-based compensation and score-
based compensation. In feature domain, methods for 
feature compensation use some form of linear or nonlinear 
channel compensation at speech analysis and feature 
extraction stages, such as cepstral mean subtraction (CMS) 
[1], RASTA filtering [4] or artificial neural networks [5]. 
Model-based techniques attempt to reduce the effect of 
channel variations by learning channel characteristics or 
enhancing the speaker probability distribution models. 
Methods for model compensation contain Speaker Model 
Synthesis [6], Synthetic Variance Distribution [7] etc. 
There are also some robust scoring methods and 
normalization compensation techniques that applied in 
match score domains [8][9]. Score-based normalization 
techniques apply some form of compensation 
transformation to the final likelihood scores. 

In this paper, we present a new frame level 
likelihood normalization in match score domain for robust 
speaker identification using GMM speaker models, which 
can be viewed as a special kind of score compensation. 

The paper is organized as follows. In next part, an 
overview of the GMM-UBM speaker identification 
system is described, which includes the UBM technique 
and Bayesian adaptation of speaker models. In section 3 
we describe the new frame level likelihood score 
normalization. The experimental results are discussed in 
Section 4. Finally, we will draw a conclusion. 
 

2. GMM-UBM SPEAKER IDENTIFICATION 
SYSTEM 
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Figure 1: Block Diagram of the GMM-UBM SID System
ig. 1 shows a block diagram of the GMM-UBM Speaker 
entification (SID) system. It can be mainly divided into 
ree parts: UBM training, Bayesian adaptation of speaker 
odels and speaker identification. 

.1. The Universal Background Model Technique 

 UBM in the SID system is a GMM representing the 
aracteristic of all different speakers. Instead of 
ploying the Maximum-Likelihood training, each 

eaker model can be created by performing Bayesian 
aptation from the UBM using speaker-specific training 
eech. The training operation is illustrated at the upper 

art of Fig. 1. 
From previous experiments conducted for speaker 

cognition, Reynolds et al. [2] have found that only a few 
f the mixtures of a GMM contributes significantly to the 
kelihood value for a speech feature vector. In addition, 
e mixture components of each adapted speaker model 
tain a certain correspondence with the UBM, therefore 
g-likelihood score of the speaker model can be 
mputed by scoring only the more significant mixtures. 
 our SID system, the top 5 mixtures are used. Because 

f the correspondence of mixtures between the UBM and 
e speaker models, these significant mixtures can be 

btained by calculating the mixtures from the UBM that 
ave the highest score. The computation requirement for 
cognition is reduced significantly by employing this 
ixture scoring strategy. The procedure is shown at the 
wer part of Fig. 1. 

.2. Bayesian Adaptation of Speaker Model 

or each hypothesized speaker in the GMM-UBM system, 
e derive the hypothesized speaker model by adapting the 

 
parameters of the UBM using the speaker’s training 
speech and maximum a posteriori (MAP) adaptation.  A 
speaker-specific GMM with diagonal covariance matrices 
is trained. Unlike the standard approach of Maximum-
Likelihood training of a speaker model independently of 
the UBM, the basic idea of adaptation approach is to 
derive the speaker model by updating the well-trained 
parameters in the UBM. This provides a better coupling 
between the speaker’s model and UBM, which not only 
produces better performance than decoupled models, but 
also allows for a fast-scoring technique. 

The specifics of the adaptation are as follows [2]. 
Given T feature vectors 1{ , ..., }TX x x= , the mixture 

weights satisfy the constraint . Collectively, 

the parameters of the density model are denoted as, 
1
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In this GMM-UBM system, we use a single 
adaptation coefficient for all parameters 
( ) with a relevance factor 
of  = 50. 

/( )m v
i i i i in n rωα α α= = = +
r

 
3. FRAME LEVEL LIKELIHOOD NONLINEAR 

SCORE NORMALIZATION 
 
In this paper, we present a new scoring approach, which is 
a nonlinear score compensation transformation based on 
GMM and can be viewed as a special kind of frame level 
likelihood normalization [9]. Test speech utterance is 
processed by all hypothesized speaker models in parallel 
in frame by frame manner. In order to enlarge the score 
difference among different speakers at the same frame and 
reduce the score difference for the same speaker at 
different frames, the likelihoods are processed using the 
following nonlinear normalization to transform them into 
new scores, that is, we employ a confidence-based 
weighting scheme that updates the scores of speaker 
models at frame level. Then transformed likelihoods are 
accumulated over all test frames to form a final score for 
each speaker model. The unknown speaker is identified as 
the speaker, whose model gives the best score. 

A gaussian mixture density is a weighted sum of M 
component densities and is given by the form: 
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where, x  is a D-dimensional feature vector, 
, is the component density and ( ), 1,....ip x i M=

, 1,...,i i Mω = , is the mixture weight. Each component 
density is a D-variate gaussian funtion of the form: 

1
/2 1/2

1 1( ) exp{ ( ) ( ) ( )}
(2 ) | | 2

T
i iD

i

p x x xi iµ µ
π

−= − − Σ
Σ

−  (9) 

with mean vector iµ and covariance matrix iΣ . The 
mixture weights satisfy the constraint that: 
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The parameters of density model are denoted as
 { , , }i i iλ ω µ= Σ ,   (11) 1,...,i = M

Given T feature vectors 1{ , ..., }TX x x= , where 
, and N speaker models 1, . . . ,t = T 1{ , ..., }Nλ λ λ= , 

where . The scoring procedure is as follows. 1, . . . ,n = N

For each test vector tx : 
Step1. Calculate the log-likelihood log ( | )t np x λ  for 

each speaker model nλ . We detect the maximal and mini-
mal log-likelihood value as,  
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Step3. Adjust the score of test vector tx  with integer  

and  which is close to 1: 
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Step4. Compute the score at time t over previous K frames. 
K is trade-off between robustness and computational load. 

  
1

1'( , ) ( , )
K

t n t k n
k

S x S x
K

λ λ−
=

= ∑   (15) 

Then we get the transformed score of test vector tx  is, 
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For each speaker model, the final score is:
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In our experiments, q  and α  are speaker-
independent parameters and optimized on a registration 
population. How to tune the parameter α  for maximal 
generalization is non-trivial issue. The search is done by 
stepping through α from 0.0 to 1.0 with each step 
incremented by 0.01. In our simulations, we use α =0.05. 
 

4. EXPERIMENTS 
 
The experiments described in this section are conducted 
as part of the participation in the 2000 NIST speaker 
recognition evaluation. The data includes conversational 
telephone-quality speech taken from the Switchboard 2 
corpus. All of the test segments are recorded from calls 
made from a telephone number that is different from the 
one used to enroll. Therefore, all test utterances may be 
considered to be collected using a different handset than 
the one used for training the speaker model. Each speaker 
is trained using a single two-minute session, while test 
utterances range between few seconds and a minute (with 
a primary focus on utterances with 15s~45s). A detailed 
description of the evaluation corpus may be found in [10]. 

Feature extraction process is performed as follows: 
Divided into 24ms frames, shifted by 12ms, high-

emphasis filtering with filter , hamming 
windowing, ignoring low energy frames which do not 
contain much speaker information (about 10%~15%), 17 
Mel-Frequency Cepstral Coefficients (MFCCs), including 
energy, and 17 delta coefficients are calculated from 

11 /(1 0 .97 )z −−
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useful telephone bandwidth (approximately 300~3400Hz), 
CMS is applied to mitigate linear channel effects. We 
finally obtain 34-dimensional feature vectors. 

For the UBM, training data are selected from the 
2000 SRE to have two hours of male speech and two 
hours of female speech, both equally distributed over the 
Carbon-button and Electron handset types [3]. A single 
GMM with 512 mixtures is trained using the iterative 
expectation-maximization (EM) algorithm [11] by pooling 
all the training data. 

We have used 50 speakers (25males and 25 females) 
from NIST2000 SRE, which are different from the UBM 
training data. Training segments are 2 minutes. Since test 
utterances mainly last between 15 and 45 seconds, 
performance is computed on test segments that have a 
duration of 12 seconds (1000 frames extracted from the 
beginning of the test utterances). All speaker models are 
512 mixtures trained by Bayesian adaptation of the UBM. 
There are totally 315 test segments. 

The baseline system is based on a GMM with 128 
mixtures trained by performing Maximum-Likelihood 
training. Each GMM has a diagonal covariance matrix. 

The results of the experiments on highly mismatched 
telephone speech are reported in Table 1: 
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Compared to the baseline system, Frame level likelihood 
normalization, GMM-UBM respectively bring 17.3% and 
24.9% relative error reductions, whereas the combination 
of both techniques yields 31.2% relative reduction. 
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alization, GMM-UBM, and GMM-UBM + frame 

l likelihood normalization achieve 35.8%, 32.5%, 
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line system. Moreover, by employing mixture scoring 

tegy in GMM-UBM, the computation requirement for 
gnition is reduced significantly. 

5. CONCLUSIONS 

 paper has introduced GMM-UBM into speaker 
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