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Abstract 
The volume of biomedical literature is increasing at such a rate that it is becoming difficult to locate, re-
trieve and manage the reported information without text mining, which aims to automatically distill info r-
mation, extract facts, discover implicit links and generate hypotheses relevant to user needs. Ontologies, as  
conceptual models , provide the necessary framework for semantic representation of textual information. 
The principal link between text and an ontology is terminology, which maps terms to domain-specific con-
cepts. In this article, we summarize  different approaches in which ontologies have been used for text min-
ing applications in biomedicine. 
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Introduction 
Text is the predominant medium for in-
formation exchange among experts.1 The 
volume of biomedical literature is in-
creasing at such a rate making it difficult 
to efficiently locate, retrieve and manage 
relevant information without the use of 
text mining (TM) applications. In order 
to share the vast amounts of biomedical 
knowledge effectively, textual evidence 
needs to be linked to ontologies as the 
main repositories of formally repre-
sented knowledge. Ontologies are con-
ceptual models that aim to support con-
sistent and unambiguous knowledge 
sharing and that provide a framework for 
knowledge integration.2 An ontolo gy 
links concept labels to their interpreta-
tions, i.e. specifications of their mean-
ings including concept definitions and  
relations to other concepts.3 Apart from 
relations such as is-a and part-of, gener-
ally present in almost any domain, on-
tologies also model domain-specific re-
latio ns, e.g. has- location, clinically-

associated-with and has-manifestation 
are relations specific for the biomedical 
domain. Therefore, ontologies reflect the 
structure of the domain and constrain the 
potential interpretations of terms. As 
such, ontologies can be used to support 
automatics semantic interpretation of 
textual information (Fig. 1), and thus 
provide a basis for sophisticated TM. 
Table 1 lists some popular biomedical 
ontologies. Many such ontologies ex-
hibit differing degrees of overlap, e x-
haustivity and specificity and indeed dif-
fering views over conceptual space. 
Therefore, TM applications that rely on 
multiple ontologies also need to include 
methods for mapping between such on-
tologies.4 These methods, together with 
other biomedical applications (including 
TM) that rely on the use of ontologies, 
would benefit from a standard ontology 
language (e.g. using standard initiatives 
such as RDF a and OWLb). Still, even 
when a single standardised ontology is 
                                                 
a http://www.w3.org/RDF/ 
b http://www.w3.org/TR/owl-guide/ 
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used, it is not always straightforward to 
link textual information with ontology 
due to the inherent properties of la n-
guage. Two major obstacles are: (1) in-
consistent and imprecise practice in the 
naming of biomedical concepts (te rmi-
nology)5, and (2) incomplete ontologies 
as a result of rapid knowledge expan-
sion. 
Nonetheless, a comprehensive body of 
knowledge is currently stored in bio-
medical ontologies, which can be util-
ised in numerous ways by TM applica-
tions. Moreover, the results of TM can 
be curated and used to facilitate update 
of biomedical ontologies (Fig. 1). In this 
article, we focus only on the former as-
pect of the relation between text mining 
and ontologies, i.e. we review problems, 
existing practice and prospects of using 
ontologies for different TM applications. 
In the section TERMINOLOGY, we fo-
cus on the problem of linking text to on-
tologies. In the section TEXT MINING, 
we provide an introduction to text min-
ing and discuss two of its principal tasks: 
information retrieval and information 
extraction. The ways in which ontologies 
can be used to support these applications 
are discussed separately in the following 
sections: INFORMATION RE-
TRIEVAL and INFORMATION EX-
TRACTION. The latter section is di-
vided into three subsections. The first 
subsection deals with named entity rec-
ognition as a key step in information ex-
traction. The following two subsections 
discuss information extraction systems 
depending on the degree to which they 
rely on the use of ontologies. Since 
many TM applications resort to the use 
of machine learning methods as a way of 
tackling the complexity of both natural 
language and biomedical knowledge, we 
explain how ontologies can be used for 
this purpose in the section MACHINE 

LEARNING. The final section CON-
CLUSION completes the paper. 
 
TERMINOLOGY 
The principal link between text and an 
ontology is a terminology, which aims to 
map concepts to terms (Fig. 2). A term is 
defined as a textual realization of a spe-
cialized concept, e.g. gene, protein, dis-
ease, etc. The introduction of a new term 
presupposes the establishment of a new 
concept which points to a specific area 
of the domain knowledge space.6,7 This 
process assumes the mapping of a term 
to a concept in an ontology. This map-
ping is crucial for semantic interpreta-
tion in TM applications and is far from 
trivial. The main problems arise from the 
fact that there is often no one-to-one cor-
respondence between concepts and 
terms. In practice, TM applications are 
faced with the problems of term varia-
tion and term ambiguity, which make the 
integration of information available in 
text and ontologies difficult. 
Term variation originates from the abil-
ity of a natural language to express a 
single concept in a number of ways. For 
example, in biomedicine there are many 
synonyms for proteins, enzymes, genes, 
etc. Having six or seven synonyms for a 
single concept is not unusual in this do-
main.8 The probability of two experts 
using the same term to refer to the same 
concept is <20%.9 In addition, biomedi-
cine includes pharmacology, where nu-
merous trademark names refer to the 
same compound (e.g. advil, brufen, mo-
trin, nuprin, and nurofen all refer to  ibu-
profen). 
Term ambiguity occurs when the same 
term is used to refer to multiple con-
cepts. Ambiguity is an inherent feature 
of natural language. Words typically 
have multiple dictionary entries and the 
meaning of a word can be altered by its 
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context. Sublanguages, as the languages 
confined to specialised domains,10 pro-
vide a context which generally reduces 
the level of ambiguity. However, bio-
medicine encompasses a plethora of 
subdomains, which is an additional 
cause for the high level of ambiguity in 
biomedical terminology. For example, 
the term promoter refers to a “binding 
site in a DNA chain at which RNA poly-
merase binds to initiate transcription of 
messenger RNA by one or more nearby 
structural genes” in biology, while in 
chemistry it denotes a “substance that in 
very small amounts is able to increase 
the activity of a catalyst .” In addition, 
acronyms are extensively used in bio-
medicine (a new acronym is introduced 
in every 5–10 abstracts)11 and they are 
known to be highly ambiguous (>80% of 
acronyms are ambiguous, the average 
number of possible interpretations being 
>15).12 For example, AR could be ex-
panded to any of the following terms: 
Androgen Receptor, AmphiRegulin, 
Acyclic Retinoid, Agonist-Receptor, 
Adrenergic Receptor, etc.  
Furthermore, text is not the only origin 
of ambiguity in biomedicine. Ambiguity 
is inherent to the field, because the evo-
lution of species gave rise to many 
homologues and analogues. For instance, 
NFKB2 denotes a family of two individ-
ual proteins with separate identifiers in 
SwissProt. These proteins are homo-
logues belonging to different species, 
human and chicken.13 
 
TEXT MINING 
Originally, TM was defined as the auto-
matic discovery of previously unknown 
information by extracting information 
from text.1 However, in the biomedical 
community, the term TM is often re-
duced to the process of highlighting (i.e. 
retrieving or extracting) small nuggets of 

relevant information from large collec-
tions of textual data. Generally, TM is 
used to collectively denote computer ap-
plications that aim to aid experts in mak-
ing sense of large amounts of text by dis-
tilling information, extracting facts, dis-
covering implicit links and generating 
hypotheses relevant to user needs. TM 
typically consists of: 
- information retrieval (IR), which 

gathers and filters relevant docu-
ments,14 

- information extraction (IE), which 
selects specific facts about prespeci-
fied types of entities and relation-
ships of interest,15 

- data mining (DM), which is used to 
discover unsuspected associations 
between known facts.16 c 

The techniques for IR, IE and textual 
DM can be applied to either raw or 
structured text (Fig. 3) with different 
success rates. 
Raw text is digitally represented as a se-
quence of characters. Such plain text 
representation is usually processed to 
add structure explicitly in a machine-
readable form. The initial step in auto-
matic text processing is tokenisation,18 
which identifies the basic textual units 
which need not be further decomposed. 
Even this basic problem cannot be re-
solved straightforwardly by relying on 
white spaces and punctuation marks as 
explicit delimiters (e.g. [3H]R1881 is a 
single token). 
Tokenisation is typically followed by 
some form of lexical processing, which 
may include part-of-speech tagging 
(mapping of individual words to their 
lexical classes, e.g. noun, verb, adjec-
tive, etc.),19 word stemming (reducing a 

                                                 
c For example, mining of textual data succeeded 
in linking magnesium deficiency to migraine, a 
correlation which was later experimentally con-
firmed.17 
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word to its stem or root form, e.g. both 
inhibitor and inhibited are reduced to 
inhibit)20 or lemmatisation (mapping a 
word to its lemma or the base form, e.g. 
bind is the lemma for binds, bound, 
binding), etc. 
Syntactic processing usually involves 
parsing as the process of determining the 
syntactic structure of a whole sentence 
(full or deep parsing) or some of its parts 
(partial or shallow parsing).21 Syntactic 
structure often implies the semantic rela-
tions between the concepts described. 
The interpretation of the semantic con-
tent expressed by natural language re-
quires linguistic knowledge and some 
degree of general knowledge. In specia l-
ised domains such as bio medicine, it 
also requires domain-specific knowl-
edge. Scientific publications do not ex-
plicitly encode all the necessary infor-
mation needed to understand the re-
ported conclusions. The targeted reader 
is assumed to posses some expertise in 
the area. For example, a biomedical ex-
pert should be able to infer that 5 alpha-
dihydrotestosterone is a hormone, 
[3H]R1881 is used as a ligand and an-
drogen receptor is a receptor. For TM 
applications to take a step closer to natu-
ral language understanding,22 such spe-
cialised knowledge needs to be encoded 
in a machine-readable form to a great 
extent. Biomedical ontologies currently 
provide (partial) coverage of the domain, 
and thus can be used in TM applications 
together with other forms of knowledge 
(e.g. linguistic) to aid semantic interpre-
tation of biomedical publications. 
With each layer of annotation (lexical, 
syntactic and semantic), better opportu-
nities for more sophisticated analysis 
arise. For example, a simple search with 
a query term testosterone over raw text 
is not able to differentiate between a sin-
gle token testosterone and testosterone 

as part of other tokens (e.g. 5 alpha-
dihydrotestosterone). Similarly, search-
ing for tokens of the inhibit relation by 
using a single search term inhibit over 
tokenised text would not retrieve other 
forms of the same word (e.g. inhibits or 
inhibited), while this is simply achieved 
in a lemmatised text by looking for the 
lemma inhibit. Further, syntactic infor-
mation can be used to differentiate be-
tween the genuine occurrences of query 
terms and their nested occurrences 
within other terms (e.g. androgen vs. 
androgen receptor). 
While most of these problems can be 
tackled effectively to a certain degree 
using various heuristics, a real window 
of opportunity for sensible TM opens 
only by adding structured semantic in-
formation to text representation. An ex-
plicit semantic layer supported by the 
use of ontologies offers a higher expres-
sive power for formulating semantic 
queries as opposed to simple Boolean 
queries and keyword matching. Fur-
thermore, semantically annotated text 
coupled with ontologies can be mined 
for higher-order relations between bio-
medical entities including temporal, 
causal, conditional and other types of 
relations (e.g. the conditions that pro-
duce a sequence of events that results in 
the expression of a disease with genetic 
predisposition) as a contrast to simple 
correlations between them (e.g. gene-
disease associations). 
Up until recently, most TM systems 
have used neither a sophisticated termi-
nological lexicon nor an ontology of en-
tities or of events. They have used gazet-
teers, which map between a lookup 
string and a tactically-useful semantic 
category, from a small set. However, the 
gazetteer-based approach is not suited 
for biomedical TM, because terminology 
plays a crucial part in characterising 
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knowledge in the domain. This is one of 
the main reasons why biomedical TM 
systems generally provide poorer results 
compared to other domains (e.g. news-
wire-type data). In the fo llowing sec-
tions, we describe how ontologies can be 
used to support var ious TM-related 
tasks. 
 
INFORMATION RETRIEVAL 
IR is extensively used by biomedical ex-
perts to locate relevant information 
(most often in the form of relevant pub-
lications) on the Internet. Apart from 
general-purpose search engines such as 
GoogleTM, many IR tools have been de-
signed specifically to query the data-
bases of biomedical publications such as 
PubMed23-27. 
It is particularly important in biomedi-
cine not to restrict IR to exact matching 
of query terms, because term ambiguity 
and variation phenomena may cause ir-
relevant information to be retrieved (low 
precision) and relevant information to be 
overlooked (low recall). Some biomedi-
cal ontologies (e.g. UMLS) explicitly 
store such terminological information 
(though not always complete). In addi-
tion, the hierarchical organisation of on-
tologies and relations28 between the de-
scribed concepts (and through them the 
corresponding terms) can be used to 
constrain or relax a search query and to 
navigate the user through huge volumes 
of published information. 
For example, Suarez et al.29 utilized 
UMLS for this purpose. Similarly, 
TIMS30 uses an ontology to perform a 
sophisticated search, which enables us-
ers to access implicitly stated relevant 
information through hierarchical query 
expansion. More recently, Müller et al.31 
developed Textpresso, an IR system op-
erating at the sentence level. It uses a 
specifically designed ontology to query a 

corpus for information on specific 
classes of biological concepts (e.g. gene, 
allele, cell, etc.) and their relations (e.g. 
association, regulation, etc.). 
 
INFORMATION EXTRACTION 
Early efforts in biomedical IE were de-
voted to named entity recognition (NER) 
– the recognition of terms denoting spe-
cific classes of biomedical entities (e.g. 
gene and protein names)32, followed by 
the extraction of specific relations be-
tween such entities (e.g. protein-protein 
interactions),33 progressing slowly to-
ward extracting more complex types of 
information (e.g. metabolic pathways).34 
In this section, we overview the existing 
approaches to these problems that rely 
on the use of ontologies. First, we focus 
on NER as a crucial step in extracting 
more complex types of information (i.e. 
facts and events). In the following sub-
sections, we look at how ontologies are 
used in IE systems to extract facts and 
events, focusing on rule-based systems 
bearing in mind that there have been few 
attempts to apply machine learning (ML) 
techniques to fact or event extraction.35 
Here we make an important distinction 
between ontology-based and ontology-
driven systems. 
 
Named entity recognition 
IE depends on NER (i.e. term recogni-
tion, classification and mapping to des-
ignated concepts) as the main step in ac-
cessing textually described domain-
specific information.36 As already men-
tioned, the mapping between terms (in 
text) and concepts (in an ontology) is not 
trivial. One of the main reasons is that 
terms exhibit a high degree of variation, 
which is not always explicitly reflected 
in biomedical ontologies.37 For this rea-
son, the UMLS onto logy is distributed 
together with computational support for 
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neutralisation of variation in the bio-
medical domain.38  
Typically, one third of term occurrences 
are variants,39 which means that many 
new terms can be recognised as variants 
of known terms. Therefore, a list of clas-
sified terms that can often be derived 
from a biomedical ontology,d can be 
used as a training set to automatically 
detect new terms. Chiang and Yu40 used 
a rule-based approach and the Gene On-
tology to support robust dictionary-based 
term recognition. They consider variants 
arising from permutation (same words, 
but in different order, e.g. inner mito-
chondrial membrane vs. mitochondrial 
inner membrane) and insertion/deletion 
(e.g. focal adhesion associated kinase 
vs. focal adhesion kinase). In addition, 
edit distance is calculated to measure the 
reliability of the term variant recognition 
through the above rules. 
Tsuruoka and Tsujii41 implemented an 
approach to the recognition of ortho-
graphic variants (e.g. EGR-1 vs. EGR 1 
vs. EGR1 ), which are a common type of 
variation in protein names. Such variants 
were automatically recognised by apply-
ing approximate string matching tech-
niques for the known protein names 
against a domain-specific corpus. The 
UMLS ontology was used to provide 
training data. 
Tsuruoka and Tsujii42,43  also developed a 
probabilistic term variant generator. In 

                                                 
d We differentiate between the use of the word 
term in this article and the same word used in 
some of the biomedical ontologies, where it is 
used as a concept label (e.g. GO terms). Unfor-
tunately, such concept labels have little to do 
with terms as they occur in text or as they are 
found in term banks. Many ontological “terms” 
are not attested linguistic units. Instead, they 
have more in common with documentation the-
saurus descriptors, facet labels or index terms 
from a controlled vocabulary than with termino-
logical terms. 

rule-based variant generators, arbitrary 
variants may be produced, resulting in a 
large number of non-existing variants, 
whose matching against a corpus con-
sumes time and resources unnecessarily. 
In order to reduce this problem, each 
generated variant is assigned a probabil-
ity factor corresponding to its plausibil-
ity. Rules are defined as applications of 
allowed operations (substitution, dele-
tion and insertion) in a given context. 
They are learnt together with their prob-
abilities from raw text. 
Mukherjea et al.44 used UMLS to extract 
biomedical term formation patterns and 
learn class ification rules, which are then 
used to semantically annotate different 
classes of terms in text. 
 
Ontology-based IE 
Ontology-based IE systems attempt to 
map a term occurring in text to a concept 
in an ontology, typically in the absence 
of any explicit link between term and 
concept. This is passive ontology use. 
When such mapping is attempted de-
pends on the type of approach adopted. 
For example, where syntactic chunking 
(identification of major syntactic con-
stituents such as noun and verb phrases) 
is followed by syntactic parsing (linking 
syntactic constituents to build the repre-
sentation(s) of an entire sentence), on-
tology lookup will occur after a syntactic 
parse has been obtained. Where a hybrid, 
syntactico-semantic approach is adopted, 
there can be early lookup of an ontology. 
Where term recognition is applied, onto-
logical categories can be assigned early, 
instead of ad hoc semantic ones. Leroy 
and Chen45 provide an example of late-
stage ontology (GO, HUGO and UMLS) 
lookup. In another approach,46 late-stage 
attempts to map tokens of relations to 
concept labels in ontologies were a ma-
jor source of failure: the technique called 
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for at least one  word from each argu-
ment of a relation to exist in GO or 
HUGO, and for at least one word form-
ing the predicate to exist in a list of do-
main verb stems. 
Kim and Park47 applied full syntactic 
parsing, but only on sentences contain-
ing instances of predefined patterns in-
volving keywords. Extracted general 
biological interaction information is an-
notated with GO concepts. There is an 
attempt to exploit similarities of senten-
tial syntactic dependencies and ontology 
label syntactic structure to achieve map-
ping to concepts. 
 
Ontology-driven IE 
Ontology-driven IE systems, unlike on-
tology-based ones, make active use of an 
ontology in processing, to strongly guide 
and constrain analysis. For example, Da-
raselia et al.48 employ a full sentence 
parser49 and a domain-specific filter to 
extract information on protein-protein 
interactions. Each of the potentially 
many thousands of semantic analyses 
per sentence is filtered against a custom-
built frame-based ontology to yield a 
frame tree, a representation in which on-
tological frames are instantiated and 
linked according to the constraints ex-
pressed in the ontology. Frame trees are 
converted to conceptual graphs, which 
can then be subjected to querying or 
used as a basis for advanced mining. 
PASTA50 extracts information on the 
roles of specific amino acid residues in 
protein molecules. An onto logy-based 
domain model is incrementally popu-
lated with the contents of predicate-
argument structures, with inference and 
co-reference also contributing to enrich 
the domain model. 
GenIE51 extracts information on bio-
chemical pathways, and on sequences, 
structures and functions of genomes and 

proteins. It makes use of an ontology 
linked to a semantic lexicon, in which 
fillers of verbal semantic subcategorisa-
tion slots are particular concepts, or spe-
cialisations thereof. It applies syntactic, 
semantic and ontological constraints to 
filter out implausible analyses, and inte-
grates extracted information in dis-
course- level semantic representations.  
GENIES52,53 adopts a strong sublan-
guage approach, which leverages the 
specific informational structure of spe-
cialised texts to reduce ambiguity. This 
approach is applied to extraction of bio-
molecular interactions relevant to signal 
transduction and biochemical pathways, 
using hybrid syntactico-semantic rules. 
A small number of semantic categories 
relevant to the biomolecular domain is 
used. In addition, an ontology was de-
veloped,54 covering both entities and 
events. Friedman et al.53 describe how 
the semantic categories that verbs look 
for in their environment are mapped to 
the more general categories found in on-
tologies. 
As evidenced by the results reported on 
the described systems, an ontology-
driven IE approach is to be preferred to 
an ontology-based approach for extrac-
tion of relations, facts and events. Hy-
brid syntactico-semantic approaches of-
fer promising results, particularly where 
these are based on a strong sublanguage 
approach and are linked with an onto l-
ogy-driven approach. 
 
MACHINE LEARNING 
Previously, the potential of using an on-
tology as a training set for NER as a spe-
cific task of TM has been illustrated. For 
this purpose, an ontology is reduced to a 
list of classified terms. However, on-
tologies provide much richer informa-
tion, which may be utilised by ML ap-
proaches to other TM tasks, such as term 
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classification, term clustering, term rela-
tion extraction, etc. 
Numerous ML approaches have used the 
GENIA corpus, semantically annotated 
with its own custom ontology, as the 
training or testing set for different TM 
tasks:55 e.g. NER5 using methods such as 
hidden Markov models,56,57 naive Bayes 
classification,41,44  maximum entropy,58,59 
conditional random field ,60,61  support 
vector machines,62,63 decision trees,64 
combination of different heuristics65 etc. 
The current version of the GENIA cor-
pus consists of 2,000 manually annotated 
PubMed abstracts. While without doubt 
extremely useful for many ML ap-
proaches to TM tasks,66 the manual 
building of semantically annotated re-
sources is an expensive task.44  
However, an ontology can be practically 
used to sense-tag raw text, i.e. to map a 
term occurrence to its sense (the concept 
designated by the given term). The rela-
tional information stored in the ontology 
can be used to automatically disambigu-
ate terms that can be mapped to multiple 
concepts. For example, Liu et al.12 used 
co-occurrence with related terms to re-
solve the meaning of an ambiguous 
term. 
Ontologies are typically orga nised in a 
hierarchy using the is-a relation between 
concepts. This property can be used to 
quantify the similarity between the con-
cepts, and, implicitly, semantic similar-
ity between the terms used to designate 
these concepts.67 Such numerical infor-
mation that can be inferred from an on-
tology, on top of the symbolic informa-
tion it explicitly stores, is of particular 
value for TM applications. For example, 
semantic similarity measure can be used 
as a vehicle of ML approaches (instance-
based approaches such as k-nearest 
neighbour and case-based reasoning)68 to 
a variety of TM tasks (e.g. clustering69 

and classification70 of both ind ividual 
terms and the documents containing 
them). 
A number of different approaches to in-
ferring semantic similarity from an is-a 
hierarchy have been suggested. The tree 
similarity (ts) between two concepts, C1 
and C2, is calculated according to the 
following formula: 
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where common(C1, C2) denotes the 
number of common nodes in the paths 
between the root and the given concepts, 
and depth(C) is the number of nodes in 
the path connecting the root and the 
given concept C. This formula is a de-
rivative of Dice’s coefficient where an-
cestor concepts are treated as their fe a-
tures and the similarity corresponds to 
the ratio between the common and all 
features. It has been previously used to 
measure conceptual similarity in a hier-
archically structured lexicon.71 A “prob-
abilistic” variation of this model:72 
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is obtained by “normalising” Resnik’s73 
variant of semantic similarity measure: 
 

( ) ( )( )2121 ,log,ts CCSPCC −=  
 
where S(C1, C2) is the deepest common 
node that subsumes both of the given 
concepts, and P(C) is an estimation of 
the probability of a textual realisation of 
the given concept C. 
Term similarity measures need to be 
consistent in reflecting semantic similar-
ity between the designated concepts, and 
an ontology can be used to assess such 
consistency. For example, Spasic et al.74 
used an ontology hand-crafted by a do-
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main expert to automatically tune the 
parameters of a weighted corpus-based 
term similarity measure. The core simi-
larity method is based on the lexical and 
contextual term similarities. In this ap-
proach, an onto logy was used to provide 
the training values for the conceptual 
term similarity (calculated as Dice’s tree 
similarity – see above), which should be 
approximated by the textual term simi-
larity values. A consistent approximation 
of ontology-based similarity measure is 
important in biomedicine, because new 
concepts described in literature using 
new terms are not efficiently incorpo-
rated in an onto logy. 
In another approach, Spasic and 
Ananiadou75 utilised UMLS to compare 
individual term occurrences in an edit 
distance (ED) approach to assessing 
their contextual similarity. Partial pars-
ing was used to chunk the contextual 
information into major syntactic con-
stituents, with special consideration 
given to terms. The importance of terms 
as principal conveyors of domain-
specific information was reflected in the 
high cost of deleting and inserting terms 
when aligning two contexts through ED. 
The cost of replacing (or matching) two 
terms in such an alignment depends on 
their semantic similarity, which is esti-
mated via their tree similarity using their 
positions in the ontology (see above). 
Lexical similarity was used as an alter-
native for ontological tree similarity for 
terms not found in the ontology. In add i-
tion, the ontology was used to navigate 
through the conceptual space and effi-
ciently select plausibly similar contexts, 
i.e. the ones sharing semantically similar 
terms.70 
 
CONCLUSIONS 
Different layers of text annotation (lexi-
cal, syntactic and semantic) are required 

for sophisticated TM in biomedicine. 
High terminological variability, typical 
of the domain, emphasises the need for 
lexico-syntactic procedures and annota-
tions that can be used to neutralise the 
effects of such variation. Such phenom-
ena can be tackled effectively through 
the use of rule-based or machine learn-
ing techniques. However, traditional 
heuristic and ad hoc TM methods simply 
do not deliver in a complex sublanguage 
such as that of biomedicine. Encoding of 
the explicit semantic layer in biomedical 
text representation needs to be supported 
by ontologies as the formal means of 
representing domain-specific knowl-
edge. Up until recently, most TM sys-
tems have not relied on ontologies or 
terminologies, which is a main reason 
why biomedical TM systems generally 
provide poorer results compared to other 
domains (e.g. newswire). 
Therefore, ontologies together with ter-
minological lexicons are prerequisites 
for advanced TM. It is not enough to 
rely on one or the other: both are needed 
if we wish to produce highly accurate 
results of the kind needed by biomedical 
experts and also to obtain broad cove r-
age of biomedical text. TM applications 
should aim at deriving complex informa-
tion from text, e.g. temporal, causal, 
conditional and other types of semantic 
relations between biomedical entities as 
opposed to simple associations. In order 
to achieve such objectives, biomedical 
text needs to be semantically annotated 
and actively linked to ontologies. 
This leads us to the question of the types 
of ontologies needed for TM. As demon-
strated by GENIES52 and GenIE51, it is 
essential to focus on describing the syn-
tactic and semantic behaviour of bio-
medical sublanguage and on the formal 
description of domain event concepts. 
These systems had to develop their own 
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ontologies of events and their own ter-
minological lexicons. Therefore, the 
challenge for the field is to develop ap-
propriate ontology resources and link 
them to adequate terminological lexicons 
in order to support the kind of process-
ing required – and also to support inter-
operability between such ontologies. 
This can be greatly facilitated by recent 
adva nces in reducing the cost of config-
uring and tuning systems based on bio-
medical sublanguage: lexical standards 
enabling reusability; ML techniques to 
discover patterns of sublanguage behav-
iour in large annotated text corpora to 
help grammar writers; deve lopment of 
ontologies that can act as domain models 
and major developments in extracting 
and characterising terminology, includ-
ing compound terms and acronyms. 
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