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Abstract

As text semantics has an important role in text meaning, the term semantics has been seen in a vast sort of text
mining studies. However, there is a lack of studies that integrate the different research branches and summarize the
developed works. This paper reports a systematic mapping about semantics-concerned text mining studies. This
systematic mapping study followed a well-defined protocol. Its results were based on 1693 studies, selected among
3984 studies identified in five digital libraries. The produced mapping gives a general summary of the subject, points
some areas that lacks the development of primary or secondary studies, and can be a guide for researchers working
with semantics-concerned text mining. It demonstrates that, although several studies have been developed, the
processing of semantic aspects in text mining remains an open research problem.
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Introduction
Text mining techniques have become essential for sup-

porting knowledge discovery as the volume and variety of

digital text documents have increased, either in social net-

works and the Web or inside organizations. Text sources,

as well as text mining applications, are varied. Although

there is not a consensual definition established among

the different research communities [1], text mining can

be seen as a set of methods used to analyze unstruc-

tured data and discover patterns that were unknown

beforehand [2].

A general text mining process can be seen as a five-step

process, as illustrated in Fig. 1. The process starts with

the specification of its objectives in the problem identifi-

cation step. The text mining analyst, preferably working

along with a domain expert, must delimit the text min-

ing application scope, including the text collection that

will be mined and how the result will be used. The spec-

ifications stated in the problem identification step will

guide the next steps of the text mining process, which can

be executed in cycles of data preparation (pre-processing
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step), knowledge discovery (pattern extraction step), and

knowledge evaluation (post-processing step).

The pre-processing step is about preparing data for

pattern extraction. In this step, raw text is transformed

into some data representation format that can be used as

input for the knowledge extraction algorithms. The activ-

ities performed in the pre-processing step are crucial for

the success of the whole text mining process. The data

representation must preserve the patterns hidden in the

documents in a way that they can be discovered in the next

step. In the pattern extraction step, the analyst applies

a suitable algorithm to extract the hidden patterns. The

algorithm is chosen based on the data available and the

type of pattern that is expected. The extracted knowledge

is evaluated in the post-processing step. If this knowledge

meets the process objectives, it can be put available to the

users, starting the final step of the process, the knowledge

usage. Otherwise, another cycle must be performed, mak-

ing changes in the data preparation activities and/or in

pattern extraction parameters. If any changes in the stated

objectives or selected text collection must be made, the

text mining process should be restarted at the problem

identification step.

Text data are not naturally in a format that is suitable

for the pattern extraction, which brings additional chal-

lenges to an automatic knowledge discovery process. The

meaning of natural language texts basically depends on
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Fig. 1 A general text mining process

lexical, syntactic, and semantic levels of linguistic knowl-

edge. Each level is more complex and requires a more

sophisticated processing than the previous level. This is

a common trade-off when dealing with natural language

processing: expressiveness versus processing cost. Thus,

lexical and syntactic components have been more broadly

explored in text mining than the semantic component

[2]. Recently, text mining researchers have become more

interested in text semantics, looking for improvements

in the text mining results. The reason for this increas-

ing interest can be assigned both to the progress of the

computing capacity, which is constantly reducing the pro-

cessing time, and to developments in the natural language

processing field, which allow a deeper processing of raw

texts.

In order to compare the expressiveness of each level

of text interpretation (lexical, syntactic, and semantic),

consider two simple sentences:

1. Company A acquired Company B.

2. Company B acquired Company A.

Sentences 1 and 2 have opposite meanings, but they

have the same terms (“Company”, “A”, “B”, “acquired”).

Thus, if we analyze these sentences only in the lexical

level, it is not possible to differentiate them. However,

considering the sentence syntax, we can see that they are

opposite. They have the same verb, and the subject of one

sentence is the object of the other sentence and vice versa.

If we analyze a little deeper, now considering the sentence

semantics, we find that in sentence 1, “Company A” has

the semantic role of agent regarding the verb “acquire” and

“Company B” has the semantic role of theme. The same

can be said to a third sentence:

3. Company B was acquired by Company A.

Despite the fact that syntactically sentences 1 and 3 have

opposite subjects and objects, they have the same seman-

tic roles. Thus, at the semantic level, they have the same

meaning. If we go deeper and consider semantic relations

among words (as the synonymy, for example), we can find

that sentence 4 also expresses the same event:

4. Company A purchased Company B.

Besides, going even deeper in the interpretation of

the sentences, we can understand their meaning—they

are related to some takeover—and we can, for example,

infer that there will be some impacts on the business

environment.

Traditionally, text mining techniques are based on both

a bag-of-words representation and application of data

mining techniques. In this approach, only the lexical com-

ponent of the texts are considered. In order to get a more

complete analysis of text collections and get better text

mining results, several researchers directed their attention

to text semantics.

Text semantics can be considered in the three main

steps of text mining process: pre-processing, pattern

extraction and post-processing. In the pre-processing

step, data representation can be based on some sort of

semantic aspect of the text collection. In the pattern

extraction, semantic information can be used to guide the

model generation or to refine it. In the post-processing
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step, the extracted patterns can be evaluated based on

semantic aspects. Either way, text mining based on text

semantics can go further than text mining based only on

lexicon or syntax. A proper treatment of text semantics

can lead to more appropriate results for certain appli-

cations [2]. For example, semantic information has an

important impact on document content and can be crucial

to differentiate documents which, despite the use of the

same vocabulary, present different ideas about the same

subject.

The term semantics has been seen in a vast sort of text

mining studies. However, there is a lack of studies that

integrate the different branches of research performed to

incorporate text semantics in the textmining process. Sec-

ondary studies, such as surveys and reviews, can integrate

and organize the studies that were already developed and

guide future works.

Thus, this paper reports a systematic mapping study to

overview the development of semantics-concerned stud-

ies and fill a literature review gap in this broad research

field through a well-defined review process. Semantics

can be related to a vast number of subjects, and most

of them are studied in the natural language processing

field. As examples of semantics-related subjects, we can

mention representation of meaning, semantic parsing and

interpretation, word sense disambiguation, and corefer-

ence resolution. Nevertheless, the focus of this paper is

not on semantics but on semantics-concerned text min-

ing studies. As the term semantics appears in text mining

studies in different contexts, this systematic mapping aims

to present a general overview and point some areas that

lack the development of primary studies and those areas

that secondary studies would be of great help. This paper

aims to point some directions to the reader who is inter-

ested in semantics-concerned text mining researches.

As it covers a wide research field, this systematic map-

ping study started with a space of 3984 studies, identified

in five digital libraries. Due to time and resource limi-

tations, except for survey papers, the mapping was done

primarily through information found in paper abstracts.

Therefore, our intention is to present an overview of

semantics-concerned text mining, presenting a map of

studies that has been developed by the research com-

munity, and not to present deep details of the studies.

The papers were analyzed in relation to their applica-

tion domains, performed tasks, applied methods and

resources, and level of user’s interaction. The contribu-

tion of this paper is threefold: (i) it presents an overview

of semantics-concerned text mining studies from a text

mining viewpoint, organizing the studies according to

seven aspects (application domains, languages, external

knowledge sources, tasks, methods and algorithms, repre-

sentation models, and user’s interaction); (ii) it quantifies

and confirms some previous feelings that we had about

our study subject; and (iii) it provides a starting point

for those, researchers or practitioners, who are initiating

works on semantics-concerned text mining.

The remainder of this paper is organized as follows.

The “Method applied for systematic mapping” section

presents an overview of systematic mapping method,

since this is the type of literature review selected to

develop this study and it is not widespread in the text

mining community. In this section, we also present the

protocol applied to conduct the systematic mapping study,

including the research questions that guided this study

and how it was conducted. The results of the system-

atic mapping, as well as identified future trends, are

presented in the “Results and discussion” section. The

“Conclusion” section concludes this work.

Method applied for systematic mapping
The review reported in this paper is the result of a system-

aticmapping study, which is a particular type of systematic

literature review [3, 4]. Systematic literature review is

a formal literature review adopted to identify, evaluate,

and synthesize evidences of empirical results in order to

answer a research question. It is extensively applied in

medicine, as part of the evidence-basedmedicine [5]. This

type of literature review is not as disseminated in the

computer science field as it is in the medicine and health

care fields1, although computer science researches can

also take advantage of this type of review. We can find

important reports on the use of systematic reviews spe-

cially in the software engineering community [3, 4, 6, 7].

Other sparse initiatives can also be found in other com-

puter science areas, as cloud-based environments [8],

image pattern recognition [9], biometric authentication

[10], recommender systems [11], and opinionmining [12].

A systematic review is performed in order to answer

a research question and must follow a defined protocol.

The protocol is developed when planning the systematic

review, and it is mainly composed by the research ques-

tions, the strategies and criteria for searching for primary

studies, study selection, and data extraction. The protocol

is a documentation of the review process andmust have all

the information needed to perform the literature review in

a systematic way. The analysis of selected studies, which

is performed in the data extraction phase, will provide the

answers to the research questions that motivated the liter-

ature review. Kitchenham and Charters [3] present a very

useful guideline for planning and conducting systematic

literature reviews. As systematic reviews follow a formal,

well-defined, and documented protocol, they tend to be

less biased andmore reproducible than a regular literature

review.

When the field of interest is broad and the objective

is to have an overview of what is being developed in the

research field, it is recommended to apply a particular
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type of systematic review named systematic mapping

study [3, 4]. Systematic mapping studies follow an well-

defined protocol as in any systematic review. The main

differences between a traditional systematic review and a

systematic mapping are their breadth and depth. While a

systematic review deeply analyzes a low number of pri-

mary studies, in a systematic mapping a wider number of

studies are analyzed, but less detailed. Thus, the search

terms of a systematic mapping are broader and the results

are usually presented through graphs. Systematicmapping

studies can be used to get a mapping of the publications

about some subject or field and identify areas that require

the development of more primary studies and areas in

which a narrower systematic literature review would be of

great help to the research community.

This paper reports a systematic mapping study con-

ducted to get a general overview of how text semantics

is being treated in text mining studies. It fills a litera-

ture review gap in this broad research field through a

well-defined review process. As a systematic mapping,

our study follows the principles of a systematic map-

ping/review. However, as our goal was to develop a general

mapping of a broad field, our study differs from the pro-

cedure suggested by Kitchenham and Charters [3] in two

ways. Firstly, Kitchenham and Charters [3] state that the

systematic review should be performed by two or more

researchers. Although our mapping study was planned by

two researchers, the study selection and the information

extraction phases were conducted by only one due to the

resource constraints. In this process, the other researchers

reviewed the execution of each systematic mapping phase

and their results. Secondly, systematic reviews usually are

done based on primary studies only, nevertheless we have

also accepted secondary studies (reviews or surveys) as we

want an overview of all publications related to the theme.

In the following subsections, we describe our systematic

mapping protocol and how this study was conducted.

Systematic mapping planning

The first step of a systematic review or systematic map-

ping study is its planning. The researchers conducting the

study must define its protocol, i.e., its research questions

and the strategies for identification, selection of stud-

ies, and information extraction, as well as how the study

results will be reported. The main parts of the protocol

that guided the systematic mapping study reported in this

paper are presented in the following.

Research question: the main research question that

guided this study was “How is semantics consid-

ered in text mining studies?” The main question

was detailed in seven secondary questions, all of

them related to text mining studies that consider text

semantics in some way:

1. What are the application domains that focus on

text semantics?

2. What are the natural languages being

considered when working with text semantics?

3. Which external sources are frequently used in

text mining studies when text semantics is

considered?

4. In what text mining tasks is the text semantics

most considered?

5. What methods and algorithms are commonly

used?

6. How can texts be represented?

7. Do users or domain experts take part in the

text mining process?

Study identification: the study identification was per-

formed through searches for studies conducted in

five digital libraries: ACM Digital Library, IEEE

Xplore, Science Direct, Web of Science, and Scopus.

The following general search expression was applied

in both Title and Keywords fields, when allowed by

the digital library search engine: semantic* AND

text* AND (mining OR representation

OR clustering OR classification OR

association rules).

Study selection: every study returned in the search

phase went to the selection phase. Studies were

selected based on title, abstract, and paper informa-

tion (as number of pages, for example). Through this

analysis, duplicated studies (most of themwere stud-

ies found in more than one database) were identified.

Besides, studies which match at least one of the fol-

lowing exclusion criteria were rejected: (i) one page

papers, posters, presentations, abstracts, and edito-

rials; (ii) papers hosted in services with restricted

access and not accessible; (iii) papers written in lan-

guages different from English or Portuguese; and (iv)

studies that do not deal with text mining and text

semantics.

Information extraction: the information extraction

phase was performed with papers accepted in the

selection phase (papers that were not identified as

duplicated or rejected). The abstracts were read in

order to extract the information presented in Fig. 2.

As any literature review, this study has some bias. The

advantage of a systematic literature review is that the pro-

tocol clearly specifies its bias, since the review process is

well-defined. There are bias related to (i) study identifica-

tion, i.e., only papers matching the search expression and

returned by the searched digital libraries were selected; (ii)

selection criteria, i.e., papers that matches the exclusion

criteria were rejected; and (iii) information extraction, i.e.,

the information were mainly extracted considering only
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Fig. 2 Information extraction form

title and abstracts. It is not feasible to conduct a literature

review free of bias. However, it is possible to conduct it

in a controlled and well-defined way through a systematic

process.

Systematic mapping conduction

The conduction of this systematic mapping followed the

protocol presented in the last subsection and is illustrated

in Fig. 3. The selection and the information extraction

phases were performed with support of the Start tool [13].

This paper reports the results obtained after the exe-

cution of two cycles of the systematic mapping phases.

The first cycle was executed based on searches performed

in January 2014. The second cycle was an update of the

first cycle, with searches performed in February 20162. A

total of 3984 papers were found using the search expres-

sion in the five digital libraries. In the selection phase, 725

duplicated studies were identified and 1566 papers were

rejected according to the exclusion criteria, mainly based

on their title and abstract. Most of the rejected papers

match the last exclusion criteria (Studies that do not deal

with text mining and text semantics). Among them, we

can find studies that deal with multimedia data (images,

videos, or audio) and with construction, description, or

annotation of corpus.

After the selection phase, 1693 studies were accepted

for the information extraction phase. In this phase,

information about each study was extracted mainly

based on the abstracts, although some information was

extracted from the full text. The results of the accepted

paper mapping are presented in the next section.

Results and discussion
The mapping reported in this paper was conducted with

the general goal of providing an overview of the researches

developed by the textmining community and that are con-

cerned about text semantics. This mapping is based on

1693 studies selected as described in the previous section.

The distribution of these studies by publication year is

presented in Fig. 4. We can note that text semantics has

been addressed more frequently in the last years, when a

higher number of text mining studies showed some inter-

est in text semantics. The peak was in 2011, with 223

identified studies. The lower number of studies in the year

2016 can be assigned to the fact that the last searches were

conducted in February 2016.

The results of the systematic mapping study is pre-

sented in the following subsections. We start our report

presenting, in the “Surveys” section, a discussion about

the eighteen secondary studies (surveys and reviews) that

were identified in the systematic mapping. Then, each

following section from “Application domains” to “User’s

interaction” is related to a secondary research question

that guided our study, i.e., application domains, languages,

external knowledge sources, text mining tasks, methods

and algorithms, representation model, and user’s inter-

action. In the “Systematic mapping summary and future

trends” section, we present a consolidation of our results

and point some gaps of both primary and secondary

studies.

Some studies accepted in this systematic mapping are

cited along the presentation of our mapping. We do not

present the reference of every accepted paper in order to

present a clear reporting of the results.

Surveys

In this systematic mapping, we identified 18 survey

papers associated to the theme text mining and semantics

[14–31]. Each paper exploits some particularity of this

broad theme. In the following, we present a short overview

of these papers, which is based on the full text of the

papers.

Grobelnik [14] presents, briefly but in a very clear form,

an interesting discussion of text processing in his three-

page paper. The author organizes the field in three main

dimensions, which can be used to classify text process-

ing approaches: representation, technique, and task. The

task dimension is about the kind of problems, we solve

through the text processing. Document search, cluster-

ing, classification, summarization, trend detection, and

monitoring are examples of tasks. Considering how text
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Fig. 3 Systematic mapping conduction phases. The numbers in the shaded areas indicate the quantity of studies involved

representations are manipulated (technique dimension),

we have the methods and algorithms that can be used,

including machine learning algorithms, statistical anal-

ysis, part-of-speech tagging, semantic annotation, and

semantic disambiguation. In the representation dimen-

sion, we can find different options for text representation,

such as words, phrases, bag-of-words, part-of-speech,

subject-predicate-object triples and semantically anno-

tated triples.

Grobelnik [14] also presents the levels of text repre-

sentations, that differ from each other by the complexity

of processing and expressiveness. The most simple level

is the lexical level, which includes the common bag-of-

words and n-grams representations. The next level is

the syntactic level, that includes representations based

on word co-location or part-of-speech tags. The most

complete representation level is the semantic level and

includes the representations based on word relationships,

Fig. 4 Distribution of the 1693 accepted studies by publication year. Searches for studies identification were executed in January 2014 and February
2016
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as the ontologies. Several different research fields deal

with text, such as text mining, computational linguistics,

machine learning, information retrieval, semantic web

and crowdsourcing. Grobelnik [14] states the importance

of an integration of these research areas in order to reach

a complete solution to the problem of text understanding.

Stavrianou et al. [15] present a survey of semantic issues

of text mining, which are originated from natural language

particularities. This is a good survey focused on a linguis-

tic point of view, rather than focusing only on statistics.

The authors discuss a series of questions concerning natu-

ral language issues that should be considered when apply-

ing the text mining process. Most of the questions are

related to text pre-processing and the authors present the

impacts of performing or not some pre-processing activ-

ities, such as stopwords removal, stemming, word sense

disambiguation, and tagging. The authors also discuss

some existing text representation approaches in terms

of features, representation model, and application task.

The set of different approaches to measure the similar-

ity between documents is also presented, categorizing the

similarity measures by type (statistical or semantic) and by

unit (words, phrases, vectors, or hierarchies).

Stavrianou et al. [15] also present the relation between

ontologies and text mining. Ontologies can be used as

background knowledge in a text mining process, and the

textmining techniques can be used to generate and update

ontologies. The authors conclude the survey stating that

text mining is an open research area and that the objec-

tives of the text mining process must be clarified before

starting the data analysis, since the approaches must be

chosen according to the requirements of the task being

performed.

Methods that deal with latent semantics are reviewed

in the study of Daud et al. [16]. The authors present a

chronological analysis from 1999 to 2009 of directed prob-

abilistic topicmodels, such as probabilistic latent semantic

analysis, latent Dirichlet allocation, and their extensions.

The models are classified according to their main func-

tionality. They describe their advantages, disadvantages,

and applications.

Wimalasuriya and Dou [17], Bharathi and Venkatesan

[18], and Reshadat and Feizi-Derakhshi [19] consider the

use of external knowledge sources (e.g., ontology or the-

saurus) in the text mining process, each one dealing

with a specific task. Wimalasuriya and Dou [17] present

a detailed literature review of ontology-based informa-

tion extraction. The authors define the recent information

extraction subfield, named ontology-based information

extraction (OBIE), identifying key characteristics of the

OBIE systems that differentiate them from general infor-

mation extraction systems. Besides, they identify a com-

mon architecture of theOBIE systems and classify existing

systems along with different dimensions, as information

extraction method applied, whether it constructs and

updates the ontology, components of the ontology,

and type of documents the system deals with. Bharathi

and Venkatesan [18] present a brief description of several

studies that use external knowledge sources as back-

ground knowledge for document clustering. Reshadat and

Feizi-Derakhshi [19] present several semantic similarity

measures based on external knowledge sources (specially

WordNet and MeSH) and a review of comparison results

from previous studies.

Schiessl and Bräscher [20] and Cimiano et al. [21] review

the automatic construction of ontologies. Schiessl and

Bräscher [20], the only identified review written in Por-

tuguese, formally define the term ontology and discuss the

automatic building of ontologies from texts. The authors

state that automatic ontology building from texts is the

way to the timely production of ontologies for current

applications and that many questions are still open in

this field. Also, in the theme of automatic building of

ontologies from texts, Cimiano et al. [21] argue that auto-

matically learned ontologies might not meet the demands

of many possible applications, although they can already

benefit several text mining tasks. The authors divide the

ontology learning problem into seven tasks and discuss

their developments. They state that ontology population

task seems to be easier than learning ontology schema

tasks.

Jovanovic et al. [22] discuss the task of semantic tag-

ging in their paper directed at IT practitioners. Semantic

tagging can be seen as an expansion of named entity

recognition task, in which the entities are identified, dis-

ambiguated, and linked to a real-world entity, normally

using a ontology or knowledge base. The authors compare

12 semantic tagging tools and present some characteris-

tics that should be considered when choosing such type of

tools.

Specifically for the task of irony detection, Wallace

[23] presents both philosophical formalisms and machine

learning approaches. The author argues that a model

of the speaker is necessary to improve current machine

learning methods and enable their application in a general

problem, independently of domain. He discusses the gaps

of current methods and proposes a pragmatic context

model for irony detection.

The application of text mining methods in informa-

tion extraction of biomedical literature is reviewed by

Winnenburg et al. [24]. The paper describes the state-of-

the-art text mining approaches for supportingmanual text

annotation, such as ontology learning, named entity and

concept identification. They also describe and compare

biomedical search engines, in the context of information

retrieval, literature retrieval, result processing, knowledge

retrieval, semantic processing, and integration of exter-

nal tools. The authors argue that search engines must also
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be able to find results that are indirectly related to the

user’s keywords, considering the semantics and relation-

ships between possible search results. They point that a

good source for synonyms is WordNet.

Leser and Hakenberg [25] presents a survey of biomed-

ical named entity recognition. The authors present the

difficulties of both identifying entities (like genes, pro-

teins, and diseases) and evaluating named entity recogni-

tion systems. They describe some annotated corpora and

named entity recognition tools and state that the lack of

corpora is an important bottleneck in the field.

Dagan et al. [26] introduce a special issue of the Journal

of Natural Language Engineering on textual entailment

recognition, which is a natural language task that aims to

identify if a piece of text can be inferred from another.

The authors present an overview of relevant aspects in

textual entailment, discussing four PASCAL Recognis-

ing Textual Entailment (RTE) Challenges. They declared

that the systems submitted to those challenges use cross-

pair similarity measures, machine learning, and logical

inference. The authors also describe tools, resources, and

approaches commonly used in textual entailment tasks

and conclude with the perspective that in the future, the

constructed entailment “engines” will be used as a basic

module by the text-understanding applications.

Irfan et al. [27] present a survey on the application

of text mining methods in social network data. They

present an overview of pre-processing, classification and

clustering techniques to discover patterns from social net-

working sites. They point out that the application of text

mining techniques can reveal patterns related to peo-

ple’s interaction behaviors. The authors present two basic

pre-processing activities: feature extraction and feature

selection. The authors also review classification and clus-

tering approaches. They present different machine learn-

ing algorithms and discuss the importance of ontology

usage to introduce explicit concepts, descriptions, and the

semantic relationships among concepts. Irfan et al. [27]

identify themain challenges related to themanipulation of

social network texts (such as large data, data with impuri-

ties, dynamic data, emotions interpretations, privacy, and

data confidence) and to text mining infrastructure (such

as usage of cloud computing and improvement of the

usability of text mining methods).

In the context of semantic web, Sheth et al. [28]

define three types of semantics: implicit semantics, for-

mal semantics, and powerful (or soft) semantics. Implicit

semantics are those implicitly present in data patterns

and is not explicitly represented in any machine pro-

cessable syntax. Machine learning methods exploit this

type of semantics. Formal semantics are those represented

in some well-formed syntactic form and are machine-

processable. The powerful semantics are the sort of

semantics that allow uncertainty (that is, the representation

of degree of membership and degree of certainty) and,

therefore, allowing abductive or inductive reasoning. The

authors also correlates the types of semantics with some

core capabilities required by a practical semantic web

application. The authors conclude their review asserting

the importance of focusing research efforts in representa-

tion mechanisms for powerful semantics in order to move

towards the development of semantic applications.

The formal semantics defined by Sheth et al. [28] is com-

monly represented by description logics, a formalism for

knowledge representation. The application of description

logics in natural language processing is the theme of the

brief review presented by Cheng et al. [29].

The broad field of computational linguistics is pre-

sented by Martinez and Martinez [30]. Considering areas

of computational linguistics that can be interesting to

statisticians, the authors describe three main aspects of

computational linguistics: formal language, information

retrieval, andmachine learning. The authors present com-

mon models for knowledge representation, addressing

their statistical characteristics and providing an overview

of information retrieval and machine learning methods

related to computational linguistics. They describe some

of the major statistical contributions to the areas of

machine learning and computational linguistics, from the

point of view of classification and clustering algorithms.

Martinez and Martinez [30] emphasize that machine

translation, part-of-speech tagging, word sense disam-

biguation, and text summarization are some of the identi-

fied applications that statisticians can contribute.

Bos [31] presents an extensive survey of computational

semantics, a research area focused on computationally

understanding human language in written or spoken

form. He discusses how to represent semantics in order to

capture themeaning of human language, how to construct

these representations from natural language expressions,

and how to draw inferences from the semantic rep-

resentations. The author also discusses the generation

of background knowledge, which can support reasoning

tasks. Bos [31] indicates machine learning, knowledge

resources, and scaling inference as topics that can have a

big impact on computational semantics in the future.

As presented in this section, the reviewed sec-

ondary studies exploit some specific issues of semantics-

concerned text mining researches. In contrast to them,

this paper reviews a broader range of text mining studies

that deal with semantic aspects. To the best of our knowl-

edge, this is the first report of a mapping of this field.

We present the results of our systematic mapping study

in the following sections, organized in seven dimensions

of the text mining studies derived from our secondary

research questions: application domains, languages, exter-

nal knowledge usage, tasks, methods and algorithms,

representation model, and user’s interaction.
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Application domains

Research question:

What are the application domains that focus on text

semantics?

Figure 5 presents the domains where text semantics is

most present in text mining applications. Health care and

life sciences is the domain that stands out when talking

about text semantics in text mining applications. This fact

is not unexpected, since life sciences have a long time

concern about standardization of vocabularies and tax-

onomies. The building of taxonomies and ontologies is

such a common practice in health care and life sciences

that World Wide Web Consortium (W3C) has an interest

group specific for developing, evaluating, and supporting

semantic web technologies for this field [32]. Among the

most common problems treated through the use of text

mining in the health care and life science is the informa-

tion retrieval from publications of the field. The search

engine PubMed [33] and the MEDLINE database are the

main text sources among these studies. There are also

studies related to the extraction of events, genes, pro-

teins and their associations [34–36], detection of adverse

drug reaction [37], and the extraction of cause-effect and

disease-treatment relations [38–40].

The secondmost frequent identified application domain

is the mining of web texts, comprising web pages, blogs,

reviews, web forums, social medias, and email filtering

[41–46]. The high interest in getting some knowledge

from web texts can be justified by the large amount and

diversity of text available and by the difficulty found in

manual analysis. Nowadays, any person can create con-

tent in the web, either to share his/her opinion about some

product or service or to report something that is taking

place in his/her neighborhood. Companies, organizations,

and researchers are aware of this fact, so they are increas-

ingly interested in using this information in their favor.

Some competitive advantages that business can gain from

the analysis of social media texts are presented in [47–49].

The authors developed case studies demonstrating how

text mining can be applied in social media intelligence.

From our systematic mapping data, we found that Twitter

is the most popular source of web texts and its posts are

commonly used for sentiment analysis or event extraction.

Besides the top 2 application domains, other domains

that show up in our mapping refers to the mining of spe-

cific types of texts. We found research studies in mining

news, scientific papers corpora, patents, and texts with

economic and financial content.

Languages

Research question:

What are the natural languages being considered when

working with text semantics?

Whether using machine learning or statistical tech-

niques, the text mining approaches are usually language

independent. However, specially in the natural language

processing field, annotated corpora is often required to

train models in order to resolve a certain task for each

specific language (semantic role labeling problem is an

example). Besides, linguistic resources as semantic net-

works or lexical databases, which are language-specific,

can be used to enrich textual data. Most of the resources

available are English resources. Thus, the low number of

annotated data or linguistic resources can be a bottleneck

when working with another language. There are impor-

tant initiatives to the development of researches for other

languages, as an example, we have the ACM Transac-

tions on Asian and Low-Resource Language Information

Processing [50], an ACM journal specific for that subject.

In this study, we identified the languages that were

mentioned in paper abstracts. The collected data are sum-

marized in Fig. 6.Wemust note that English can be seen as

Fig. 5 Application domains identified in the literature mapping accepted studies
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Fig. 6 Languages identified in the literature mapping accepted studies

a standard language in scientific publications; thus, papers

whose results were tested only in English datasets may not

mention the language, as examples, we can cite [51–56].

Besides, we can find some studies that do not use any

linguistic resource and thus are language independent,

as in [57–61]. These facts can justify that English was

mentioned in only 45.0% of the considered studies.

Chinese is the second most mentioned language (26.4%

of the studies reference the Chinese language). Wu et al.

[62] point two differences between English and Chinese:

in Chinese, there are no white spaces between words in

a sentence and there are a higher number of frequent

words (the number of frequent words in Chinese is more

than twice the number of English frequent words). These

characteristics motivate the development of methods and

experimental evaluations specifically for Chinese.

This mapping shows that there is a lack of studies con-

sidering languages other than English or Chinese. The

low number of studies considering other languages sug-

gests that there is a need for construction or expan-

sion of language-specific resources (as discussed in

“External knowledge sources” section). These resources

can be used for enrichment of texts and for the devel-

opment of language specific methods, based on natural

language processing.

External knowledge sources

Research question:

Which external sources are frequently used in text min-

ing studies when text semantics is considered?

Text mining initiatives can get some advantage by using

external sources of knowledge. Thesauruses, taxonomies,

ontologies, and semantic networks are knowledge sources

that are commonly used by the text mining community.

Semantic networks is a network whose nodes are concepts

that are linked by semantic relations. The most popu-

lar example is the WordNet [63], an electronic lexical

database developed at the Princeton University. Depend-

ing on its usage, WordNet can also be seen as a thesaurus

or a dictionary [64].

There is not a complete definition for the terms the-

saurus, taxonomy, and ontology that is unanimously

accepted by all research areas. Weller [65] presents an

interesting discussion about the term ontology, including

its origin and proposed definitions. She concluded the dis-

cussion stating that: “Ontologies should unambiguously

represent shared background knowledge that helps peo-

ple within a community of interest to understand each

other. And they should make computer-readable indexing

of information possible on the Web” [65]. The same can

be said about thesauruses and taxonomies. In a general

way, thesauruses, taxonomies, and ontologies are nor-

mally specialized in a specific domain and they usually dif-

fers from each other by their degree of expressiveness and

complexity in their relational constructions [66]. Ontology

would be the most expressive type of knowledge represen-

tation, having the most complex relations and formalized

construction.

When looking at the external knowledge sources used in

semantics-concerned text mining studies (Fig. 7), Word-

Net is the most used source. This lexical resource is cited

by 29.9% of the studies that uses information beyond the

text data. WordNet can be used to create or expand the

current set of features for subsequent text classification
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Fig. 7 External sources identified in the literature mapping accepted studies

or clustering. The use of features based on WordNet has

been applied with and without good results [55, 67–69].

Besides,WordNet can support the computation of seman-

tic similarity [70, 71] and the evaluation of the discovered

knowledge [72].

The second most used source is Wikipedia [73], which

covers a wide range of subjects and has the advantage

of presenting the same concept in different languages.

Wikipedia concepts, as well as their links and categories,

are also useful for enriching text representation [74–77]

or classifying documents [78–80]. Medelyan et al. [81]

present the value of Wikipedia and discuss how the com-

munity of researchers are making use of it in natural

language processing tasks (in special word sense disam-

biguation), information retrieval, information extraction,

and ontology building.

The use of Wikipedia is followed by the use of the

Chinese-English knowledge database HowNet [82]. Find-

ing HowNet as one of the most used external knowledge

source it is not surprising, since Chinese is one of themost

cited languages in the studies selected in this mapping (see

the “Languages” section). As well as WordNet, HowNet is

usually used for feature expansion [83–85] and computing

semantic similarity [86–88].

Web pages are also used as external sources [89–91].

Normally, web search results are used to measure similar-

ity between terms. We also found some studies that use

SentiWordNet [92], which is a lexical resource for senti-

ment analysis and opinion mining [93, 94]. Among other

external sources, we can find knowledge sources related to

Medicine, like the UMLS Metathesaurus [95–98], MeSH

thesaurus [99–102], and the Gene Ontology [103–105].

Text mining tasks

Research question:

In what text mining tasks is the text semantics most

considered?

The distribution of text mining tasks identified in this

literature mapping is presented in Fig. 8. Classification

and clustering are the most frequent tasks. Classification

corresponds to the task of finding a model from exam-

ples with known classes (labeled instances) in order to

predict the classes of new examples. On the other hand,

clustering is the task of grouping examples (whose classes

are unknown) based on their similarities. Classification

was identified in 27.4% and clustering in 17.0% of the

studies. As these are basic text mining tasks, they are

often the basis of other more specific text mining tasks,

such as sentiment analysis and automatic ontology build-

ing. Therefore, it was expected that classification and

clustering would be the most frequently applied tasks.

Besides classification and clustering, we can note that

semantic concern are present in tasks as information

extraction [106–108], information retrieval [109–111],

sentiment analysis [112–115], and automatic ontology

building [116, 117], as well as the pre-processing step itself

[118, 119].

Methods and algorithms

Research question:

What methods and algorithms are commonly used?

A word cloud3 of methods and algorithms identified in

this literature mapping is presented in Fig. 9, in which

the font size reflects the frequency of the methods and

algorithms among the accepted papers. We can note that
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Fig. 8 Text mining tasks identified in the literature mapping accepted studies

the most common approach deals with latent semantics

through Latent Semantic Indexing (LSI) [2, 120], amethod

that can be used for data dimension reduction and that is

also known as latent semantic analysis. The Latent Seman-

tic Index low-dimensional space is also called semantic

space. In this semantic space, alternative forms expressing

the same concept are projected to a common representa-

tion. It reduces the noise caused by synonymy and poly-

semy; thus, it latently deals with text semantics. Another

technique in this direction that is commonly used for

topic modeling is latent Dirichlet allocation (LDA) [121].

The topic model obtained by LDA has been used for

representing text collections as in [58, 122, 123].

Beyond latent semantics, the use of concepts or top-

ics found in the documents is also a common approach.

The concept-based semantic exploitation is normally

based on external knowledge sources (as discussed in the

“External knowledge sources” section) [74, 124–128].

As an example, explicit semantic analysis [129] rely on

Wikipedia to represent the documents by a concept vec-

tor. In a similar way, Spanakis et al. [125] improved hier-

archical clustering quality by using a text representation

based on concepts and other Wikipedia features, such as

links and categories.

The issue of text ambiguity has also been the focus of

studies. Word sense disambiguation can contribute to a

Fig. 9Word cloud of methods and algorithms identified in the literature mapping studies. To enable a better reading of the word cloud, the
frequency of the methods and algorithms higher than one was rounded up to the nearest ten (for example, a method applied in 75 studies is
represented in the word cloud in a word size corresponding to the frequency 80)
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better document representation. It is normally based on

external knowledge sources and can also be based on

machine learning methods [36, 130–133].

Other approaches include analysis of verbs in order to

identify relations on textual data [134–138]. However, the

proposed solutions are normally developed for a specific

domain or are language dependent.

In Fig. 9, we can observe the predominance of tra-

ditional machine learning algorithms, such as Support

Vector Machines (SVM), Naive Bayes, K-means, and k-

Nearest Neighbors (KNN), in addition to artificial neural

networks and genetic algorithms. The application of nat-

ural language processing methods (NLP) is also frequent.

Among these methods, we can find named entity recogni-

tion (NER) and semantic role labeling. It shows that there

is a concern about developing richer text representations

to be input for traditional machine learning algorithms, as

we can see in the studies of [55, 139–142].

Text representation models

Research question:

How can texts be represented?

The most popular text representation model is the

vector space model. In this model, each document is

represented by a vector whose dimensions correspond

to features found in the corpus. When features are sin-

gle words, the text representation is called bag-of-words.

Despite the good results achieved with a bag-of-words,

this representation, based on independent words, can-

not express word relationships, text syntax, or semantics.

Therefore, it is not a proper representation for all possible

text mining applications.

The use of richer text representations is the focus of

several studies [62, 79, 97, 143–148]. Most of the stud-

ies concentrate on proposing more elaborated features to

represent documents in the vector space model, includ-

ing the use of topic model techniques, such as LSI and

LDA, to obtain latent semantic features. Deep learning

[149] is currently applied to represent independent terms

through their associated concepts, in an attempt to nar-

row the relationships between the terms [150, 151]. The

use of distributed word representations (word embed-

dings) can be seen in several works of this area in tasks

such as classification [88, 152, 153], summarization [154],

and information retrieval [155].

Besides the vector space model, there are text represen-

tations based on networks (or graphs), which can make

use of some text semantic features. Network-based repre-

sentations, such as bipartite networks and co-occurrence

networks, can represent relationships between terms or

between documents, which is not possible through the

vector space model [147, 156–158].

In addition to the text representation model, text

semantics can also be incorporated to text mining process

through the use of external knowledge sources, like

semantic networks and ontologies, as discussed in the

“External knowledge sources” section.

User’s interaction

Research question:

Do users or domain experts take part in the text mining

process?

Text mining is a process to automatically discover

knowledge from unstructured data. Nevertheless, it is also

an interactive process, and there are some points where a

user, normally a domain expert, can contribute to the pro-

cess by providing his/her previous knowledge and inter-

ests. As an example, in the pre-processing step, the user

can provide additional information to define a stoplist

and support feature selection. In the pattern extraction

step, user’s participation can be required when applying

a semi-supervised approach. In the post-processing step,

the user can evaluate the results according to the expected

knowledge usage.

Despite the fact that the user would have an impor-

tant role in a real application of text mining methods,

there is not much investment on user’s interaction in text

mining research studies. A probable reason is the diffi-

culty inherent to an evaluation based on the user’s needs.

In empirical research, researchers use to execute several

experiments in order to evaluate proposed methods and

algorithms, which would require the involvement of sev-

eral users, therefore making the evaluation not feasible in

practical ways.

Less than 1% of the studies that were accepted in the

first mapping cycle presented information about requir-

ing some sort of user’s interaction in their abstract. To

better analyze this question, in the mapping update per-

formed in 2016, the full text of the studies were also

considered. Figure 10 presents types of user’s participation

Fig. 10 Types of user participation identified in the literature
mapping accepted studies
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identified in the literature mapping studies. The most

common user’s interactions are the revision or refinement

of text mining results [159–161] and the development

of a standard reference, also called as gold standard or

ground truth, which is used to evaluate text mining results

[162–165]. Besides that, users are also requested to man-

ually annotate or provide a few labeled data [166, 167] or

generate of hand-crafted rules [168, 169].

Systematic mapping summary and future trends

Research question:

How is semantics considered in text mining studies?

Semantics is an important component in natural lan-

guage texts. Consequently, in order to improve text min-

ing results, many text mining researches claim that their

solutions treat or consider text semantics in some way.

However, text mining is a wide research field and there is

a lack of secondary studies that summarize and integrate

the different approaches. How is semantics considered

in text mining studies? Looking for the answer to this

question, we conducted this systematic mapping based

on 1693 studies, accepted among the 3984 studies iden-

tified in five digital libraries. In the previous subsections,

we presented the mapping regarding to each secondary

research question. In this subsection, we present a con-

solidation of our results and point some future trends of

semantics-concerned text mining.

As previously stated, the objective of this systematic

mapping is to provide a general overview of semantics-

concerned text mining studies. The papers considered in

this systematic mapping study, as well as the mapping

results, are limited by the applied search expression and

the research questions. It is not feasible to cover all pub-

lished papers in this broad field. Therefore, the reader can

miss in this systematic mapping report some previously

known studies. It is not our objective to present a detailed

survey of every specific topic, method, or text mining task.

This systematic mapping is a starting point, and surveys

with a narrower focus should be conducted for review-

ing the literature of specific subjects, according to one’s

interests.

The quantitative analysis of the scientific production by

each text mining dimension (presented from the “Applica-

tion domains” section to the “User’s interaction” section)

confirmed some previous feelings that we had about our

study subject and highlighted other interesting charac-

teristics of the field. Text semantics is closely related to

ontologies and other similar types of knowledge represen-

tation. We also know that health care and life sciences

is traditionally concerned about standardization of their

concepts and concepts relationships. Thus, as we already

expected, health care and life sciences was the most cited

application domain among the literature accepted studies.

This application domain is followed by the Web domain,

what can be explained by the constant growth, in both

quantity and coverage, of Web content.

It was surprising to find the high presence of the Chi-

nese language among the studies. Chinese language is the

second most cited language, and the HowNet, a Chinese-

English knowledge database, is the third most applied

external source in semantics-concerned text mining stud-

ies. Looking at the languages addressed in the studies, we

found that there is a lack of studies specific to languages

other than English or Chinese. We also found an expres-

sive use of WordNet as an external knowledge source, fol-

lowed byWikipedia, HowNet, Web pages, SentiWordNet,

and other knowledge sources related to Medicine.

Text classification and text clustering, as basic text min-

ing tasks, are frequently applied in semantics-concerned

text mining researches. Among other more specific tasks,

sentiment analysis is a recent research field that is

almost as applied as information retrieval and information

extraction, which are more consolidated research areas.

SentiWordNet, a lexical resource for sentiment analy-

sis and opinion mining, is already among the most used

external knowledge sources.

The treatment of latent semantics, through the appli-

cation of LSI, stands out when looking at methods and

algorithms. Besides that, traditional text mining methods

and algorithms, like SVM, KNN, and K-means, are fre-

quently applied and researches tend to enhance the text

representation by applyingNLPmethods or using external

knowledge sources. Thus, text semantics can be incor-

porated to the text mining process mainly through two

approaches: the construction of richer terms in the vec-

tor space representation model or the use of networks or

graphs to represent semantic relations between terms or

documents.

In real application of the text mining process, the par-

ticipation of domain experts can be crucial to its success.

However, the participation of users (domain experts) is

seldom explored in scientific papers. The difficulty inher-

ent to the evaluation of a method based on user’s interac-

tion is a probable reason for the lack of studies considering

this approach.

The mapping indicates that there is space for secondary

studies in areas that has a high number of primary studies,

such as studies of feature enrichment for a better text rep-

resentation in the vector space model; use of classification

methods; use of clustering methods; and the use of latent

semantics in text mining. A detailed literature review, as

the review of Wimalasuriya and Dou [17] (described in

“Surveys” section), would be worthy for organization and

summarization of these specific research subjects.

Considering the development of primary studies, we

identified three main future trends: user’s interaction,

non-English text processing, and graph-based representa-

tion. We expect an increase in the number of studies that
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have some level of user’s interaction to bring his/her needs

and interests to the process. This is particularly valuable

for the clustering task, because a considered good clus-

tering solution can vary from user to user [170]. We also

expect a raise of resources (linguistic resources and anno-

tated corpora) for non-English languages. These resources

are very important to the development of semantics-

concerned text mining techniques. Higher availability of

non-English resources will allow a higher number of stud-

ies dealing with these languages. Another future trend is

the development and use of graph-based text representa-

tion. Nowadays, there are already important researches in

this direction, and we expect that it will increase as graph-

based representations aremore expressive than traditional

representations in the vector space model.

As an alternative summary of this systematic map-

ping, additional visualizations of both the selected studies

and systematic mapping results can be found online at

http://sites.labic.icmc.usp.br/pinda_sm. For this purpose,

the prototype of the Pinda tool was adapted for hierar-

chical visualization of the textual data, using K-means

algorithm to group the results. The tool allows the analysis

of data (title + abstract of selected studies or information

extracted from them) through multiple visualization tech-

niques (Thumbnail, Snippets, Directories, Scatterplot,

Treemap, and Sunburst), coordinating the user’s interac-

tions for a better understanding of existing relationships.

Figure 11 illustrates the Scatterplot visualization of studies

accepted in this systematic mapping. Some of the possi-

ble visualizations of the systematic mapping results are

presented in Fig. 12.

Conclusion
Text semantics are frequently addressed in text mining

studies, since it has an important influence in text mean-

ing. However, there is a lack of secondary studies that

consolidate these researches. This paper reported a sys-

tematic mapping study conducted to overview semantics-

concerned text mining literature. The scope of this

mapping is wide (3984 papers matched the search expres-

sion). Thus, due to limitations of time and resources, the

mapping was mainly performed based on abstracts of

papers. Nevertheless, we believe that our limitations do

not have a crucial impact on the results, since our study

has a broad coverage.

The main contributions of this work are (i) it presents

a quantitative analysis of the research field; (ii) its con-

duction followed a well-defined literature review protocol;

(iii) it discusses the area regarding seven important text

mining dimensions: application domain, language, exter-

nal knowledge source, text mining task, method and algo-

rithm, representation model, and user’s interaction; and

(iv) the produced mapping can give a general summary

of the subject and can be of great help for researchers

working with semantics and text mining. Thus, this work

filled a gap in the literature as, to the best of our knowl-

edge, this is the first general literature review of this wide

subject.

Although several researches have been developed in the

text mining field, the processing of text semantics remains

an open research problem. The field lacks secondary stud-

ies in areas that has a high number of primary studies,

such as feature enrichment for a better text representa-

tion in the vector space model. Another highlight is about

a language-related issue. We found considerable differ-

ences in numbers of studies among different languages,

since 71.4% of the identified studies deal with English

and Chinese. Thus, there is a lack of studies dealing

with texts written in other languages. When considering

semantics-concerned text mining, we believe that this lack

can be filled with the development of good knowledge

bases and natural language processing methods specific

for these languages. Besides, the analysis of the impact of

languages in semantic-concerned text mining is also an

interesting open research question. A comparison among

semantic aspects of different languages and their impact

on the results of text mining techniques would also be

interesting.

Fig. 11 Scatterplot visualization of accepted studies of the systematic mapping

http://sites.labic.icmc.usp.br/pinda_sm
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Fig. 12 Directories and Treemap visualizations of the systematic mapping results

Endnotes
1A simple search for “systematic review” on the Sco-

pus database in June 2016 returned, by subject area,

130,546 Health Sciences documents (125,254 of them for

Medicine) and only 5,539 Physical Sciences (1328 of them

for Computer Science). The coverage of Scopus publica-

tions are balanced between Health Sciences (32% of total

Scopus publication) and Physical Sciences (29% of total

Scopus publication).
2 It was not possible to perform the second cycle of

searches in ACM Digital Library because of a change

in the interface of this search engine. However, it must

be notice that only eight studies that was found only in

this database was accepted in the first cycle. All other

studies was also retrieved by other search engines (spe-

cially Scopus, which retrieved more than 89% of accepted

studies.)
3Word cloud created with support of Wordle [171].
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