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Abstract

Text mining is the computational process of extracting meaningful information from large 

amounts of unstructured text. Text mining is emerging as a tool to leverage underutilized data 

sources that can improve pharmacovigilance, including the objective of adverse drug event 

detection and assessment. This article provides an overview of recent advances in 

pharmacovigilance driven by the application of text mining, and discusses several data sources—

such as biomedical literature, clinical narratives, product labeling, social media, and Web search 

logs—that are amenable to text-mining for pharmacovigilance. Given the state of the art, it 

appears text mining can be applied to extract useful ADE-related information from multiple 

textual sources. Nonetheless, further research is required to address remaining technical challenges 

associated with the text mining methodologies, and to conclusively determine the relative 

contribution of each textual source to improving pharmacovigilance.

1. Introduction

Text Mining is defined as the process of extracting meaningful information from large 

amounts of unstructured text using computational methods [1, 2]. For pharmacovigilance, 

we define “meaningful information” as information that can support adverse drug event 

(ADE) detection and assessment. Because text mining provides a mechanism to transform 

free-text into computable knowledge, text mining is emerging as a way to explore, analyze, 

query, and manage underutilized safety information about drugs.

Pharmacovigilance presently relies on the analysis of clinical trials and spontaneous reports, 

and to some degree on the review of biomedical literature. The analysis is typically 

performed by domain experts on a manual case-by-case basis. Recently, statistical 

techniques have been incorporated into routine pharmacovigilance and applied to 

spontaneous reports[3, 4] and clinical trials[5] to identify signals of ADEs. Nonetheless, 

well recognized limitations[6, 7] inherent to the type and diversity of data sources employed 
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in routine pharmacovigilance, along with increased public concern over the safe use of 

drugs, have stimulated several worldwide research and legislative initiatives[8, 9] with the 

objective of improving pharmacovigilance. It is widely accepted that progress in 

pharmacovigilance depends on a comprehensive approach that examines ADE-related 

information from a diverse set of potentially complementing data sources.

With the passing of the Food and Drug Administration (FDA) Amendments Act (FDAAA) 

of 2007[10], research in pharmacovigilance has centered on the expanded secondary use of 

electronic health records (EHRs)[11–13]. In recent years, other sources such as the 

biomedical literature, product labels, content from social media, and the logs of information 

seeking activities on the Web have been researched[7] to support holistic pharmacovigilance 

(Figure 1). Each source provides a unique vantage point, and each source has unique 

strengths and limitations.

EHRs hold the promise of active surveillance, have the ability to quantify the incidence or 

risk of ADEs, can identify patients at risk, and have the potential to provide more accurate 

and earlier ADE detection. The biomedical literature is a burgeoning information source that 

through case reports, clinical studies, and observational studies, has enabled safety 

evaluators to assess potential ADEs. In contrast with the prevailing manual use, it is possible 

to computationally harness the biomedical literature for various pharmacovigilance 

purposes, including signal detection[14, 15]. Product labels contain a broad array of 

information, ranging from adverse drug reactions to drug efficacy, risk mitigation, 

contraindications, drug interactions, and more. Several initiatives have emerged to 

computationally extract information from product labels in order to create a knowledgebase 

of known ADEs[16, 17]. The resulting knowledgebase can be used for ADE assessment, to 

derive benchmarks for signal detection, to prioritize and filter ADEs under investigation, 

and to detect class effects. Lastly, there are calls[18, 19] to investigate the use of online 

patient generated data, which hold the promise of earlier ADE detection for certain types of 

events (e.g., more common or milder events). The proposed data sources include the social 

media, e.g., patients’ experiences with medications that are explicitly shared via online 

health forums and social networks, and the implicit health information contained in the 

search logs of popular search engines.

The key challenge in using the aforementioned data sources for pharmacovigilance is that a 

large proportion of their content is stored as free-text. Unlike data that is typically stored in 

relational databases, free-text is unstructured, is subject to the complexities and variability of 

natural language, and challenging to deal with algorithmically.

In this article we provide an overview of recent advances in pharmacovigilance driven by 

the application of text mining. We begin our discussion with a brief review of text mining as 

a process and its application to biomedicine. We then cover the state of the art, centering on 

data sources that are currently researched for pharmacovigilance: biomedical literature, 

product labeling, clinical narratives, social media, and Web search logs. The manuscript is 

organized according to the key data sources, and concludes with a perspective highlighting 

future directions. Rather than exhaustively listing all relevant work, we present a synopsis of 

papers that reflect exemplary recent research, thus highlighting the motivation for using a 
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particular data source, the role of text mining, the approaches used for text mining, and the 

associated challenges.

2. Text Mining Overview

To meet the challenges posed by unstructured text, text mining employs a wide range of 

statistical, machine learning, and linguistic techniques that are associated with natural 

language processing (NLP). It is beneficial to think of text mining as a process that uses 

tools, methods, and heuristics developed by those who research the processing of natural 

language. Depending on the use case, text mining workflows can use NLP methods of 

differing degrees of sophistication. Therefore, unlike classic NLP, which employs 

sophisticated language models and computationally expensive syntactic and semantic 

analyses to extract meaning from text, text mining leans towards the implementation of 

simpler but less costly approaches that scale to large data sets.

A text mining process typically starts with several pipelined NLP subtasks that are used to 

format the text in preparation for the statistical analysis or pattern discovery phase. The 

subtasks include a set of foundational low-level syntactic tasks, and a set of high-level tasks 

that build on the low-level tasks and involve semantic processing. Common subtasks and a 

representative pipeline are illustrated in Figure 2. A brief description of these tasks is 

provided in Table 1, and a comprehensive review thereof is provided by Friedman[20] and 

Nadkarni[21] et al. While the exact set of components included in a text mining pipeline is 

application specific, the key ingredients relevant to biomedical text mining appear to be 

named entity recognition (NER) and relation detection (defined in Table 1).

Structured domain knowledge in the form of biomedical ontologies plays a key role in NER 

and other text mining subtasks. Two major public resources for biomedical ontologies are 

the National Library of Medicine (NLM) Unified Medical Language System (UMLS)[22] 

and the National Center for Biomedical Ontologies (NCBO) BioPortal[23]. The UMLS 

Metathesaurus is a compendium of over 150 controlled vocabularies (or ontologies) and 

contains close to three million biomedical concepts that are associated with synonyms, 

semantic groups, and relationships between concepts. Similarly, BioPortal is an open 

repository of over 380 biomedical ontologies that are made available in computationally 

useful forms. BioPortal also supports a wide range of Web services that enable investigators 

to use ontologies for text mining applications.

The majority of biomedical text mining applications rely on dictionary-based approaches for 

NER, which draw on comprehensive vocabularies such as those in the UMLS or BioPortal. 

Such reliance mirrors the findings from the 2008 i2b2 NLP challenge[24], where the 

organizers write that “Most of the factual and objective pieces of information were identified 

by simple rule-based systems armed with dictionaries of terms and negation extraction 

modules”. Vocabularies typically used for pharmacovigilance are displayed in Table 2. A 

dictionary for NER is typically created by using the entries of one or more of these 

vocabularies. A central challenge in dictionary-based NER is customizing these dictionaries 

to maximize their effectiveness for specific applications[25–28].
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The simplest and fastest approach to relation detection is co-occurrence analysis, which 

makes the assumption that terms that co-occur in the same text tend to be related[29, 30]. 

The degree of co-occurrence can be quantified statistically to rank and eliminate weak co-

occurrences. More accurate though slower relation detection can be achieved by applying 

rule-based or machine-learning-based approaches[29, 30]. Rule-based approaches make use 

of general knowledge about biomedical entities or language structure to find explicit 

statements in the text about relationships of interests. A simple rule-based approach might 

search for hard coded patterns in the text, e.g., <drug> induces <disease> or <drug> treats 

<disease>. More sophisticated approaches use linguistic and semantic analyses via part of 

speech (POS) tagging and parse trees[31, 32]. Machine-learning-based approaches draw on 

classifiers that operate over POS tags, parse trees, N-grams, terms frequencies, and other 

textual constructs. Machine-learning-based approaches typically achieve better results but 

require a large amount of manually annotated training data that is costly to acquire.

An expanding set of tools are currently available for the NER step in biomedical text 

mining. A popular tool for NER is NLM’s MetaMap[33] that maps word phrases in text to 

UMLS concepts and assigns a score to each mapping. It uses a configurable set of NLP steps 

such as tokenization, shallow parsing, POS tagging, negation detection, and word sense 

disambiguation to perform the task. Similarly, NCBO’s Annotator[34] is a Web service that 

recognizes biomedical ontology terms in text, using ontologies available in BioPortal. 

NegEx[35] and ConText[36] are popular tools for negation detection, and in the case of 

ConText, also for the identification of experiencer (e.g., patient or other) and temporality 

(e.g., recent or historical). Both NegEx and ConText use trigger terms to qualify the value of 

a concept, e.g., ‘ruled out’ to locate negated concepts in text. Other tools for biomedical text 

mining are available at the Online Registry of Biomedical Informatics Tools (ORBIT)[37], 

some of which are also available packaged into an NLP toolkit by the iDASH center[38].

3. Biomedical Literature

MEDLINE is NLM’s publicly available electronic database of approximately 20 million 

biomedicine and life sciences articles. It is an expanding data collection currently comprised 

of about 340,000 ADE specific articles, with roughly 13,000 new ADE-related articles 

indexed each year (Figure 3). Each article is annotated by trained NLM indexers with key 

MeSH subject headings, subheadings, and supplementary concepts, referred to as MeSH 

annotations. The subject headings may capture clinical manifestations (CM), drugs, or drug 

classes. Subheadings are used to narrow the scope of the main headings, e.g., the main/

subheading combinations “Cyclooxygenase Inhibitors/adverse effects” and “Myocardial 

Infarction/chemically induced“ used to index an article, suggest that the article content is 

about the ADE relationship between COX-2 inhibitors and myocardial infarction.

Computational approaches to extract ADEs from MEDLINE either use MeSH annotations, 

or process free-text in article titles and abstracts (Figure 4). Using MeSH annotations has the 

advantage that they are readily available, human-curated, are based on the full text of 

articles (not just abstracts), and do not face the difficulties associated with processing free-

text. Conversely, processing the free-text in article titles and abstracts is not limited by the 

scope and granularity of the MeSH vocabulary or by the NLM annotation rules.
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Avillach et al.[15] devised an ADE identification process based entirely on MeSH 

annotations. The subheadings “chemically induced” and “adverse effects”, and the 

“pharmacological action” MeSH relationship were used to link drugs and CMs in an article 

as potential ADEs. Their approach was evaluated against a reference set of 61 drug-event 

pairs that comprised the EU-ADR gold standard[39]. By establishing a threshold of three 

articles whose MeSH annotations contained a drug-event pair of interest, Avillach et al. 

achieved a sensitivity of 90% and a specificity of 100%. While MeSH subheadings and 

MeSH relations provide important cues to pair ADE-related drugs and CMs, they do not 

directly specify which of the annotated drugs is related to an annotated CM. Thus, relying 

exclusively on MeSH annotations may pair up unrelated drugs and events. Shetty et al.[14] 

applied a set of successive filters to refine the process of extracting ADEs using MeSH 

annotations. Annotated drug-CM pairs where the CM is the drug indication were removed 

based on information from product labels. A machine learning approach operating on MeSH 

derived features was applied to classify drug-CM pairs as either ADE-related or not. Then, 

by applying Disproportionality Analysis (DPA) to the filtered set of drug-CM pairs they 

demonstrate that their method detects ADEs with over 70% sensitivity and 40% positive 

predictive value as assessed against a reference set of ADEs derived from the “Warnings” 

section of drug labels. They also show that 54% of the associations analyzed could have 

been detected before the warnings were issued, and that the Rofecoxib–myocardial 

Infarction association could have been identified using MEDLINE several years prior to the 

Rofecoxib recall.

In contrast, several projects relied exclusively on processing abstracts’ free-text. Through a 

series of reports Gurulingappa et al.[40] describe a methodology to detect ADEs from case-

report abstracts. Controlled vocabularies derived from DrugBank and MedDRA were used 

for NER. A manually curated set of 2972 abstracts containing 12,046 drug-event 

relations[41] was used to train and test a machine learning ADE relation detection 

methodology that resulted in an F-score of 0.87. DPA was applied to the extracted drug-

event pairs, and evaluated against a set of 62 ADEs communicated through recent label 

changes. The results were compared with signal detection applied to the FDA Adverse 

Event Reporting System (FAERS) and the Yellow Cards spontaneous reporting system 

(SRS). Their method was able to predict 30% of the label changes versus 48% using the 

FAERS or the Yellow Cards SRS. They also note that by the taking the union of signals 

from all the three sources 76% of the label changes were predicted.

Xu and Wang[42] demonstrate that MEDLINE can be used to boost signals from FAERS. A 

key assumption in their work is that drug-event pairs that co-occur in both FAERS and 

MEDLINE likely represent true relationships. A UMLS derived lexicon of drugs and events 

was used to perform NER. The Stanford parser[43] was used to syntactically parse sentences 

in over 20 million abstracts. The original FAERS signal scores were squared when the 

underlying drug-event pairs also appeared in MEDLINE. Using SIDER[44] as a gold 

standard, they demonstrate improved precision but lower recall compared to using the 

original FAERS signals.

Duke et al.[45] propose an approach to predict drug-drug interactions (DDIs) associated 

with myopathy by cross-referencing information from MEDLINE and EHRs. They used a 
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rule-based NLP technique to identify pairs of drugs that interact with the same CYP450 

enzymes in MEDLINE abstracts, inferring a DDI when such pairs were identified. They 

identified 13,197 DDIs involving 232 FDA approved drugs, of which 3670 pairs were found 

to be co-prescribed in the EHR dataset. Five of these pairs were found to increase the risk 

for myopathy relative to the prescription of either drug individually.

Given the current state of the art, it is unclear which of the two approaches—MeSH 

annotations versus processing abstracts—is better for extracting ADEs. There are currently 

no studies that directly compare the two approaches; thus outlining an area that may merit 

future research. Nevertheless, there are studies that considered the use of both approaches 

concurrently. Wang et al.[46] propose a classifier that operates on both MeSH annotations 

and textual information from the abstracts and titles. They demonstrate that the use of both 

types of features leads to improved performance for identifying ADE relationships.

4. Product Labeling

A key requirement of effective pharmacovigilance efforts is an accurate knowledgebase of 

known ADEs, indications, and other drug-related information that is ideally in a machine-

readable format. For example, there is a critical need for accurate reference sets (“gold 

standards”) to evaluate signal detection and risk estimation methodologies. An authoritative 

database of known ADEs would enable the derivation of such reference sets[16]. The 

knowledgebase could also aid drug safety evaluators to asses or prioritize ADEs under 

consideration, and is a core component of medication-related decision support systems that 

are being developed to promote medication safety[47]. A public database that meets these 

needs is currently not available but there are efforts to create one by harvesting information 

extracted from product labels.

Product labels, also referred to as package inserts, are an authoritative source of information 

about the risks, benefits, and pharmacological properties of drugs. The DailyMed 

Website[48] maintained by the NLM and the FDA provides downloadable electronic 

versions of product labels called Structured Product Labels (SPLs) for most drugs sold in the 

US. However, the SPLs provide structure only for the sections of the label (e.g., Indications 

and Usage, Clinical Pharmacology, Warnings, Precautions, Adverse Reactions). The content 

of the individual sections is still in free-text format.

The side effect resource (SIDER)[44] is a publicly available database containing ADEs text-

mined from several public sources including the SPLs. The original version used a custom 

dictionary derived from the UMLS to perform NER on the Adverse Reaction section of 

SPLs. SIDER has been used in numerous studies as a reference set to evaluate signal 

detection algorithms. However, the level of credibility attributed to ADEs can vary based on 

the location of their mentions, e.g., in Boxed Warning, Warnings, or Adverse Reactions 

sections. In addition, product labels contain findings reported in clinical trials, many of 

which lack validation. Therefore, it is inadvisable to use SIDER or any other SPL-based 

extraction as a reference set without further verification or quantification of the degree of 

confidence in a specific drug-event pair.
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Duke et al.[17] developed a SPL processing tool called the Structured Product Label 

Information Coder and ExtractoR (SPLICER). Tagging of adverse events (AEs) is 

accomplished by a set of specific rules tailored to the different sections and formatting 

structures (e.g., tables, lists) of the SPL. Event frequency and other qualifiers are also 

extracted. SPLICER demonstrated high accuracy in AE extraction, with a sensitivity of 93% 

and PPV of 95%, and was used in various projects including the formation of the OMOP 

gold standard[49, 50] and in assessing the labeling consistency of bio-equivalent drugs[51]. 

While not yet publicly available, the tool as well as the resulting knowledgebase can be 

obtained by contacting the authors.

In related work Fung et al.[47] from the NLM proposed a text mining pipeline called the 

Structured Product Labels eXtractor (SPL-X) to extract indications, noting that AEs could 

be extracted using the same approach. SPL-X uses open-source tools such as NegEx and 

MetaMap to identify medical concepts from the Indications section. SPL-X demonstrated 

precision and recall of 0.95 and 0.77 respectively, noting that the main sources of error were 

ambiguous terms (e.g., ‘strain’ incorrectly identified as muscle strain when it was bacterial-

related) and negation detection.

Smith et al.[52] focused on identifying the challenges associated with the extraction and 

representation of ADEs and indications from publically available sources including MeSH 

annotations, NDF-RT relationships (‘induces’, ‘may treat’), and SPLs processed using the 

KnowledgeMap Concept Identifier[53]—an NLP tool developed at Vanderbilt University. 

The authors highlight complex logical and temporal sentence structures in SPL, such as “Do 

not take drug X after event Y occurs due to increased chance of event Z” or “useful in 

preventing XYZ in the setting of condition ABC”, which standard NLP approaches fail to 

handle properly. They find that the three data sources (MeSH, NDF-RT and SPLs) agree on 

less than 1% of the indication and ADE relationships extracted. They attribute this problem 

to the mappings and granularity of concepts in the UMLS used to encode the extracted 

terms. For example, myalgia and musculoskeletal pain are assigned different UMLS concept 

codes and will be identified as part of two different ADEs.

5. Clinical Narratives

EHRs contain a longitudinal record of clinical data from routine clinical care. While some 

information is structured, a significant portion of the EHR remains in narrative formats. 

Much of the information that is critical to risk assessments such as signs and symptoms, 

disease status and severity, and medical history are typically only in narrative text. In 

comparison, coded discharge diagnoses and claims data (also used in pharmacovigilance) 

have relatively low sensitivity for detecting ADEs[26, 54], weaker coverage of 

symptomatology, and are vulnerable to inaccuracies as they are oriented toward billing. 

Consequently, clinical narratives offer tremendous potential for pharmacovigilance.

Clinical narratives introduce unique challenges in comparison to other biomedical corpora. 

For example, physicians document the relevant medical history of the patient as well as their 

family members. They also document the process of elimination inherent in differential 

diagnosis, noting conditions that are ruled out or symptoms that the patient denies. It has 
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been estimated that more than 40% of conditions are negated within clinical narratives and 

can be detected using algorithms like NegEx[35]. Thus, clinical NLP tools should take into 

account negated mentions as well as other contextual cues that indicate historical 

information or that relate to the experiencer (e.g., the patient’s current problem list versus 

those of his or her family members)[36]. Furthermore, unlike other data sources in which 

each document can be taken independently, clinical narratives are tied to a patient who 

accumulates many such documents over time. Thus, temporal order matters: a drug 

mentioned in one encounter could be significantly linked to an event mentioned later in a 

different document. Finally, clinical narratives are subject to biases introduced by local 

documentation procedures as well as the working of the health system (e.g. a note only gets 

written when a patient interacts with the health system)[55].

Some of the pioneering applications of clinical narratives for pharmacovigilance can be 

traced back to the use of classic medical NLP systems such as MedLEE[56]—designed to 

identify clinical concepts and their modifiers (e.g., negation, body location, time of 

occurrence, certainty of finding) in clinical narratives, and map them to UMLS concepts.

In an early feasibility study, Wang et al.[57] applied MedLEE to 25,074 discharge 

summaries from New York Presbyterian Hospital (NYPH) to identify ADEs associated with 

7 drugs. Of 132 ADEs identified by statistical analysis over MedLEE’s output, 31% were 

known. Follow-up studies using MedLEE and NYPH narratives focused on approaches to 

address confounding—a major methodological challenge in observational research. Haerian 

et al.[58] used an expert-generated list of known risk factors for the events investigated, to 

identify and exclude patients with predisposing conditions. Based on manual review of 275 

random cases their approach yielded a sensitivity of 93.8% and a specificity of 91.8%. 

Li[59] and Harpaz[60] et al. used regression models to estimate confounding-adjusted 

association statistics, as well as to automatically select model variables (potential 

confounders). Li et al.[59] applied their method to 264,155 MedLEE-processed patient 

records and based on a manually curated set of known ADEs associated with 

rhabdomyolysis and pancreatitis, their method resulted in a precision of 83.3% and 60.8% 

respectively, exceeding the performance of four competing methodologies.

Although applications using clinical narratives began with NLP systems such as MedLEE, 

which provide a linguistic analysis of clinical text and hence incur an increased 

computational cost, recent studies have demonstrated the use of simpler but less 

computationally intensive techniques.

LePendu et al.[61] describe a highly scalable workflow to process clinical text as well as 

count patients corresponding to specific conditions, and demonstrate its efficacy for 

pharmacovigilance. The workflow was applied to 11 million clinical narratives (spanning 18 

years and 1.8 million patients) from the Stanford Translational Research Integrated Database 

Environment (STRIDE)[62] to recognize present, positive mentions of medical terms. 

Building on these term-mentions, associations were estimated by matching patients using 

propensity scores and by keeping track of the temporal ordering of drug/indication/event 

mentions. Their approach was evaluated using the EU-ADR reference set[39] (augmented 

with additional test cases) and resulted in an area under the receiver operating characteristic 
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curve (AUC)—which is a measure of the ability to distinguish a true association from a 

negative control—of 0.84. They also demonstrate that six of nine investigated ADEs could 

have been identified earlier than the date an official alert was issued.

In subsequent work also using STRIDE, Iyer et al.[63] demonstrate the applicability of the 

same workflow for detecting adverse DDIs and Jung et al.[64] train a highly accurate 

classifier for detecting off-label drug uses. The use of drugs for unapproved indications, 

called off-label use, is problematic because such uses have not been evaluated for safety and 

efficacy. Iyer et al. estimated the strength of the association between a particular drug 

combination and a particular event by comparing the number of patients who experienced 

the event and were taking both drugs with the number of patients who did not experience the 

event and were taking either of the two drugs. The approach was evaluated against a 

reference set made of 1165 drugs, 14 events, and 1698 drug-drug-event test cases compiled 

from existing knowledge sources, and resulted in an AUC of 0.82, slightly better than that of 

adverse DDI detection based solely on FAERS. Jung et al. found 403 novel off-label uses 

that were validated in independent data sources, and sort them by risk of adverse events and 

the cost of the drug to prioritize these off-label uses for further investigation.

Finally, a novel way to use EHRs, including clinical narratives, for pharmacovigilance is in 

combination with other data sources. Harpaz et al.[65, 66] demonstrate that combining ADE 

signals from EHRs and FAERS leads to a substantial improvement in signal detection 

accuracy.

A central challenge to continued progress in the field is limited access to clinical narratives. 

Typically only researchers affiliated with a medical center can access clinical notes, and care 

organizations are reluctant to share clinical notes even when they are de-identified[67]. 

There is also a need for broader availability of curated clinical datasets to accelerate 

methodological research.

6. Social Media

The rapid expansion of online social media, such as forums, blogs, and social networks is 

changing the way we gather information about diseases and treatment options, as well as 

how we share our personal health experiences with others. The Pew Research Center’s 

survey, The Social Life of Health Information[68], found that 2% of patients and 6% of 

caregivers share their experiences online, and that 18% of all internet users, 31% of all 

patients with chronic conditions, and 38% of caregivers look at online drug reviews. This 

increasing presence of social media is offering new opportunities for public health 

surveillance that are internet-based, patient-generated, unsolicited, and up-to-date. The main 

technical, policy, and privacy challenges associated with the use of social media for 

pharmacovigilance have been recently discussed in an editorial by Edwards and 

Lindquist[69].

As early as 2002, Medawar et al.[70] reviewed posts to an online discussion board to 

validate a relationship between suicidality and the antidepressant paroxetine. The authors 

concluded that the user reports contained clear evidence of an association that a SRS in 

place at that time had not detected. In 2005, two researchers wrote a letter to the FDA about 
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numerous reports in FAERS for bisphosphonates associated with severe bone, joint, and 

muscle pain[71]. Several years later, a public FDA alert lead to the further investigation by 

hospital staff of one case from Massachusetts General Hospital[72]. When the hospital staff 

contacted the patient, the patient pointed them to similar reports on the website 

Askapatient.com. The hospital carried out a follow-up survey specific to the question of 

joint, bone and muscle pain associated with bisphosphonate, which was completed by 

almost 400 Askpatient.com bisphosphonate users in a 3 month period. About 60% reported 

muscle and joint pain along with fatigue[72]. Also using Askapatient.com, Moncrieff et al.

[73] analyzed 223 comments related to antipsychotic medications. The authors reported that 

although ADEs related to this type of medication are common, studies have found that 

clinicians under-report ADEs related to antipsychotic medication.

From a text mining perspective, the colloquial language employed by online users presents a 

particularly significant challenge. Leaman et al.[74] proposed an approach to extract AEs 

from posts in DailyStrength using a custom lexicon as a basis for NER. Colloquial terms and 

their clinical equivalents were manually curated from a sample of posts (e.g., “zoned out” to 

mean “somnolent”). Mentions of conditions were categorized as AEs, indications, or 

beneficial outcomes through a rule-based approach that uses cues from nearby terms (e.g., 

“taking for seizures” implying that seizures was the indication). The authors reported an F-

measure of 74%, noting that the main sources of error were due to colloquial phrases not 

included in their original lexicon and due to ambiguous terms (e.g., “worrying about a low” 

where low is the event). In related work, Yang et al.[75] utilized the Consumer Health 

Vocabulary[76] to map lay language onto medical lexicons for AE extraction.

Another major challenge is the ability to distinguish real experiences from hearsay, non-

personal experiences, or media stimulated reports. Liu et al.[77] proposed an ADE 

extraction approach for forum data called AZDrugMiner, which uses a set of machine 

learning methods (operating on POS tags and parse trees) for relation extraction and for 

distinguishing real experiences from other reports. They conclude that applying these 

methods improves the accuracy of ADE extraction.

Since the work of Leaman et al.[74], text mining has been applied to DailyStrength.com[74, 

78, 77], Yahoo Wellness Groups[79], Askapatient.com, Medications.com, 

WebMD.com[80], parenting websites[81], and various disease specific forums such as for 

cancer[82] and diabetes[77].

Research on using microblogs (e.g., Twitter) and other general purpose social networking 

sites (e.g., Facebook) is the newest category for ADE detection via text mining. Similar to 

forum data, colloquial text and non-experiential reporting are common, but additional 

challenges related to data volume must be addressed. For example, real-time surveillance 

using Twitter feeds would require processing 58 million Tweets each day[83]. Additional 

considerations include the Tweet’s short character length, which restricts the amount of 

information that is posted, as well as custom source-specific constructions such as “#”, 

“FF”, or “RT”.
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Although a practical system based on general purpose social media has yet to be 

demonstrated, pilot studies have established proof of concept. Bian et al.[84] and Jiang et al.

[85] proposed methods to mine Twitter. Both approaches focused on a small set of drugs, 

employed MetaMap to perform NER, and used machine learning methods to identify posts 

of real experiences based on semantic features generated by MetaMap (e.g., presence and 

frequency of UMLS semantic types such as ‘disease or syndrome’), along with other 

features such as the number and type of pronouns mentioned (assumed indicative of real 

experiences). Bian et al. focused on experimental drugs (studied in clinical trials at the time 

of evaluation) and collected 2 billion Tweets corresponding to 18 months of data, which 

were analyzed on a high performance computing platform. Pimpalkhute et al.[86] focused 

on methods to address the challenges posed by colloquial language. For four commonly 

prescribed drugs, Prozac, Paxil, Seroquel, and Olanzapine, they describe a method to 

generate the most likely lexical variants based on edit distances and filtering using the 

Metaphone phonetic algorithm. All these studies reported reasonable accuracy in extracting 

ADEs, and despite the use of a small sample of tweets, identified a large number of posts 

about ADEs.

7. Web Search Logs

A 2009 study by the Centers for Disease Control and Prevention estimated that 61% of 

adults search the Web for health and medical related information[87]. Another study by the 

Pew Research Center in early 2013 reported that 72% of Internet users claimed to search 

online for health information, and that 8 in 10 online health inquiries start at a search 

engine[88]. Search logs are used in the Google Flu Trends project, demonstrating that 

statistics of influenza-related search terms recorded by search engines can be used to track 

rates of influenza[89]. Similarly, it is conceivable that analyzing the volume and content of 

search queries about medications and medical conditions may provide early clues about 

ADEs as patients engage search engines in an effort to learn about medications that they are 

using and medical conditions they experience.

White et al. present two studies[90, 91] that examine the feasibility of a signal detection 

system based on search logs. Both studies were based on the analysis of search queries 

mentioning drugs, symptoms, and medical conditions that were issued to the Google, Bing, 

and Yahoo! search engines by 80 million consenting (and anonymized) users over a period 

of 18 months prior to the time of analysis. The first study[90] characterized the 

discriminatory power of signal detection via search logs by using known drug interactions 

(and controls) for 62 drug pairs associated with hyperglycemia. The study also demonstrated 

that the analysis of search logs could identify a drug interaction between paroxetine and 

pravastatin reported to cause hyperglycemia in advance of its publication[92] (though the 

interaction is yet to be confirmed by regulatory agencies). The second study[91] focused on 

ADEs associated with single drugs, and revised the signal detection methodology to 

incorporate temporal information and to include several safeguards to counter confounding 

effects. Using the OMOP gold standard[50], the authors demonstrate that the accuracy of 

signal detection based on search logs is comparable to that of FAERS, and that by jointly 

leveraging signals from FAERS and search logs, the accuracy of signal detection can be 

improved by 19% over the use of each data source independently. To analyze the search 
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logs, terms corresponding to the drugs, conditions, and symptoms of interest in query logs 

were identified using sets of synonyms automatically generated from medical ontologies 

available through BioPortal. The synonyms were supplemented with consumer-oriented 

search terms derived from Bing’s query-click logs by identifying all results clicked on after 

a certain query, and then identifying other query terms that lead to the same pages (e.g., 

“bleeding stomach ulcers” for the event upper gastrointestinal bleeding).

Users may search on medications, symptoms, and disorders for a variety of reasons, beyond 

the reason of having taken a medication and experiencing symptomatology. A central 

challenge in the use of search logs for pharmacovigilance, as with the use of social media, is 

the ability to reliably distinguish users who are experiencing adverse effects, versus engaged 

in an information seeking exploration of conditions and medications. However, given the 

increasing use of search engines for understanding medical conditions, the analysis of search 

logs for early warning of a drug’s adverse events is an exciting area of research.

8. Conclusion

The content of many new data sources that can support a more robust and holistic approach 

to pharmacovigilance is in free-text format. Furthermore, the majority of these data sources 

were not created primarily for pharmacovigilance, thus necessitating text-mining. The 

availability of structured biomedical domain knowledge and relatively mature text-

processing tools offer a viable solution to effectively processing free-text, and create a 

unique opportunity to leverage textual data sources for pharmacovigilance.

Given the diversity of text genres employed, text mining for pharmacovigilance is not a 

homogeneous undertaking and each data source comes with unique challenges. For example, 

the limited access to several of the data sources, e.g., EHRs and online content, is one of the 

main impediments. This is why the formation of research alliances, such as the 

Observational Health Data Science Initiative (www.ohdsi.org) for the case of EHRs, can 

accelerate research in this field by aligning the strategic interests of multiple stakeholders. 

The use of online content, such as social media and Internet search logs poses several 

technical challenges that go beyond those associated with traditional NLP, including the 

processing of colloquial language, and distinguishing experiential from non-experiential 

reported ADEs. The biomedical literature introduces the trade-off between using MeSH 

annotations versus performing NLP on the abstracts, and it is unclear which of the 

approaches is better. Last, there is a need for consistent ways to evaluate text mining 

methodologies—a problem that is general to the field of pharmacovigilance [4, 7]. There is 

also the issue of the research focus: for example, most existing efforts focus on single drug 

ADEs. Given that a large proportion of the population are on multi-drug regimens, 

pharmacovigilance research efforts should consider the use of text mining methodologies for 

the study and safety profiling of multi-drug combinations.

Other textual corpora mined for pharmacovigilance or potential candidates thereof that we 

were unable to cover, include: narratives of spontaneous reports [93], regulatory documents 

such as new drug applications (NDA) to the FDA[94], European public assessment reports 
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for medicines[95], regular safety summaries[96, 97], labeling information from 

drugs@FDA, and clinical trial report narratives[98].

The ultimate goal of pharmacovigilance is to identify ADEs as early as possible and with 

high fidelity. Therefore, it is critical to understand how the use of different data sources will 

advance this goal. To our knowledge, strategies for combining the safety information 

generated by different sources are yet to be established. It is clear that the main use cases for 

leveraging multiple data modalities are (1) more efficient dissemination of safety evidence, 

and (2) improved signal detection via evidence combination. In this regard, questions that 

need to be researched are: the relative value of each data source for the two use cases, the 

relative utility of the data sources over each other for the surveillance of specific events or 

drug classes, and whether the use of some data sources should be reserved for hypothesis 

generation while others reserved for confirmation.

Lastly, pharmacovigilance is an evolving discipline and text mining can play a key role in its 

transformation. While text mining does vary in complexity, a large body of research has 

demonstrated that with existing text-processing tools it is possible to extract useful safety-

related information from the aforementioned textual sources. We hope that this review 

demystifies text mining and outlines the opportunities as well as the challenges that lie 

ahead.
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Key Points

• Text mining is needed in order to leverage several textual data sources that have 

the potential to improve pharmacovigilance.

• Despite the challenges associated with processing free-text a large body of 

research has demonstrated that with existing tools it is possible to extract useful 

safety-related information from these textual sources.

• Key challenges remain in fully realizing the potential of these data sources for 

improving pharmacovigilance, and for understanding their precise value for 

pharmacovigilance.
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Figure 1. 

Data sources currently used or researched to support holistic pharmacovigilance.
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Figure 2. 

An example of a biomedical text mining pipeline and common NLP subtasks. The pipeline 

uses as input the textual corpora to be processed as well as structured domain knowledge in 

the form of biomedical ontologies. The NLP steps are used to process text in preparation for 

the statistical analysis or pattern discovery phase. The NLP low-level subtasks include 

segmentation of documents into sections and sentences and tokenization of sentences into 

words and punctuation, followed by part-of-speech (POS) tagging and parsing. NLP high-

level subtasks operate over the output of the low-level subtasks, and include named entity 

recognition (NER), word sense disambiguation (WSD), negation detection, temporal 

inference, and relation detection. The subsequent pattern discovery and statistical analysis 

can be used, for example, to uncover ADE associations. **POS tags: DT = determiner; IN = 

preposition or subordinating conjunction; JJ = adjective; NN = noun; VBD = past tense 

verb; VBN = past participle verb. Parse tags: NP = noun phrase; PP = prepositional phrase; 

VP = verb phrase.
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Figure 3. 

The growth in number of ADE-related MEDLINE indexed articles over time. The values 

were obtained through PubMed using the MeSH query: "adverse effects"[Subheading] AND 

"chemically induced"[Subheading] AND "Chemicals and Drugs Category"[Mesh]. At the 

time of query (Feb 2014) only a subset of articles published in the year 2013 were indexed.
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Figure 4. 

Processing free-text in abstracts and titles (left) versus using MeSH annotations (right) for a 

MEDLINE article with PMID 15096449. Occurrences of drugs (e.g. rofecoxib), drug classes 

(e.g. NSAIDs) and conditions (e.g. myocardial infarction) are colored by identity. 

Processing the free-text in the abstract and title involves recognizing named entities and 

determining the kind of relationship that holds between the named entities (dotted lines with 

arrows). ADE detection via MeSH annotations relies on the ‘adverse effects’ (highlighted in 

red) and ‘chemically induced’ (in yellow) subheadings, as well as the MeSH Substances 

entries, to infer ADE relationships between the entities identified in the respective MeSH 

subject headings (solid lines with arrows).
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Table 1

NLP subtasks

Task Description

Segmentation Splitting a document along sentence and section boundaries

Tokenization Splitting sentences up into their parts – individual words and punctuation

Part of speech (POS) 
tagging

Assigning grammatical parts of speech to individual tokens e.g. ‘drug’ is a noun, ‘administers’ is a verb, 
‘quickly’ is an adjective, ‘the’ or ‘a’ are determiners

Parsing Determining the grammatical structure of sentences and the relationship between groups of words that together 
form noun phrases, verb phrases, clauses etc. Shallow parsing, often used instead of deep parsing, only 
identifies the constituents (e.g., noun phrases) but not the internal structure of the sentence.

Named entity recognition 
(NER)

Identifying terms or phrases of interest (‘entities’) in the text. NER may go beyond just recognizing terms to 
also categorizing, normalizing, and mapping them to standardized vocabularies, e.g, identifying ‘rofecoxib’ as a 
drug, and ‘myocardial infarction’ as a medical condition

Negation detection Determining whether a named entity is present or absent, e.g. ‘patient does not exhibit symptoms of …’, 
‘patient was ruled out for myocardial infarction’

Word sense disambiguation 
(WSD)

Determining which sense of a homograph (words with identical spellings but different meanings) is appropriate 
in the context of the sentence

Temporal inference Establishing temporal order of events from text e.g. ‘adverse event occurred after prescription of drug’

Relation detection Determining whether two or more named entities recognized in the text form specific relationships, e.g. ‘drug 
A treats disease B’, ‘drug A induces disease B’
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Table 2

Main terminologies used in text mining for pharmacovigilance.

Name (abbreviation) Source/availability Description

Anatomical Therapeutic 
Chemical Classification System 
(ATC)

World Health Organization 
Collaborating Centre for Drug 
Statistics Methodology (WHOCC)
http://www.whocc.no/atc

Coding system for drugs based upon the body system they act on 
as well as their chemical properties and therapeutic effects. 
Drugs are assigned unique identifiers based on five ‘levels’ of 
classification: body system, therapeutic group, pharmacological 
group, chemical group, and specific chemical substance.

Current Procedural 
Terminology (CPT)

American Medical Association 
(AMA)
http://www.ama-assn.org/ama/pub/
physician-resources/solutions-
managing-your-practice/coding-
billing-insurance/cpt.page?

Medical terminology used to code medical procedures and 
services under public and private health insurance programs

International Statistical 
Classification of Diseases 
(ICD9, ICD10)

World Health Organization (WHO)
http://www.who.int/
classifications/icd/en/

A disease classification system designed to group similar 
diseases, such as ‘diseases of the nervous system’, ‘neoplasms’. 
Used as a standard diagnostic tool for epidemiology, health 
management and clinical purposes

Logical Observation Identifiers 
Names and Codes (LOINC)

Regenstrief Institute
http://loinc.org/

A standard for coding laboratory and clinical test results

Medical Dictionary for 
Regulatory Activities 
(MedDRA)

Maintenance and Support Services 
Organization (MSSO)
http://www.meddra.org/

A hierarchically organized terminology intended for regulatory 
communication and classifying adverse event information 
associated with medical products. It includes terms for 
symptoms, diseases, indications, medical procedures, and family 
history.

Medical Subject Headings 
(MeSH)

National Library of Medicine (NLM)
http://www.nlm.nih.gov/mesh/

A hierarchically organized controlled vocabulary of medical 
terms, as well as synonyms and alternative terms, used for 
indexing articles in MEDLINE.

National Drug File - Reference 
Terminology (NDF-RT)

U.S. Department of Veterans Affairs, 
Veterans Health Administration 
(VHA)
http://www.nlm.nih.gov/research/
umls/sourcereleasedocs/current/
NDFRT/

A hierarchical drug classification that groups drugs by their 
properties including ingredients, chemical structure, dose form, 
physiologic effect, mechanism of action, pharmacokinetics, 
interactions and diseases.

RxNorm National Library of Medicine
https://www.nlm.nih.gov/research/
umls/rxnorm/

A normalized vocabulary for generic and branded drugs that 
associates drugs with their ingredients, strength and forms. Used 
mainly to support semantic interoperation between drug 
terminologies and pharmacy knowledge bases.

Systemized Nomenclature of 
Medicine Clinical Terms 
(SNOMED CT)

International Health Terminology 
Standards Development Organization
http://www.ihtsdo.org/snomed-ct/

A hierarchically organized multilingual medical terminology of 
over 311,000 terms and synonyms including diagnoses, 
procedures, and anatomy, as well as pharmaceuticals and 
biologics. Used for clinical documentation and reporting, and the 
core terminology for EHRs.
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