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Abstract 

 
In this paper, we present an approach for separat-

ing text and non-text ink strokes in online handwritten 
Japanese documents based on Markov random fields 
(MRFs), which effectively utilize the spatial relation-
ship between strokes. Support vector machine (SVM) 
classifiers are trained for individual stroke and stroke 
pair classification, and on converting the SVM outputs 
to probabilities, the likelihood clique potentials of 
MRF are derived. In experiments on the TUAT Kon-
date database, the proposed MRF approach yield su-
perior performance compared to individual stroke 
classification and sequence classification based on 
hidden Markov models (HMMs). 
 
1. Introduction 
 

With the increased use of tablet PCs and electronic 
whiteboards with large writing areas, users can draw 
various heterogeneous structures such as text, draw-
ings and table forms freely. Such freely handwritten 
ink documents bring new challenges to automatic 
analysis and recognition. Before the processing tasks 
like text recognition, editing and retrieval can be ac-
complished, the ink document needs to be segmented 
into regions of  homogeneous stroke type, say, regions 
of text, drawings, table forms, etc. Since the ink docu-
ment is freely structured, there is very little prior 
knowledge (e.g. size, location and orientation of text 
lines) to guide top-down parsing. Fig. 1 shows two 
pages of online ink documents.  

Due to the free structure and unavailability of prior 
knowledge, bottom-up classification of ink strokes is a 
feasible way for ink document segmentation. Separat-
ing text strokes from non-text ones such as graphics 
and diagrams, is a fundamental problem in this process. 

Assuming independence of strokes, each stroke can 
be classified individually [1]. Actually, significant in-

formation exists not only in the stroke shapes but also 
in the temporal and spatial relationship between 
strokes. This context can help disambiguate some un-
certainties. Some previous works have incorporated 
such context information heuristically for disambiguat-
ing individual stroke types [2-4]. Bishop et al. [5] pro-
posed a rather principled text/non-text stroke classifi-
cation approach based on hidden Markov models 
(HMMs) [6], which can utilize the temporal informa-
tion of stroke sequences effectively, but ignores the 
very important spatial context. 

 

 
 

Figure 1. Two pages of online ink documents. 
 

The HMM approach takes into account only the re-
lationship between successively adjacent strokes in 
writing order. The strong correlation between strokes 
adjacent spatially but not temporally should also help 
disambiguate stroke classification. To better utilize 
such spatial context, we propose a text/non-text stroke 
classification approach based on the Markov random 
field (MRF) framework, which represents the interac-
tions between strokes by the neighborhood system and 
clique potentials. We derive the likelihood clique po-
tentials from the probabilistic outputs of support vector 
machine (SVM) classifiers on stroke features. 

We have evaluated our system in experiments on 
the TUAT Kondate database [4]. The results show that 
by incorporating inter-stroke relationships, the accu-
racy of stroke classification is improved significantly, 
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and the proposed MRF approach outperforms the 
HMM approach. 
 
2. MAP-MRF Framework 
 

The stroke classification problem can be formulated 
as a labeling problem in which the strokes correspond 
to the set of sites , and the classes corre-
spond to the set of labels 

{1, , }S = K I
{1, , }L J= K  which are 

text and non-text here. The feature vectors of the 
strokes, {o1,…, oI}, constitute the observation set O . 
The solution is to assign the sites a best labeling con-
figuration * * * *

1{ , , },I iF f f f= K L∈  under an optimiza-
tion criterion, which is usually the maximum a posteri-
ori (MAP) probability: 
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where  is the likelihood function for O  
given , and  is the prior probability of . For 
simplicity, we assume that the observations are condi-
tionally independent at all sites. 

( | )p O F
F ( )P F F

 
2.1. Markov Random Fields 
 

To calculate the prior probability  is intrac-
table because the interactions between the labels are 
global. To make it tractable, the MRF constrains the 
interdependence of labels by assuming that the label of 
a site is only dependent on the labels of its neighboring 
sites. This is described as the Markovianity and can be 
depicted by the neighborhood system [7]. The 
neighborhood system  denotes the neighbors of site 

 that meets with . A clique 
 is defined as a subset of sites that are all mutual 

neighbors according to the neighborhood system. 

( )P F

i∂
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c

The Hammersley-Clifford theorem establishes the 
equivalence between the Markov random field and the 
Gibbs random field [7],  
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∈
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is called the prior energy, and 
( ')

'

U F

F
Z e−=∑                            (4) 

is the normalization factor called the partition function. 
The energy function is the summation of clique poten-
tials over all possible cliques c . The clique potentials 

 are defined as the costs to different cliques for en-
couraging or penalizing different local interactions 
among neighboring sites. 

cV

Taking the likelihood function  into con-
sideration, we have 

( | )p O F

( ( | ) ( ))1( | ) ( ) U O F U Fp O F P F e
Z

− +=             (5) 

where 
( | ) log ( | )U O F p O F= −                  (6) 

is called the likelihood energy. By the conditional in-
dependence assumption of the observations, we have 

( | ) ( | )c
c C

U O F V O F
∈

=∑                   (7) 

where  are the likelihood clique potentials 
derived from the negative logarithm of the conditional 
probabilities. Finally, the posterior energy correspond-
ing to the a posteriori probability  in Eq. (1) 
can be formulated as 
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For simplicity, we consider only single-site cliques 
1 { }C i=  and pair-site cliques  in our 

system. According to Eq. (8), 
2 { , '}C i i=

1 1
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The likelihood clique potentials describe the statistical 
information of the observations given the labels, while 
the prior clique potentials encode the prior information 
of neighboring labels [8].  

Now in MAP-MRF framework, maximizing the a 
posteriori probability in Eq. (1) is equivalent to mini-
mizing the energy function in Eq. (9). 
 
2.2. Decoding Strategy 
 

To find the best labeling configuration among all 
the possible ones is a combinational problem and is 
computationally expensive. This is a non-trivial prob-
lem, because the energy function may be non-convex 
and exhibits many local minima. 

In our work, we use the relaxation labeling (RL) al-
gorithm [7] to minimize the energy function (9) of 
MRF. In RL, a real value called labeling strength is 
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defined, denoting the feasibility that a label is assigned 
to a site, thus the combinatorial minimization is con-
verted to a real minimization subject to linear con-
straints. RL depends not much on the initialization, and 
in our system we initialize with equal labeling strength 
for each site. After iterations, the algorithm will con-
verge and the winner-take-all strategy will be em-
ployed for assigning labels. 
 
3. MAP-MRF for Stroke Classification 
 

We use the above MAP-MRF framework to formu-
late the contextual ink stroke classification problem. 
The class labels of a set of strokes are assigned to 
minimize an energy function. The energy function is 
the summation of the clique potentials and the cliques 
are defined according to the neighborhood system. 

 
3.1. The Neighborhood System and Cliques 
 

  In online ink documents, the strokes close to each 
other usually have identical class labels, so we design 
the neighborhood system according to the minimum 
distance between strokes, that is, only the strokes 
within a certain distance are said to be neighbors. In 
our system, the threshold of distance is set to 0.4 times 
the average text stroke length estimated from the train-
ing set. For convenience, only single-site and pair-site 
cliques are taken into account in our experiments.  

 
3.2. Stroke Features 
 

To formulate the single-site likelihood potential, 11 
features, which have been mentioned in [9], are ex-
tracted from each stroke. They are the stroke length, 
area, compactness, eccentricity, circular variance, rec-
tangularity, centroid offset along major axis, closure, 
absolute curvature, perpendicularity, and signed per-
pendicularity. 

To formulate the pair-site likelihood potential, the 
relationships between two neighboring strokes are rep-
resented by binary stroke features. We use four binary 
stroke features, which are the minimum distance be-
tween two strokes, the maximum and minimum dis-
tance between the endpoints of two strokes and the 
distance between the centers of the bounding boxes of 
two strokes. 
 
3.3. The Likelihood Clique Potentials 
 

To evaluate the single-site and pair-site potentials 
from unary stroke features and binary stroke features, 
we train support vector machine (SVM) classifiers [10] 

and transform the SVM outputs to probabilities by 
fitting a sigmoid function for each class. Single strokes 
are classified to two classes: text and non-text. Stroke 
pairs are classified to three classes: text-text, nontext-
nontext, and text-nontext. 

An SVM functions as a binary (two-class) classifier. 
For multi-class classification, we use multiple SVMs 
each separating one class from the others. 

We choose the SVM for classification because it is 
at the top of classification performance in the state of 
the art. The SVM is a hyperplane classifier in the pat-
tern feature space or a nonlinearly expanded feature 
space. Its decision function is formulated as a weighted 
average of kernel functions with a number of training 
vectors called support vectors. The weighting coeffi-
cients are estimated by maximizing a margin criterion 
on training patterns, which is converted to a dual quad-
ratic programming problem. 

For single-site classification, the output (decision 
function) of the binary SVM is converted to a posterior 
probability for class text. The complement of the prob-
ability is the probability of class non-text. For three-
class pair-site classification, the outputs of three SVMs 
are converted to three posterior probabilities for three 
classes. 

On training the SVMs on training samples, the 
SVM outputs are converted to posterior probabilities 
by fitting sigmoid functions on a validation sample set 
[11][12]. For M-class problem, outputs of M SVMs are 
converted to posterior probabilities by 

1 0
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where 1jβ  is the weight, 0jβ is the bias for class j. 

These parameters are estimated by minimizing the 
cross-entropy function with weight decay term: 

1 1
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M

j
j
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=
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+
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whereλ is a pre-specified coefficient for weight decay. 
The criterion is minimized by stochastic gradient de-
scent. 

Therefore, given a set of feature vectors nx , 
1, ,n N= K  the probabilistic outputs which take the 

form of a posterior probability ( 1 | ),j nP t x=  

1, ,j M= K , are achieved by Eq. (15). According to 
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Bayesian rule, the posterior probabilities can be con-
verted to conditional probabilities, i.e. 

        
( | ) ( ) ( | )( | )

( ) ( )
P t x p x P t xp x t

P t P
= ∝

t
           (12) 

where  is the prior probability for class t which 
can be estimated from the training set. 

( )P t

By the Gibbs distribution and the conditionally in-
dependent assumption of the observations, we obtain 
the following single-site likelihood clique potentials, 
                     (13) 1( | ) log ( | ),C i iV o j p o j j L= − ∈

and the pair-site likelihood clique potentials, 
2 ' '( | , ') log ( | , '), , 'C ii iiV o j j p o j j j j L= − ∈    (14) 

where ,  are the unary and binary stroke features 

respectively and , are class labels. 
io 'iio

j 'j
 
3.3. The Prior Clique Potentials 
 

The single-site prior clique potential depends on the 
label assigned to the site 
                                              (15) 1( ) ,C jV j v j L= ∈

where  is the penalty against that the site is 

labeled . The higher 

0jv >

j jv  is, the less strokes will be 

assigned the label . This has an effect of controlling 
the percentage of the sites labeled .  

j
j

Because spatially adjacent strokes always share 
same labels, the pair-site prior clique potential in our 
system is designed to favor that the sites of the clique 
are assigned same labels, i.e. 

      (16) 20
2

21

, if and ' are identical
( , ')

, otherwiseC

v j j
V j j

v
⎧

= ⎨
⎩

where . 21 20 0v v> >
In principle, the prior clique potentials are propor-

tional to the negative logarithm of prior probabilities of 
single-site or pair-site classes, which can be estimated 
from training samples. 
 
4. Experimental Results 
 

To evaluate the performance of the proposed 
text/non-text classification approach, we have experi-
mented on the TUAT HANDS-Kondate_t_bf-2001-11 
(in brief, Kondate) database, of online freeform hand-
written Japanese documents without any writing con-
straints [4]. The database contains the online ink 
documents of 67 writers, 41 pages per writer covering 
the stroke types of text, formula, figure, ruled line and 
editing mark. The formulas, which are made up of both 

characters and non-characters, are excluded in our ex-
periment, thus the non-text strokes are composed of 
figure, ruled line and editing mark strokes. 

10 pages of each writer, totally 10×67=670 pages, 
including both text and non-text strokes, are selected 
for our experiment. Example pages are shown in Fig. 2. 
Among the selected data, 310 pages are used for train-
ing classifiers (SVMs), and 360 pages are used for 
testing. The numbers of strokes for each stage are 
listed in Table 1. 

 

Figure 2. Examples of pages in TUAT Kondate 
database. 

 
Table 1. The numbers of strokes for each stage. 

 
 Text Non-text 

Training 51681 9869 
Test 61969 10793 

 
We use SVMs with 4-th order polynomial kernel 

function for single-site and pair-site classification (the 
outputs converted to conditional likelihood potentials). 
For single-site prior clique potential, the value for text 
is set to 0.029, and  that for non-text is set to 0.305. For 
pair-site prior clique potential, we set 

20 0.013v =  and 

21 0.749v = . 
We have drawn a comparison between the method 

based on HMM presented in [5] and our proposed 
MRF approach. For HMM, both the unary and binary 
stroke features are identical to the method based on 
MRF and the emission probabilities are derived from 
the probabilistic outputs of the SVM classifiers. The 
classification correct rates for individual classification 
(SVM), HMM and MRF are listed in Table 2, and the 
corresponding confusion matrices are listed in Table 3. 
From the two tables, we can see that HMM outper-
forms individual classification, and the MRF based 
approach is superior to that based on HMM.  

 
Table 2. Correct rates (%) of stroke  

classification. 
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Individual HMM MRF 
92.58 94.48 96.61 

 

5. Conclusion 
 

We have implemented a text/non-text ink stroke 
classification approach based on Markov random fields 
for online handwritten Japanese documents. The like-
lihood clique potentials of MRF are derived from the 
probabilistic outputs of the SVM classifiers. In ex-
periments on the TUAT Kondate database, we evalu-
ated the system performance between the methods 
based on HMM and MRF. The experimental results 
have demonstrated the superiority of the MRF ap-
proach, which takes advantage of the interactions be-
tween spatially adjacent strokes. 
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