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Abstract 
 
Cheap and versatile cameras make it possible to eas-

ily and quickly capture a wide variety of documents. 
However, low resolution cameras present a challenge to 
OCR because it is virtually impossible to do character 
segmentation independently from recognition. In this 
paper we solve these problems simultaneously by apply-
ing methods borrowed from cursive handwriting recogni-
tion. To achieve maximum robustness, we use a machine 
learning approach based on a convolutional neural net-
work. When our system is combined with a language 
model using dynamic programming, the overall perform-
ance is in the vicinity of 80-95% word accuracy on pages 
captured with a 1024x768 webcam and 10-point text. 

 
1. Introduction 

 
Although the vast majority of documents are created 

digitally, we still interact with paper documents much of 
the time. Digital and paper documents have complemen-
tary strengths: paper is lightweight, easy to carry, easy to 
read, and easy to annotate. Electronic documents, on the 
other hand, can be searched, stored in a database, and 
easily distributed over the network. 

In an ideal world, one would be able to switch be-
tween digital and paper versions of a document to benefit 
from the advantages of each medium. To make this pos-
sible, we need a simple, quick way to accurately scan 
paper documents into the computer. Today, flatbed scan-
ners coupled with OCR software fill this need, but scan-
ners can be bulky, slow, and are far from ubiquitous. On 
the other hand, handheld phone cameras and webcams 
are small, able to instantly snap pictures of documents, 
and are easy to use in a mobile setting. 

In this paper, we describe a method for performing 
OCR on low-resolution images (we used an inexpensive 
1024x768 webcam for all our examples). We assume the 
text’s foreground and background color are fairly uni-
form and that the text is in a western alphabet. The chal-
lenge is to capture and recognize the text accurately, 
given the generally poor quality of document images cap-
tured by camera-based systems. 

For images that provide enough resolution to correctly 
segment printed characters (such as images from flatbed 

scanners or high-resolution cameras with controlled light-
ing), current OCR methods are highly accurate [1]. Addi-
tionally, high-resolution mosaics can be made from a 
series of low-resolution camera images. While Mirmehdi 
et al. [8] show that it is possible to do accurate OCR from 
such a mosaic image, we are looking for a method that 
can directly recognize text from a single image. 

Traditional OCR systems operate on binary images 
(See Doermann et al. [4] for an overview). Deblurring, 
adaptive or multiscale thresholding, and super-resolution 
techniques can partially compensate for the loss of in-
formation during binarization [9,10,12,13]. Although we 
have not implemented the many algorithms in the litera-
ture, inspection of the published result images and com-
parison with the low resolution images obtained with our 
cameras lead us to believe that we can not achieve opti-
mal OCR performance after binarization. 

Cursive handwriting recognition systems typically at-
tempt to solve recognition and segmentation at the same 
time [2]. In this respect, they address the same problems 
we face for low resolution OCR. However, instead of 
using pen motion (as in handwriting recognition), we 
work on grayscale image data directly. 

In summary, low-resolution camera images are so 
blurry and of such poor quality that segmentation and 
recognition cannot be done independently. Our approach 
is therefore to solve these problems together, using a 
global optimization framework. To build a robust system, 
we favor a machine learning approach (using a convolu-
tional neural network) trained on a large amount of data. 
By varying the lighting conditions, fonts, sizes, cameras, 
angle, focus, and the like, we leave to the machine learn-
ing algorithm the task of building a classifier invariant to 
these factors. 

Our camera-based OCR system is composed of two 
parts that work together to recognize the text on a 
scanned page. We have implemented a neural network-
based character recognizer which is used to predict the 
character most likely to be present at a given location in 
the input image. This character recognizer is then used by 
the word recognizer, which finds the most likely word 
inside a given rectangle on the page. Word recognition is 
an optimization problem solved using dynamic pro-
gramming. 

 



2. Character recognizer 
 
At the core of our system is a convolutional neural 

network-based character recognizer. This recognizer 
takes a 29x29 window of image data as input, and pro-
duces a vector containing a probability distribution over 
the set of characters in the alphabet. This vector contains, 
for each character, the probability that the input window 
contains an image of that character. To normalize the size 
of a document’s text, we scale the image of each word so 
that the vertical extent of the word, including ascenders 
and descenders, fits comfortably inside a 29-pixel tall 
image. Then, to find the probability distribution for any 
point we extract a 29x29 image from this scaled word 
image, and use that as the input to the character recog-
nizer. 

The convolutional neural network architecture was 
chosen because it outperformed every other algorithm for 
OCR on handwriting digit recognition using the MNIST 
benchmark [6,11]. The architecture is fully described by 
Simard et al. [11] and is represented in figure 1.  

The general strategy of a convolutional network is to 
extract simple features at a higher resolution, and then 
convert them into more complex features at a coarser 
resolution. The first layers typically extract very coarse 
features such as X and Y derivatives, a low pass filtered 
version of the input, and the X-Y derivative. Because the 
features are learned on the data, it is impossible to predict 
what they will actually yield until training has been done. 
The second convolutional layer extracts much more 
complex features at a coarse resolution. We hypothesize 
that the features are loops, intersection, curvature, and the 
like. These first 2 layers can be viewed as a trainable fea-
ture extractor. The last two layers are fully connected, 
and can be viewed as forming a multipurpose classifier, 
since a 2-layer fully connected neural network can learn 
any function [5]. The layers are trained simultaneously, 
minimizing cross-entropy [3].  

Previous experiences with this architecture on both 
MNIST and Asian alphabets have lead us to believe that 
the choice of 5 features for the first convolutional layer 
and 50 features for the second convolutional layer are 
adequate for a wide range of image-based character rec-
ognition, including low-resolution printed OCR [11]. We 

experimented with training networks with varying num-
bers of hidden units, and found that networks with be-
tween 250 and 750 hidden units all performed well. Fur-
ther experimentation is needed to find the optimal num-
ber of hidden units. 

 
2.1. Training 

 
The system is trained by taking example characters 

from a database of document images, randomly jittering 
them within the input window, and randomly altering the 
brightness and contrast of the images. Our training data-
base contains 57,555 characters taken from 15 pages of 
document text captured using a 1024x768 APLUX web-
cam under standard office lighting conditions. The 
documents in this corpus of training data included 6 dif-
ferent fonts (both serif and sans-serif) in regular, bold and 
italic styles, and at a variety of font sizes. 

 
3. Word recognizer 

 
Again, the character recognizer produces a vector giv-

ing the probability for any given character to be centered 
in the network’s input window. Unfortunately, we do not 
know the locations for the individual letters on the page, 
so we cannot merely place the recognizer at each charac-
ter position and record the most likely letter. Addition-
ally, we would like to impose a prior on the word recog-
nizer, preferring to find valid (English, in our case) 
words.  

The input to our word recognizer is a series of charac-
ter recognizer observations, taken by horizontally scan-
ning through the word, invoking the character recognizer 
at a number of different potential character locations. To 
define these character locations, our system breaks the 
word into small pieces, or slices, which are set to be the 
minimum possible size allowed for a character (in our 
implementation, these slices are 2 pixels wide). Since we 
have divided the word into pieces representing the mini-
mum possible size for a character, we may need to con-
catenate a number of slices (we allow merging up to 4 
slices) to find a combined sequence that represents a let-
ter. Figure 2 illustrates how a word is divided into slices. 
The word recognizer tries to reconcile this sequence of 
recognizer outputs with a particular word.  

Figure 2. Word segmentation. The small (green) 
hash marks indicate the slice size for segmenting 
a word. The long (blue) hash marks indicate the 
slices actually used for the each of the letters in 
the words “private” and “certainly”. 
 

Figure 1. Convolutional neural network architecture 
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We use dynamic programming to determine which 
word is best explained by this sequence of observations. 
Dynamic programming finds an optimal solution for a 
problem by building up a series of optimal solutions for 
subproblems of the original problem. This allows us to 
reuse much of the computation for finding optimal sub-
problems when we determine the globally optimal solu-
tion. Typically, dynamic programming proceeds by fill-
ing in the cells of a table, where each cell represents a 
subproblem of the original problem which has been built 
on a previously computed subproblem. 

Next, we describe the details of the two word recog-
nizers we implemented to find the optimal interpretation 
for a sequence of character recognitions. 

 
3.1. Language-neutral model 

 
Our first word recognizer has no particular language 

model built in, but simply tries to produce the most likely 
interpretation of a sequence of character recognizer ob-
servations. We will illustrate how the algorithm works 
using the word contained in the image in figure 3. 

This recognizer uses a simple 1-dimensional dynamic 
programming algorithm where the objective function to 
be maximized is simply the sum of the scores for each 
character. Each cell in our table represents an endpoint – 
the optimal solution for the part of the word ending at the 
slice corresponding to that cell. In each cell we store a 
measure of the fitness of that particular subproblem and a 
link back to the previous cell in the table representing the 
optimal solution for the part of the word prior to this let-
ter. As our input image has been divided into seven 
slices, we will have a table with seven cells, as illustrated 
in figure 4. 

Since a letter is allowed to span up to four slices, there 
are four possible choices for the previous subproblem. 
For example, cell n could correspond to a character con-
suming only 1 slice (slice n), in which case it would link 
back to cell n-1. If the letter were to use up 2 slices 
(slices n and n-1), however, it would link back to the 
subproblem in cell n-2. The score that gets stored in a 
particular cell is the sum of the local letter score and the 
score stored in the previous subproblem. We choose the 
letter that maximizes this sum.  

The local character score is the probability score for 
the most likely character (as returned by the character 
recognizer), multiplied by a scaling factor that depends 
on how much the most likely character’s average width 
differs from the width of the portion of the image being 
considered for this character. 

 
 
 
 
 

 
 
 When we have filled in the table completely, the last 

cell represents the optimal word for the entire sequence 
of observations. The optimal result can be reconstructed 
by following the links back from the last cell in the table. 

  
 

3.2. Dictionary model 
 
The second word recognizer we implemented – which 

has given us the best results – is one that tries to find out 
which word in a dictionary is the most likely match for a 
given input image. We will first describe a version of the 
dictionary-based recognizer that simply scans linearly 
through the entire lexicon, evaluating the probability for 
each word, and outputting the word with the highest 
score. Then, we will describe an alternative organization 
that allows us to interleave the dynamic programming 
optimization with the dictionary traversal to compute the 
most likely word much more quickly. 

In this case, the problem we are solving is somewhat 
different. Here, we use dynamic programming to find the 
best score we can get if we are forced to interpret a bit-
map as a given word. We run this optimization for every 
word in the dictionary, and pick the word that gave the 
best score. This time, we have a 2-dimensional table to 
fill in. Again, each column in our dynamic programming 
table represents the subproblems ending at a particular 
slice in the input sequence, and each row of the table 

 
 
Figure 4. Dynamic programming table. Each cell in 
the table holds the optimal solution of the problem 
ending at that point. Each solution is expressed in 
terms of the optimal solution to a smaller subproblem 
(as indicated by the arrow). In this example, the word 
is recognized as “mild”. 

 
 
Figure 5. Dictionary model dynamic programming 
table. The cells along the optimal path through this 
table are shown. 

slice       1         2         3          4        5          6         7 

slice      1          2         3         4          5         6         7  

 
 
Figure 3. Example word image and its slices. We will 
use this example to illustrate our algorithms. 

slice    1    2    3    4    5    6    7 



represents a letter from the word in question. Stored in 
this table location is a pointer back to the previous sub-
problem (the previous letter and the slice where that letter 
ends) as well as a cumulative score (see figure 5). We use 
a similar local scoring method as the other word recog-
nizer – the probability that the observation matches the 
letter implied by the current cell, times a scaling factor 
that depends on the slice width and the average width for 
the character. Again, the cumulative score is the score for 
the current cell plus the cumulative score for the previous 
partial solution. Once we finish filling in the table, the 
optimal score for the word is stored in the final (upper-
right) cell. We then normalize this score by dividing by 
the number of letters in the word. Without this normaliza-
tion, long words with relatively poorly-scoring letters can 
accumulate high scores and beat out shorter words that 
have very good letter scores – we want to maximize the 
score for each letter. 

Since many words in the dictionary share prefixes 
with other words, we are duplicating a lot of work by 
computing this shared information for each word. Con-
sider the dynamic programming table used to find the 
score for the word “mile” – it would have the same first 3 
rows as the “mild” example. We would like to share 
these identical rows when computing scores for words 
with common prefixes.  

We employ a method similar to the method described 
by Lucas et al. [7] to speed up our dictionary search. To 
traverse the dictionary in an order that maximizes the 
amount of reused computation, we arrange the dictionary 
into a trie structure. Any node in the trie represents either 
a partial word or a complete word (or, both – “mild” is a 
word and also a prefix of “milder”). Now we can build up 
the dynamic programming table incrementally as we 
traverse the dictionary. When we visit a node, we create a 
new “row” for this virtual table that corresponds to the 
letter represented by that node, and fill it in. The only 
context we need for this operation is the previous row, 
which we pass as a parameter to the recursive trie tra-
versal routine. See figure 6 for an illustration of our trie 
traversal algorithm. If the node in question represents a 
full word, we can look at the last entry in the row to find 
the sum of the scores for the letters in that word. Again, 

we divide this sum by the length of the word to get our 
final word score. When the trie traversal finishes, we 
simply return the highest-scoring word we encountered. 

We implemented two heuristics that speed up the 
computation immensely. First, we only visit the words 
starting with letters that are likely to be the initial letter 
for the word. This optimization gives us a several-fold 
speedup, especially for words that begin with uncommon 
letters. A much greater speedup comes from pruning the 
search to avoid following paths that are unlikely to result 
in a high-scoring word. If the score for the partial word at 
a given node (again, normalized by the number of letters) 
is worse than some threshold times the best score so far, 
we assume that, no matter how well the remaining letters 
of the word score, they will never be good enough to beat 
the best word we’ve seen so far. This second optimiza-
tion gives us a quite dramatic speedup, without noticea-
bly compromising the results. 

 
4. Results 

 
While we have not yet rigorously tested of our system, 

our initial results are promising. We trained the character 
recognizer using our set of 15 pages of training data for 
several hours (133,846 epochs), and used a dictionary of 
367,744 English words. We then tested the recognizer 
using data similar to the training data. For just the alpha-
betic characters, the character recognizer has an 87% 
success rate. For the alphanumerics, we drop down to 
83% success. When we include all of the punctuation, the 
accuracy drops to 68%. Considering the poor quality of 
the input images, though, this is quite promising.  

On images taken by the 1024x768 APLUX camera, 
where an entire page of 10-point text fits well inside the 
frame, our system is able to recognize words in the vicin-
ity of 80-95% word accuracy. The variance in accuracy is 
due mostly to differences in lighting quality, as well as 
variations in font size and face. Figure 7 shows an exam-
ple of our system’s performance. 

Our current system is quite slow. For the example 
paragraph in figure 7, it takes a total of 2 minutes and 40 
seconds to produce the output shown (on a 2GHz Xeon). 
Of that time, 2 minutes and 20 seconds are taken up by 
the character recognizer, and the rest is due to the trie 
traversal.  

More comprehensive training and evaluation still need 
to be done, but the results are very encouraging. By way 
of comparison, ScanSoft was almost completely unable 
to recognize the text in these types of images, getting a 
few words here and there amid a sea of gibberish. On the 
other hand, for high-resolution images, ScanSoft outper-
forms our method, is able to recognize a wider variety of 
fonts, and is much faster.  

 
 
Figure 6. Trie-based dictionary lookup.  As we visit 
each node in the trie, a new row of the dynamic pro-
gramming table is created. We can reuse much of the 
work when evaluating the scores for “mile” and “mild” 
 



 
5. Conclusion 

 
We have presented a camera-based OCR system that 

can recognize text from poor-quality images of text 
documents. We solve character segmentation and recog-
nition simultaneously, using the grey level image. To 
achieve maximum robustness, we use a machine learning 
approach based on convolutional neural network trained 
on a large amount of data. The system chooses the cor-
rect word as the most likely choice up to 95% of the time. 
Word accuracy is much higher for getting the correct 
word in the top 2 choices. Accuracy is also higher for 
words of 3 characters or more. While the accuracy of our 
system may not be good enough for conversion of paper 
documents to digital versions, it is more than enough for 
document retrieval.  

One of the promises of learning-based recognizers, 
such as our convolutional neural net recognizer, is that 
they should be easy to use in novel situations (e.g. differ-
ent alphabets), simply by re-training the system. We hope 
to verify this by using our system to handle other lan-
guages and alphabets, as well as a wider variety of fonts 
and text styles.  
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Figure 7. An example of our system recognizing text from 20,000 Leagues Under the Sea. We used a 1024x768 
webcam to snap an image of a full page of 10-point text. Ignoring punctuation, our system only missed 14 of the 
118 words or word fragments in the text. This drops to 8 if we ignore the problem of hyphenated words, where the 
word fragments do not appear in our dictionary. The words shown in figure 2 are from this image. 
 


