
Text Recognition of Low-resolution Document Images

Charles Jacobs, Patrice Y. Simard, Paul Viola, and James Rinker
Microsoft Research

(cjacobs|viola|patrice)@microsoft.com

Abstract

Cheap and versatile cameras make it possible to eas-

ily and quickly capture a wide variety of documents.
However, low resolution cameras present a challenge to
OCR because it is virtually impossible to do character
segmentation independently from recognition. In this
paper we solve these problems simultaneously by apply-
ing methods borrowed from cursive handwriting recogni-
tion. To achieve maximum robustness, we use a machine
learning approach based on a convolutional neural net-
work. When our system is combined with a language
model using dynamic programming, the overall perform-
ance is in the vicinity of 80-95% word accuracy on pages
captured with a 1024x768 webcam and 10-point text.

1. Introduction

Although the vast majority of documents are created

digitally, we still interact with paper documents much of
the time. Digital and paper documents have complemen-
tary strengths: paper is lightweight, easy to carry, easy to
read, and easy to annotate. Electronic documents, on the
other hand, can be searched, stored in a database, and
easily distributed over the network.

In an ideal world, one would be able to switch be-
tween digital and paper versions of a document to benefit
from the advantages of each medium. To make this pos-
sible, we need a simple, quick way to accurately scan
paper documents into the computer. Today, flatbed scan-
ners coupled with OCR software fill this need, but scan-
ners can be bulky, slow, and are far from ubiquitous. On
the other hand, handheld phone cameras and webcams
are small, able to instantly snap pictures of documents,
and are easy to use in a mobile setting.

In this paper, we describe a method for performing
OCR on low-resolution images (we used an inexpensive
1024x768 webcam for all our examples). We assume the
text’s foreground and background color are fairly uni-
form and that the text is in a western alphabet. The chal-
lenge is to capture and recognize the text accurately,
given the generally poor quality of document images cap-
tured by camera-based systems.

For images that provide enough resolution to correctly
segment printed characters (such as images from flatbed

scanners or high-resolution cameras with controlled light-
ing), current OCR methods are highly accurate [1]. Addi-
tionally, high-resolution mosaics can be made from a
series of low-resolution camera images. While Mirmehdi
et al. [8] show that it is possible to do accurate OCR from
such a mosaic image, we are looking for a method that
can directly recognize text from a single image.

Traditional OCR systems operate on binary images
(See Doermann et al. [4] for an overview). Deblurring,
adaptive or multiscale thresholding, and super-resolution
techniques can partially compensate for the loss of in-
formation during binarization [9,10,12,13]. Although we
have not implemented the many algorithms in the litera-
ture, inspection of the published result images and com-
parison with the low resolution images obtained with our
cameras lead us to believe that we can not achieve opti-
mal OCR performance after binarization.

Cursive handwriting recognition systems typically at-
tempt to solve recognition and segmentation at the same
time [2]. In this respect, they address the same problems
we face for low resolution OCR. However, instead of
using pen motion (as in handwriting recognition), we
work on grayscale image data directly.

In summary, low-resolution camera images are so
blurry and of such poor quality that segmentation and
recognition cannot be done independently. Our approach
is therefore to solve these problems together, using a
global optimization framework. To build a robust system,
we favor a machine learning approach (using a convolu-
tional neural network) trained on a large amount of data.
By varying the lighting conditions, fonts, sizes, cameras,
angle, focus, and the like, we leave to the machine learn-
ing algorithm the task of building a classifier invariant to
these factors.

Our camera-based OCR system is composed of two
parts that work together to recognize the text on a
scanned page. We have implemented a neural network-
based character recognizer which is used to predict the
character most likely to be present at a given location in
the input image. This character recognizer is then used by
the word recognizer, which finds the most likely word
inside a given rectangle on the page. Word recognition is
an optimization problem solved using dynamic pro-
gramming.

2. Character recognizer

At the core of our system is a convolutional neural

network-based character recognizer. This recognizer
takes a 29x29 window of image data as input, and pro-
duces a vector containing a probability distribution over
the set of characters in the alphabet. This vector contains,
for each character, the probability that the input window
contains an image of that character. To normalize the size
of a document’s text, we scale the image of each word so
that the vertical extent of the word, including ascenders
and descenders, fits comfortably inside a 29-pixel tall
image. Then, to find the probability distribution for any
point we extract a 29x29 image from this scaled word
image, and use that as the input to the character recog-
nizer.

The convolutional neural network architecture was
chosen because it outperformed every other algorithm for
OCR on handwriting digit recognition using the MNIST
benchmark [6,11]. The architecture is fully described by
Simard et al. [11] and is represented in figure 1.

The general strategy of a convolutional network is to
extract simple features at a higher resolution, and then
convert them into more complex features at a coarser
resolution. The first layers typically extract very coarse
features such as X and Y derivatives, a low pass filtered
version of the input, and the X-Y derivative. Because the
features are learned on the data, it is impossible to predict
what they will actually yield until training has been done.
The second convolutional layer extracts much more
complex features at a coarse resolution. We hypothesize
that the features are loops, intersection, curvature, and the
like. These first 2 layers can be viewed as a trainable fea-
ture extractor. The last two layers are fully connected,
and can be viewed as forming a multipurpose classifier,
since a 2-layer fully connected neural network can learn
any function [5]. The layers are trained simultaneously,
minimizing cross-entropy [3].

Previous experiences with this architecture on both
MNIST and Asian alphabets have lead us to believe that
the choice of 5 features for the first convolutional layer
and 50 features for the second convolutional layer are
adequate for a wide range of image-based character rec-
ognition, including low-resolution printed OCR [11]. We

experimented with training networks with varying num-
bers of hidden units, and found that networks with be-
tween 250 and 750 hidden units all performed well. Fur-
ther experimentation is needed to find the optimal num-
ber of hidden units.

2.1. Training

The system is trained by taking example characters

from a database of document images, randomly jittering
them within the input window, and randomly altering the
brightness and contrast of the images. Our training data-
base contains 57,555 characters taken from 15 pages of
document text captured using a 1024x768 APLUX web-
cam under standard office lighting conditions. The
documents in this corpus of training data included 6 dif-
ferent fonts (both serif and sans-serif) in regular, bold and
italic styles, and at a variety of font sizes.

3. Word recognizer

Again, the character recognizer produces a vector giv-

ing the probability for any given character to be centered
in the network’s input window. Unfortunately, we do not
know the locations for the individual letters on the page,
so we cannot merely place the recognizer at each charac-
ter position and record the most likely letter. Addition-
ally, we would like to impose a prior on the word recog-
nizer, preferring to find valid (English, in our case)
words.

The input to our word recognizer is a series of charac-
ter recognizer observations, taken by horizontally scan-
ning through the word, invoking the character recognizer
at a number of different potential character locations. To
define these character locations, our system breaks the
word into small pieces, or slices, which are set to be the
minimum possible size allowed for a character (in our
implementation, these slices are 2 pixels wide). Since we
have divided the word into pieces representing the mini-
mum possible size for a character, we may need to con-
catenate a number of slices (we allow merging up to 4
slices) to find a combined sequence that represents a let-
ter. Figure 2 illustrates how a word is divided into slices.
The word recognizer tries to reconcile this sequence of
recognizer outputs with a particular word.

Figure 2. Word segmentation. The small (green)
hash marks indicate the slice size for segmenting
a word. The long (blue) hash marks indicate the
slices actually used for the each of the letters in
the words “private” and “certainly”.

Figure 1. Convolutional neural network architecture

29x29
input
image

5 (13x13)
features

50 (5x5)
features

350
hidden
units

76
output
units

a

We use dynamic programming to determine which
word is best explained by this sequence of observations.
Dynamic programming finds an optimal solution for a
problem by building up a series of optimal solutions for
subproblems of the original problem. This allows us to
reuse much of the computation for finding optimal sub-
problems when we determine the globally optimal solu-
tion. Typically, dynamic programming proceeds by fill-
ing in the cells of a table, where each cell represents a
subproblem of the original problem which has been built
on a previously computed subproblem.

Next, we describe the details of the two word recog-
nizers we implemented to find the optimal interpretation
for a sequence of character recognitions.

3.1. Language-neutral model

Our first word recognizer has no particular language

model built in, but simply tries to produce the most likely
interpretation of a sequence of character recognizer ob-
servations. We will illustrate how the algorithm works
using the word contained in the image in figure 3.

This recognizer uses a simple 1-dimensional dynamic
programming algorithm where the objective function to
be maximized is simply the sum of the scores for each
character. Each cell in our table represents an endpoint –
the optimal solution for the part of the word ending at the
slice corresponding to that cell. In each cell we store a
measure of the fitness of that particular subproblem and a
link back to the previous cell in the table representing the
optimal solution for the part of the word prior to this let-
ter. As our input image has been divided into seven
slices, we will have a table with seven cells, as illustrated
in figure 4.

Since a letter is allowed to span up to four slices, there
are four possible choices for the previous subproblem.
For example, cell n could correspond to a character con-
suming only 1 slice (slice n), in which case it would link
back to cell n-1. If the letter were to use up 2 slices
(slices n and n-1), however, it would link back to the
subproblem in cell n-2. The score that gets stored in a
particular cell is the sum of the local letter score and the
score stored in the previous subproblem. We choose the
letter that maximizes this sum.

The local character score is the probability score for
the most likely character (as returned by the character
recognizer), multiplied by a scaling factor that depends
on how much the most likely character’s average width
differs from the width of the portion of the image being
considered for this character.

 When we have filled in the table completely, the last

cell represents the optimal word for the entire sequence
of observations. The optimal result can be reconstructed
by following the links back from the last cell in the table.

3.2. Dictionary model

The second word recognizer we implemented – which

has given us the best results – is one that tries to find out
which word in a dictionary is the most likely match for a
given input image. We will first describe a version of the
dictionary-based recognizer that simply scans linearly
through the entire lexicon, evaluating the probability for
each word, and outputting the word with the highest
score. Then, we will describe an alternative organization
that allows us to interleave the dynamic programming
optimization with the dictionary traversal to compute the
most likely word much more quickly.

In this case, the problem we are solving is somewhat
different. Here, we use dynamic programming to find the
best score we can get if we are forced to interpret a bit-
map as a given word. We run this optimization for every
word in the dictionary, and pick the word that gave the
best score. This time, we have a 2-dimensional table to
fill in. Again, each column in our dynamic programming
table represents the subproblems ending at a particular
slice in the input sequence, and each row of the table

Figure 4. Dynamic programming table. Each cell in
the table holds the optimal solution of the problem
ending at that point. Each solution is expressed in
terms of the optimal solution to a smaller subproblem
(as indicated by the arrow). In this example, the word
is recognized as “mild”.

Figure 5. Dictionary model dynamic programming
table. The cells along the optimal path through this
table are shown.

slice 1 2 3 4 5 6 7

slice 1 2 3 4 5 6 7

Figure 3. Example word image and its slices. We will
use this example to illustrate our algorithms.

slice 1 2 3 4 5 6 7

represents a letter from the word in question. Stored in
this table location is a pointer back to the previous sub-
problem (the previous letter and the slice where that letter
ends) as well as a cumulative score (see figure 5). We use
a similar local scoring method as the other word recog-
nizer – the probability that the observation matches the
letter implied by the current cell, times a scaling factor
that depends on the slice width and the average width for
the character. Again, the cumulative score is the score for
the current cell plus the cumulative score for the previous
partial solution. Once we finish filling in the table, the
optimal score for the word is stored in the final (upper-
right) cell. We then normalize this score by dividing by
the number of letters in the word. Without this normaliza-
tion, long words with relatively poorly-scoring letters can
accumulate high scores and beat out shorter words that
have very good letter scores – we want to maximize the
score for each letter.

Since many words in the dictionary share prefixes
with other words, we are duplicating a lot of work by
computing this shared information for each word. Con-
sider the dynamic programming table used to find the
score for the word “mile” – it would have the same first 3
rows as the “mild” example. We would like to share
these identical rows when computing scores for words
with common prefixes.

We employ a method similar to the method described
by Lucas et al. [7] to speed up our dictionary search. To
traverse the dictionary in an order that maximizes the
amount of reused computation, we arrange the dictionary
into a trie structure. Any node in the trie represents either
a partial word or a complete word (or, both – “mild” is a
word and also a prefix of “milder”). Now we can build up
the dynamic programming table incrementally as we
traverse the dictionary. When we visit a node, we create a
new “row” for this virtual table that corresponds to the
letter represented by that node, and fill it in. The only
context we need for this operation is the previous row,
which we pass as a parameter to the recursive trie tra-
versal routine. See figure 6 for an illustration of our trie
traversal algorithm. If the node in question represents a
full word, we can look at the last entry in the row to find
the sum of the scores for the letters in that word. Again,

we divide this sum by the length of the word to get our
final word score. When the trie traversal finishes, we
simply return the highest-scoring word we encountered.

We implemented two heuristics that speed up the
computation immensely. First, we only visit the words
starting with letters that are likely to be the initial letter
for the word. This optimization gives us a several-fold
speedup, especially for words that begin with uncommon
letters. A much greater speedup comes from pruning the
search to avoid following paths that are unlikely to result
in a high-scoring word. If the score for the partial word at
a given node (again, normalized by the number of letters)
is worse than some threshold times the best score so far,
we assume that, no matter how well the remaining letters
of the word score, they will never be good enough to beat
the best word we’ve seen so far. This second optimiza-
tion gives us a quite dramatic speedup, without noticea-
bly compromising the results.

4. Results

While we have not yet rigorously tested of our system,

our initial results are promising. We trained the character
recognizer using our set of 15 pages of training data for
several hours (133,846 epochs), and used a dictionary of
367,744 English words. We then tested the recognizer
using data similar to the training data. For just the alpha-
betic characters, the character recognizer has an 87%
success rate. For the alphanumerics, we drop down to
83% success. When we include all of the punctuation, the
accuracy drops to 68%. Considering the poor quality of
the input images, though, this is quite promising.

On images taken by the 1024x768 APLUX camera,
where an entire page of 10-point text fits well inside the
frame, our system is able to recognize words in the vicin-
ity of 80-95% word accuracy. The variance in accuracy is
due mostly to differences in lighting quality, as well as
variations in font size and face. Figure 7 shows an exam-
ple of our system’s performance.

Our current system is quite slow. For the example
paragraph in figure 7, it takes a total of 2 minutes and 40
seconds to produce the output shown (on a 2GHz Xeon).
Of that time, 2 minutes and 20 seconds are taken up by
the character recognizer, and the rest is due to the trie
traversal.

More comprehensive training and evaluation still need
to be done, but the results are very encouraging. By way
of comparison, ScanSoft was almost completely unable
to recognize the text in these types of images, getting a
few words here and there amid a sea of gibberish. On the
other hand, for high-resolution images, ScanSoft outper-
forms our method, is able to recognize a wider variety of
fonts, and is much faster.

Figure 6. Trie-based dictionary lookup. As we visit
each node in the trie, a new row of the dynamic pro-
gramming table is created. We can reuse much of the
work when evaluating the scores for “mile” and “mild”

5. Conclusion

We have presented a camera-based OCR system that

can recognize text from poor-quality images of text
documents. We solve character segmentation and recog-
nition simultaneously, using the grey level image. To
achieve maximum robustness, we use a machine learning
approach based on convolutional neural network trained
on a large amount of data. The system chooses the cor-
rect word as the most likely choice up to 95% of the time.
Word accuracy is much higher for getting the correct
word in the top 2 choices. Accuracy is also higher for
words of 3 characters or more. While the accuracy of our
system may not be good enough for conversion of paper
documents to digital versions, it is more than enough for
document retrieval.

One of the promises of learning-based recognizers,
such as our convolutional neural net recognizer, is that
they should be easy to use in novel situations (e.g. differ-
ent alphabets), simply by re-training the system. We hope
to verify this by using our system to handle other lan-
guages and alphabets, as well as a wider variety of fonts
and text styles.

6. References
[1] Baird, H., “Anatomy of a versatile page reader,” Proceed-
ings of the IEEE, vol. 80, No. 7, July 1992, pp. 1059-1065.
 [2] Bengio Y., LeCun Y., Nohl C., and Burges C., ”LeRec: A
NN/HMM Hybrid for On-Line Handwriting Recognition,” Neu-
ral Computation, vol. 7, no. 6, pp. 1289--1303, 1995.
[3] Bishop C. M., Neural Networks for Pattern Recognition,
Oxford University Press, (1995).
[4] Doermann D, Liang J, Li H., “Progress in Camera-Based
Document Image Analysis,” Proceedings Seventh ICDAR
2003. Edinburgh, Scotland, pp. 606-616.

[5] Hornik K. M., Stinchcombe M., White H., “Universal Ap-
proximation of an Unknown Mapping and its Derivatives using
Multilayer Feedforward Networks,” Neural Networks, v. 3, pp.
551-560, (1990).
[6] LeCun Y., “The MNIST database of handwritten digits,”
http://yann.lecun.com/exdb/mnist.
[7] Lucas, S.M., Patoulas, G and Downton, A. C. 2003. “Fast
Lexicon-Based Word Recognition in Noisy Index Card Im-
ages,” In Proceedings ICDAR 2003 7th International Confer-
ence on Document Analysis and Recogntion, Edinburgh, Scot-
land, August 3-6, 2003, Volume 1: 462-466.
[8] Mirmehdi, M., Clark, P. and Lam, J., “Extracting Low
Resolution Text with an Active Camera for OCR,” In Proceed-
ings of the IX Spanish Symposium on Pattern Recognition and
Image Processing, pp. 43-48. 2001.
[9] Newman W., Dance C., Taylor A., Taylor S., Taylor M.,
and Aldhous T., “CamWorks: A Video-based Tool for Efficient
Capture from Paper Source Documents,” In Proc. IEEE
ICMCS, 1999, Volume 2, pp. 647-653.
[10] Pilu, M., and Pollard, S., “A light-weight text image proc-
essing method for handheld embedded cameras,” In British
Machine Vision Conference, Sept 2002.
 [11] Simard P. Y., Steinkraus D. and Platt J., “Best Practice for
Convolutional Neural Networks Applied to Visual Document
Analysis.” International Conference on Document Analysis and
Recogntion (ICDAR), IEEE Computer Society, Los Alamitos,
pp. 958-962, 2003.
[12] Taylor M. J. and Dance C. R., “Enhancement of Document
Images from Cameras,” In Proc. of IS&T SPIE EIDR V, pp.
230-241 1998.
[13] Trier O. D. and Taxt T., “Evaluation of Binarization Meth-
ods for Document Images,” PAMI, Vol. 17, No. 3, pp. 312-315,
1995.

Figure 7. An example of our system recognizing text from 20,000 Leagues Under the Sea. We used a 1024x768
webcam to snap an image of a full page of 10-point text. Ignoring punctuation, our system only missed 14 of the
118 words or word fragments in the text. This drops to 8 if we ignore the problem of hyphenated words, where the
word fragments do not appear in our dictionary. The words shown in figure 2 are from this image.

